Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2019

22.05.2019

An Integrated Numerical Method to Predict the Strain Sensing Behavior of Flexible Conductive Fibers under Electric–Thermal Conditions

verfasst von: H. Wang, P. Xue, W. L. Zhu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexible conductive textiles have attracted an increasing amount of attention due to being flexible and stretchable with multi-functions, in addition to the strain sensing function. In this paper, an integrated numerical method is established to predict the strain sensing behavior of PPy-coated flexible conductive fibers. Based on our previous investigation on the strain sensing behavior of the PPy-coated elastic conductive fibers, it has been known that the main strain sensing mechanisms of the conductive fibers are micro-cracks opening under stretching and closing under unloading. Therefore, in the numerical approach, extended finite element method is used to simulate the multi-crack initiation and propagation. Then, by establishing a representative element model including a single crack, the resistance variation with the increase in crack width/depth can be obtained using the electric–thermal package in ABAQUS software. Combining the relationship between crack width and strain, the relationship between fractional increment in resistance (\( \Delta R /R_{0} \)) and the strain can be obtained. The prediction of the fractional increment in resistance (\( \Delta R /R_{0} \)) versus strain is consistent with the experimental results of PPy-coated Lycra fibers. The new integrated method is further verified by experimental results of PPy-coated XLA fibers, showing that the integrated numerical approach can capture the complicated strain sensing mechanisms of PPy-coated elastic fibers and predict the strain sensing behavior of flexible conductive fibers. This approach will make it possible to shorten the period, and reduce the cost in R&D of the PPy-coated electrically conductive fibers, comparing with the corresponding experimental work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Tognetti, et al. Characterization of a Novel Data Glove Based on Textile Integrated Sensors, International Conference of the IEEE Engineering Medicine & Biology Society, Varna, IEEE, 2006 A. Tognetti, et al. Characterization of a Novel Data Glove Based on Textile Integrated Sensors, International Conference of the IEEE Engineering Medicine & Biology Society, Varna, IEEE, 2006
2.
Zurück zum Zitat X. Cheng, et al., Polypyrrole-Coated Large Deformation Strain Fabric Sensor and Its Properties Study, Mrs Proceedings, Vol 920, Nice, 2006 X. Cheng, et al., Polypyrrole-Coated Large Deformation Strain Fabric Sensor and Its Properties Study, Mrs Proceedings, Vol 920, Nice, 2006
3.
Zurück zum Zitat C. Yan et al., Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper For Strain Sensors, Adv. Mater. (Deerfield Beach, Fla.), 2014, 26(13), p 2022CrossRef C. Yan et al., Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper For Strain Sensors, Adv. Mater. (Deerfield Beach, Fla.), 2014, 26(13), p 2022CrossRef
4.
Zurück zum Zitat A. Schmitz et al., Methods and Technologies for the Implementation of Large-Scale Robot Tactile Sensors, IEEE Trans. Rob., 2011, 27(3), p 389–400CrossRef A. Schmitz et al., Methods and Technologies for the Implementation of Large-Scale Robot Tactile Sensors, IEEE Trans. Rob., 2011, 27(3), p 389–400CrossRef
5.
Zurück zum Zitat S. Yun et al., Polymer-Waveguide-Based Flexible Tactile Sensor Array for Dynamic Response, Adv. Mater., 2014, 26(26), p 4474–4480CrossRef S. Yun et al., Polymer-Waveguide-Based Flexible Tactile Sensor Array for Dynamic Response, Adv. Mater., 2014, 26(26), p 4474–4480CrossRef
6.
Zurück zum Zitat G. Zhu et al., Self-Powered, Ultrasensitive, Flexible Tactile Sensors Based on Contact Electrification, Nano Lett., 2014, 14(6), p 3208–3213CrossRef G. Zhu et al., Self-Powered, Ultrasensitive, Flexible Tactile Sensors Based on Contact Electrification, Nano Lett., 2014, 14(6), p 3208–3213CrossRef
7.
Zurück zum Zitat A.P. Tjahyono, et al., Flexible Strain Sensor for Air Muscles Using Polypyrrole Coated Rubber, in Proceedings of SPIE—The International Society for Optical Engineering, 2010. 7642: p. 764228–764228-8 A.P. Tjahyono, et al., Flexible Strain Sensor for Air Muscles Using Polypyrrole Coated Rubber, in Proceedings of SPIE—The International Society for Optical Engineering, 2010. 7642: p. 764228–764228-8
8.
Zurück zum Zitat S. Takamatsu et al., Transparent Conductive-Polymer Strain Sensors for Touch Input Sheets Of Flexible Displays, J. Micromech. Microeng., 2010, 20(7), p 75017–75022CrossRef S. Takamatsu et al., Transparent Conductive-Polymer Strain Sensors for Touch Input Sheets Of Flexible Displays, J. Micromech. Microeng., 2010, 20(7), p 75017–75022CrossRef
9.
Zurück zum Zitat J. Viventi et al., A Conformal, Bio-interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology, Sci. Transl. Med., 2010, 2(24), p 24ra22CrossRef J. Viventi et al., A Conformal, Bio-interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology, Sci. Transl. Med., 2010, 2(24), p 24ra22CrossRef
10.
Zurück zum Zitat C. Cochrane et al., Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite, Sensors, 2007, 7(4), p 473–492CrossRef C. Cochrane et al., Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite, Sensors, 2007, 7(4), p 473–492CrossRef
11.
Zurück zum Zitat C. Cédric, L. Maryline, and K. Vladan, A Flexible Strain Sensor Based on a Conductive Polymer Composite for in situ Measurement of Parachute Canopy Deformation, Sensors, 2010, 10(9), p 8291–8303CrossRef C. Cédric, L. Maryline, and K. Vladan, A Flexible Strain Sensor Based on a Conductive Polymer Composite for in situ Measurement of Parachute Canopy Deformation, Sensors, 2010, 10(9), p 8291–8303CrossRef
12.
Zurück zum Zitat X. Zhao, et al., Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. Adv. Electron. Mater., 2015, 1(7) X. Zhao, et al., Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. Adv. Electron. Mater., 2015, 1(7)
13.
Zurück zum Zitat C. Mattmann, F. Clemens, and G. Tröster, Sensor for Measuring Strain in Textile, Sensors (Basel, Switzerland), 2008, 8(6), p 3719CrossRef C. Mattmann, F. Clemens, and G. Tröster, Sensor for Measuring Strain in Textile, Sensors (Basel, Switzerland), 2008, 8(6), p 3719CrossRef
14.
Zurück zum Zitat X. Zhang et al., Evaluation on PPy-Coated Conductive Fabric for Human Motion Monitoring, Springer, Berlin, 2015, p 603–610 X. Zhang et al., Evaluation on PPy-Coated Conductive Fabric for Human Motion Monitoring, Springer, Berlin, 2015, p 603–610
15.
Zurück zum Zitat H. Niu et al., Polypyrrole-Coated PDMS Fibrous Membrane: Flexible Strain Sensor with Distinctive Resistance Responses at Different Strain Ranges, Macromol. Mater. Eng., 2016, 301(6), p 707–713CrossRef H. Niu et al., Polypyrrole-Coated PDMS Fibrous Membrane: Flexible Strain Sensor with Distinctive Resistance Responses at Different Strain Ranges, Macromol. Mater. Eng., 2016, 301(6), p 707–713CrossRef
16.
Zurück zum Zitat Y. Li et al., A Flexible Strain Sensor from Polypyrrole-Coated Fabrics, Synth. Met., 2005, 155(1), p 89–94CrossRef Y. Li et al., A Flexible Strain Sensor from Polypyrrole-Coated Fabrics, Synth. Met., 2005, 155(1), p 89–94CrossRef
17.
Zurück zum Zitat P. Xue et al., Electromechanical Behavior of Fibers Coated with an Electrically Conductive Polymer, Text. Res. J., 2004, 74(10), p 929–936CrossRef P. Xue et al., Electromechanical Behavior of Fibers Coated with an Electrically Conductive Polymer, Text. Res. J., 2004, 74(10), p 929–936CrossRef
18.
Zurück zum Zitat P. Xue, X.M. Tao, and H.Y. Tsang, In situ SEM Studies on Strain Sensing Mechanisms of PPy-Coated Electrically Conducting Fabrics, Appl. Surf. Sci., 2007, 253(7), p 3387–3392CrossRef P. Xue, X.M. Tao, and H.Y. Tsang, In situ SEM Studies on Strain Sensing Mechanisms of PPy-Coated Electrically Conducting Fabrics, Appl. Surf. Sci., 2007, 253(7), p 3387–3392CrossRef
19.
Zurück zum Zitat P. Xue and X.M. Tao, Morphological and Electromechanical Studies of Fibers Coated with Electrically Conductive Polymer, J. Appl. Polym. Sci., 2010, 98(4), p 1844–1854CrossRef P. Xue and X.M. Tao, Morphological and Electromechanical Studies of Fibers Coated with Electrically Conductive Polymer, J. Appl. Polym. Sci., 2010, 98(4), p 1844–1854CrossRef
20.
Zurück zum Zitat A.P. Tjahyono, K.C. Aw, and J. Travas-Sejdic, A Novel Polypyrrole-Based Sensor for Robotics Applications, IFAC Proc. Vol., 2012, 45(22), p 590–593CrossRef A.P. Tjahyono, K.C. Aw, and J. Travas-Sejdic, A Novel Polypyrrole-Based Sensor for Robotics Applications, IFAC Proc. Vol., 2012, 45(22), p 590–593CrossRef
21.
Zurück zum Zitat S. Lee et al., Chitosan-Polypyrrole Fiber for Strain Sensor, J. Nanosci. Nanotechnol., 2015, 15(3), p 2537–2541CrossRef S. Lee et al., Chitosan-Polypyrrole Fiber for Strain Sensor, J. Nanosci. Nanotechnol., 2015, 15(3), p 2537–2541CrossRef
22.
Zurück zum Zitat J. Lee, H. Kwon, J. Seo et al., Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics, Adv. Mater., 2015, 27(15), p 2433–2439CrossRef J. Lee, H. Kwon, J. Seo et al., Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics, Adv. Mater., 2015, 27(15), p 2433–2439CrossRef
23.
Zurück zum Zitat J. Lee, J. Yoon, H.G. Kim et al., Highly Conductive and Flexible Fiber for Textile Electronics Obtained by Extremely Low-Temperature Atomic Layer Deposition of Pt, Npg Asia Mater., 2016, 8(11), p e331CrossRef J. Lee, J. Yoon, H.G. Kim et al., Highly Conductive and Flexible Fiber for Textile Electronics Obtained by Extremely Low-Temperature Atomic Layer Deposition of Pt, Npg Asia Mater., 2016, 8(11), p e331CrossRef
24.
Zurück zum Zitat X. Liu, R. Guo, Y. Shi et al., Durable, Washable, Flexible Conductive PET Fabrics Designed by Fiber Interfacial Molecular Engineering, Macromol. Mater. Eng., 2016, 301(11), p 1383–1389CrossRef X. Liu, R. Guo, Y. Shi et al., Durable, Washable, Flexible Conductive PET Fabrics Designed by Fiber Interfacial Molecular Engineering, Macromol. Mater. Eng., 2016, 301(11), p 1383–1389CrossRef
25.
Zurück zum Zitat H. Souri, D. Bhattacharyya, Wearable Strain Sensors Based on Electrically Conductive Natural Fiber Yarns. Mater. Des., 2018 H. Souri, D. Bhattacharyya, Wearable Strain Sensors Based on Electrically Conductive Natural Fiber Yarns. Mater. Des., 2018
26.
Zurück zum Zitat K. Ishac, K. Suzuki, LifeChair: A Conductive Fabric Sensor-Based Smart Cushion for Actively Shaping Sitting Posture. Sensors, 2018, 18(7) K. Ishac, K. Suzuki, LifeChair: A Conductive Fabric Sensor-Based Smart Cushion for Actively Shaping Sitting Posture. Sensors, 2018, 18(7)
27.
Zurück zum Zitat N. Sukumar, D.L. Chopp, and B. Moran, Extended Finite Element Method and Fast Marching Method for Three-Dimensional Fatigue Crack Propagation, Eng. Fract. Mech., 2003, 70(1), p 29–48CrossRef N. Sukumar, D.L. Chopp, and B. Moran, Extended Finite Element Method and Fast Marching Method for Three-Dimensional Fatigue Crack Propagation, Eng. Fract. Mech., 2003, 70(1), p 29–48CrossRef
28.
Zurück zum Zitat H. Pathak et al., A Simple and Efficient XFEM Approach for 3-D Cracks Simulations, Int. J. Fract., 2013, 181(2), p 189–208CrossRef H. Pathak et al., A Simple and Efficient XFEM Approach for 3-D Cracks Simulations, Int. J. Fract., 2013, 181(2), p 189–208CrossRef
29.
Zurück zum Zitat X.Y. Liu, Q.Z. Xiao, and B.L. Karihaloo, XFEM for Direct Evaluation of Mixed Mode SIFs in Homogeneous and Bi-Materials, Int. J. Numer. Meth. Eng., 2004, 59(8), p 1103–1118CrossRef X.Y. Liu, Q.Z. Xiao, and B.L. Karihaloo, XFEM for Direct Evaluation of Mixed Mode SIFs in Homogeneous and Bi-Materials, Int. J. Numer. Meth. Eng., 2004, 59(8), p 1103–1118CrossRef
30.
Zurück zum Zitat J.P. Wang, P. Xue, and X.M. Tao, Strain Sensing Behavior of Electrically Conductive Fibers Under Large Deformation, Mater. Sci. Eng., A, 2011, 528(6), p 2863–2869CrossRef J.P. Wang, P. Xue, and X.M. Tao, Strain Sensing Behavior of Electrically Conductive Fibers Under Large Deformation, Mater. Sci. Eng., A, 2011, 528(6), p 2863–2869CrossRef
31.
Zurück zum Zitat P. Xue, J. Wang, and X. Tao, Flexible Textile Strain Sensors From Polypyrrole-Coated XLA (TM) Elastic Fibers, High Perform. Polym., 2014, 26(3), p 364–370CrossRef P. Xue, J. Wang, and X. Tao, Flexible Textile Strain Sensors From Polypyrrole-Coated XLA (TM) Elastic Fibers, High Perform. Polym., 2014, 26(3), p 364–370CrossRef
32.
Zurück zum Zitat Introducing a Geometric Imperfection into a Model. Abaqus Analysis User’s Guide, 11.3.1. USA, SIMULA Introducing a Geometric Imperfection into a Model. Abaqus Analysis User’s Guide, 11.3.1. USA, SIMULA
33.
Zurück zum Zitat Z.J. Lin, B.U. Zhuo Zhuang, Enriched Goal-Oriented Error Estimation for Fracture Problems Solved by Continuum-Based Shell Extended Finite Element Method. 2014, 35(1), pp. 33–48 Z.J. Lin, B.U. Zhuo Zhuang, Enriched Goal-Oriented Error Estimation for Fracture Problems Solved by Continuum-Based Shell Extended Finite Element Method. 2014, 35(1), pp. 33–48
34.
Zurück zum Zitat L.-X. Wang, X.-G. Li, and Y.-L. Yang, Preparation, Properties and Applications of Polypyrroles, Mater. Rev., 2007, 47(2), p 125–139 L.-X. Wang, X.-G. Li, and Y.-L. Yang, Preparation, Properties and Applications of Polypyrroles, Mater. Rev., 2007, 47(2), p 125–139
35.
Zurück zum Zitat Z.G. Tian, et al., Determination of the Relationship Between the Opening Displacement of a Surface Crack and Its Depth in a Plate. Journal of Ship Mechanics, 2008. Z.G. Tian, et al., Determination of the Relationship Between the Opening Displacement of a Surface Crack and Its Depth in a Plate. Journal of Ship Mechanics, 2008.
Metadaten
Titel
An Integrated Numerical Method to Predict the Strain Sensing Behavior of Flexible Conductive Fibers under Electric–Thermal Conditions
verfasst von
H. Wang
P. Xue
W. L. Zhu
Publikationsdatum
22.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04091-2

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Engineering and Performance 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.