Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2021

08.07.2021 | ORIGINAL ARTICLE

An intelligent control approach for defect-free friction stir welding

verfasst von: Richard Cobos, Santiago D. Salas, Wilfredo Angulo, T. Warren Liao

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An intelligent control approach is proposed as an alternative for the friction stir welding of an aluminum alloy. A validated empirical model is re-written from transfer functions to a set of ordinary differential equations, allowing to observe the force dynamics as a function of inputs of interest. A defect-free set-point is proposed for exploiting available labeled experimental data which defines operational boundaries and a region in which the probability of achieving defect-free welds with good mechanical properties is the highest. An intelligent controller in the fashion of a recurrent neural network is constructed. Computational experiments were carried out to verify the adequacy in disturbance rejection as well as to visualize the capabilities in achieving the proposed defect-free set-point by the controller. The intelligent approach is compared with a set of decoupled proportional-integral controllers and a linear model predictive control strategy. From this study, it is concluded that the intelligent controller shows superiority and good applicability for the studied problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Aziz SB, Dewan MW, Huggett DJ, Wahab MA, Okeil AM, Liao TW (2018) A fully coupled thermomechanical model of friction stir welding (fsw) and numerical studies on process parameters of lightweight aluminum alloy joints. Acta Metallurgica Sinica (English Lett) 31(1):1–18CrossRef Aziz SB, Dewan MW, Huggett DJ, Wahab MA, Okeil AM, Liao TW (2018) A fully coupled thermomechanical model of friction stir welding (fsw) and numerical studies on process parameters of lightweight aluminum alloy joints. Acta Metallurgica Sinica (English Lett) 31(1):1–18CrossRef
2.
Zurück zum Zitat Bachmann A, Gamper J, Krutzlinger M, Zens A, Zaeh M (2017) Adaptive model-based temperature control in friction stir welding. Int J Adv Manufact Technol 93(1-4):1157–1171CrossRef Bachmann A, Gamper J, Krutzlinger M, Zens A, Zaeh M (2017) Adaptive model-based temperature control in friction stir welding. Int J Adv Manufact Technol 93(1-4):1157–1171CrossRef
3.
Zurück zum Zitat Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv:1409.​0473
4.
Zurück zum Zitat Barreira L, Valls C (2008) Stability of nonautonomous differential equations, vol 1926. Springer, BerlinCrossRef Barreira L, Valls C (2008) Stability of nonautonomous differential equations, vol 1926. Springer, BerlinCrossRef
5.
Zurück zum Zitat Çam G (2011) Friction stir welded structural materials: beyond al-alloys. Int Mater Rev 56 (1):1–48CrossRef Çam G (2011) Friction stir welded structural materials: beyond al-alloys. Int Mater Rev 56 (1):1–48CrossRef
6.
Zurück zum Zitat Çam G., İpekoğlu G (2017) Recent developments in joining of aluminum alloys. Int J Adv Manufact Technol 91(5-8):1851–1866CrossRef Çam G., İpekoğlu G (2017) Recent developments in joining of aluminum alloys. Int J Adv Manufact Technol 91(5-8):1851–1866CrossRef
7.
Zurück zum Zitat Çam G, İpekoğlu G, Küçükömeroğlu T, Aktarer S (2017) Applicability of friction stir welding to steels. J Achiev Mater Manufact Eng 80(2) Çam G, İpekoğlu G, Küçükömeroğlu T, Aktarer S (2017) Applicability of friction stir welding to steels. J Achiev Mater Manufact Eng 80(2)
8.
Zurück zum Zitat Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555 Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.​3555
9.
Zurück zum Zitat Colegrove PA, Shercliff HR (2005) 3-dimensional cfd modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169(2):320–327CrossRef Colegrove PA, Shercliff HR (2005) 3-dimensional cfd modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169(2):320–327CrossRef
10.
Zurück zum Zitat Davis TA, Ngo PD, Shin YC (2012) Multi-level fuzzy control of friction stir welding power. Int J Adv Manufact Technol 59(5-8):559–567CrossRef Davis TA, Ngo PD, Shin YC (2012) Multi-level fuzzy control of friction stir welding power. Int J Adv Manufact Technol 59(5-8):559–567CrossRef
11.
Zurück zum Zitat Davis TA, Shin YC, Yao B (2010) Observer-based adaptive robust control of friction stir welding axial force. IEEE/ASME Trans Mechatron 16(6):1032–1039CrossRef Davis TA, Shin YC, Yao B (2010) Observer-based adaptive robust control of friction stir welding axial force. IEEE/ASME Trans Mechatron 16(6):1032–1039CrossRef
12.
Zurück zum Zitat Dewan MW, Huggett DJ, Liao TW, Wahab MA, Okeil AM (2016) Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (anfis) and neural network. Mater Des 92:288–299CrossRef Dewan MW, Huggett DJ, Liao TW, Wahab MA, Okeil AM (2016) Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (anfis) and neural network. Mater Des 92:288–299CrossRef
13.
Zurück zum Zitat Eren B, Guvenc MA, Mistikoglu S (2020) Artificial intelligence applications for friction stir welding: A review. Met Mater Int 1–27 Eren B, Guvenc MA, Mistikoglu S (2020) Artificial intelligence applications for friction stir welding: A review. Met Mater Int 1–27
14.
Zurück zum Zitat Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2011) Toward automation of friction stir welding through temperature measurement and closed-loop control. J Manufact Sci Eng 133(5) Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2011) Toward automation of friction stir welding through temperature measurement and closed-loop control. J Manufact Sci Eng 133(5)
15.
Zurück zum Zitat Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Effects of tool–workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding. Int J Adv Manufact Technol 71(1-4):165– 179CrossRef Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Effects of tool–workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding. Int J Adv Manufact Technol 71(1-4):165– 179CrossRef
16.
Zurück zum Zitat Fehrenbacher A, Smith CB, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Combined temperature and force control for robotic friction stir welding. J Manufact Sci Eng 136(2) Fehrenbacher A, Smith CB, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Combined temperature and force control for robotic friction stir welding. J Manufact Sci Eng 136(2)
17.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
18.
Zurück zum Zitat Huggett D, Liao T, Wahab M, Okeil A (2018) Prediction of friction stir weld quality without and with signal features. Int J Adv Manufact Technol 95(5-8):1989–2003CrossRef Huggett D, Liao T, Wahab M, Okeil A (2018) Prediction of friction stir weld quality without and with signal features. Int J Adv Manufact Technol 95(5-8):1989–2003CrossRef
19.
Zurück zum Zitat Iqbal MP, Tripathi A, Jain R, Mahto RP, Pal S, Mandal P (2020) Numerical modelling of microstructure in friction stir welding of aluminium alloys. Int J Mech Sci 105882:185 Iqbal MP, Tripathi A, Jain R, Mahto RP, Pal S, Mandal P (2020) Numerical modelling of microstructure in friction stir welding of aluminium alloys. Int J Mech Sci 105882:185
20.
Zurück zum Zitat Köhler T, Schiele M, Glaser M, Schricker K, Bergmann J, Augsburg K (2020) In-situ monitoring of hybrid friction diffusion bonded en aw 1050/en cw 004a lap joints using artificial neural nets. Proc Instit Mechan Eng Part L J Mater Des Appl 234(5):766–785 Köhler T, Schiele M, Glaser M, Schricker K, Bergmann J, Augsburg K (2020) In-situ monitoring of hybrid friction diffusion bonded en aw 1050/en cw 004a lap joints using artificial neural nets. Proc Instit Mechan Eng Part L J Mater Des Appl 234(5):766–785
21.
Zurück zum Zitat Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26(2):195–197CrossRef Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26(2):195–197CrossRef
22.
Zurück zum Zitat Lakshminarayanan A, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of aa6061 aluminium alloy joints. Int J Adv Manufact Technol 40(3-4):286–296CrossRef Lakshminarayanan A, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of aa6061 aluminium alloy joints. Int J Adv Manufact Technol 40(3-4):286–296CrossRef
23.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
24.
Zurück zum Zitat Lim S, Kim S, Lee CG, Kim S (2004) Tensile behavior of friction-stri-welded al 6061-t651. Metall and Mater Trans A 35(9):2829–2835CrossRef Lim S, Kim S, Lee CG, Kim S (2004) Tensile behavior of friction-stri-welded al 6061-t651. Metall and Mater Trans A 35(9):2829–2835CrossRef
25.
Zurück zum Zitat Longhurst WR, Strauss AM, Cook GE (2010) Enabling automation of friction stir welding: the modulation of weld seam input energy by traverse speed force control. J Dynam Syst Measure Cont 132(4) Longhurst WR, Strauss AM, Cook GE (2010) Enabling automation of friction stir welding: the modulation of weld seam input energy by traverse speed force control. J Dynam Syst Measure Cont 132(4)
26.
Zurück zum Zitat Longhurst WR, Strauss AM, Cook GE, Fleming PA (2010) Torque control of friction stir welding for manufacturing and automation. Int J Adv Manufact Technol 51(9-12):905–913CrossRef Longhurst WR, Strauss AM, Cook GE, Fleming PA (2010) Torque control of friction stir welding for manufacturing and automation. Int J Adv Manufact Technol 51(9-12):905–913CrossRef
27.
Zurück zum Zitat Mishra RS, Ma Z (2005) Friction stir welding and processing. Materials Science and Engineering: R: reports 50(1-2):1–78CrossRef Mishra RS, Ma Z (2005) Friction stir welding and processing. Materials Science and Engineering: R: reports 50(1-2):1–78CrossRef
28.
Zurück zum Zitat Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28(1):78–84CrossRef Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28(1):78–84CrossRef
29.
Zurück zum Zitat Romagnoli JA, Palazoglu A (2020) Introduction to process control. CRC Press, Boca RatonCrossRef Romagnoli JA, Palazoglu A (2020) Introduction to process control. CRC Press, Boca RatonCrossRef
30.
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive Science Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive Science
31.
Zurück zum Zitat Sideris TC (2013) Ordinary differential equations and dynamical systems. Springer, BerlinCrossRef Sideris TC (2013) Ordinary differential equations and dynamical systems. Springer, BerlinCrossRef
32.
Zurück zum Zitat Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, CambridgeMATH Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, CambridgeMATH
33.
Zurück zum Zitat Taysom BS, Sorensen CD, Hedengren JD (2017) A comparison of model predictive control and pid temperature control in friction stir welding. J Manuf Process 29:232–241CrossRef Taysom BS, Sorensen CD, Hedengren JD (2017) A comparison of model predictive control and pid temperature control in friction stir welding. J Manuf Process 29:232–241CrossRef
34.
Zurück zum Zitat Tribe A, Nelson TW (2015) Study on the fracture toughness of friction stir welded api x80. Eng Fract Mech 150:58–69CrossRef Tribe A, Nelson TW (2015) Study on the fracture toughness of friction stir welded api x80. Eng Fract Mech 150:58–69CrossRef
35.
Zurück zum Zitat Tygert M, Bruna J, Chintala S, LeCun Y, Piantino S, Szlam A (2016) A mathematical motivation for complex-valued convolutional networks. Neural Comput 28(5):815–825MathSciNetCrossRef Tygert M, Bruna J, Chintala S, LeCun Y, Piantino S, Szlam A (2016) A mathematical motivation for complex-valued convolutional networks. Neural Comput 28(5):815–825MathSciNetCrossRef
36.
Zurück zum Zitat Vignesh RV, Padmanaban R, Arivarasu M, Thirumalini S, Gokulachandran J, Ram MSSS (2016) Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates. In: IOP Conference series: Materials science and engineering, vol 149. IOP Publishing, p 012208 Vignesh RV, Padmanaban R, Arivarasu M, Thirumalini S, Gokulachandran J, Ram MSSS (2016) Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates. In: IOP Conference series: Materials science and engineering, vol 149. IOP Publishing, p 012208
37.
Zurück zum Zitat Wang Y, Velswamy K, Huang B (2018) A novel approach to feedback control with deep reinforcement learning. IFAC-PapersOnLine 51(18):31–36CrossRef Wang Y, Velswamy K, Huang B (2018) A novel approach to feedback control with deep reinforcement learning. IFAC-PapersOnLine 51(18):31–36CrossRef
38.
Zurück zum Zitat Zhang H, Zhang Z, Chen J (2005) The finite element simulation of the friction stir welding process. Mater Sci Eng A 403(1-2):340–348CrossRef Zhang H, Zhang Z, Chen J (2005) The finite element simulation of the friction stir welding process. Mater Sci Eng A 403(1-2):340–348CrossRef
39.
Zurück zum Zitat Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv (CSUR) 52(1):1–38 Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv (CSUR) 52(1):1–38
40.
Zurück zum Zitat Zhao S, Bi Q, Wang Y (2016) An axial force controller with delay compensation for the friction stir welding process. Int J Adv Manufact Technol 85(9):2623–2638CrossRef Zhao S, Bi Q, Wang Y (2016) An axial force controller with delay compensation for the friction stir welding process. Int J Adv Manufact Technol 85(9):2623–2638CrossRef
41.
Zurück zum Zitat Zhao X, Kalya P, Landers RG, Krishnamurthy K (2008) Design and implementation of nonlinear force controllers for friction stir welding processes. J Manufact Sci Eng 130(6) Zhao X, Kalya P, Landers RG, Krishnamurthy K (2008) Design and implementation of nonlinear force controllers for friction stir welding processes. J Manufact Sci Eng 130(6)
42.
Zurück zum Zitat Zhao X, Kalya P, Landers RG, Krishnamurthy K (2009) Empirical dynamic modeling of friction stir welding processes. J Manufact Sci Eng 131(2) Zhao X, Kalya P, Landers RG, Krishnamurthy K (2009) Empirical dynamic modeling of friction stir welding processes. J Manufact Sci Eng 131(2)
Metadaten
Titel
An intelligent control approach for defect-free friction stir welding
verfasst von
Richard Cobos
Santiago D. Salas
Wilfredo Angulo
T. Warren Liao
Publikationsdatum
08.07.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07523-3

Weitere Artikel der Ausgabe 7-8/2021

The International Journal of Advanced Manufacturing Technology 7-8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.