Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2022

17.11.2021

An Investigation on Microstructures and Mechanical Properties of Twinning-Induced Plasticity Steels Prepared by Directional Solidification

verfasst von: Dan Wang, Wen Wang, Yingjie Huang, Xinfu wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical behaviors and microstructural characteristics of three twinning-induced plasticity (TWIP) steels prepared using directional solidification at withdrawal rates of 3, 8, and 15 µms−1 (abbreviated as DS3, DS8, and DS15, respectively) were investigated. The results showed that all the samples solidified steadily in a cellular growth mode. The dendrite spacing decreased on increasing the withdrawal rate, but eliminated grains resulted from increased growth competition. At a low strain rate of 2.27×10−3 s−1, DS8 exhibited the best mechanical properties because of the adequately stimulated TWIP effect with well-developed twin structures and good deformation synergy between columnar grains being conducive to uniform stress distribution. Therefore, the work hardening ability significantly improved, with the highest working hardening exponent, ni, obtained at a high strain level. This was accompanied by a remarkably enhanced uniform plastic deformation ability. A weakened TWIP effect occurred due to suppressed twinning with fewer and nonuniform twins structures at a high strain rate of 3.79×10-1 s-1. The high strain rate was evident to be not conducive to the activation of planar slip for directionally solidified samples, resulting in fewer and inhomogeneous slip systems. This effectively weakened twinning with relatively strong dislocation gliding instead. This remarkably decreased all the ni values in the medium-to-high strain range, leading to a significantly decreased plastic deformation ability and finally resulting in severely degraded plasticity, especially for DS8.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. Grassel, L. Kruger, G. Frommeyer and L.W. Meyer, High Strength Fe-Mn-(Al, Si)TRIP/TWIP Steels Development-Properties-Application, Int. J. Plastic., 2000, 16, p 1391–1409.CrossRef O. Grassel, L. Kruger, G. Frommeyer and L.W. Meyer, High Strength Fe-Mn-(Al, Si)TRIP/TWIP Steels Development-Properties-Application, Int. J. Plastic., 2000, 16, p 1391–1409.CrossRef
2.
Zurück zum Zitat G. Frommeyer, U. Brux and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purpose, TSIJ Int., 2003, 43(3), p 438–446. G. Frommeyer, U. Brux and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purpose, TSIJ Int., 2003, 43(3), p 438–446.
3.
Zurück zum Zitat S. Vercammen, B. Blanpain, B.C.D. Cooman and P. Wollantsa, Cold Rolling Behavior of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning, Acta Mater., 2004, 52, p 2005–2012.CrossRef S. Vercammen, B. Blanpain, B.C.D. Cooman and P. Wollantsa, Cold Rolling Behavior of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning, Acta Mater., 2004, 52, p 2005–2012.CrossRef
4.
Zurück zum Zitat M. Koyama, T. Sawaguchi and K. Tsuzaki, Selective Appearance of ε-martensitic Transformation and Dynamic Strain Aging in Fe-Mn-C Austenitic Steels, Phil. Mag. Lett., 2012, 92, p 145–152.CrossRef M. Koyama, T. Sawaguchi and K. Tsuzaki, Selective Appearance of ε-martensitic Transformation and Dynamic Strain Aging in Fe-Mn-C Austenitic Steels, Phil. Mag. Lett., 2012, 92, p 145–152.CrossRef
5.
Zurück zum Zitat S.K. Mishra, S.M. Tiwari, A.M. Kumar and L.G. Hector Jr., Effect of Strain and Strain Path on Texture and Twin Development in Austenitic Steel with Twinning-Induced Plasticity, Metall. Mater. Trans. A., 2012, 43A, p 1598–1609.CrossRef S.K. Mishra, S.M. Tiwari, A.M. Kumar and L.G. Hector Jr., Effect of Strain and Strain Path on Texture and Twin Development in Austenitic Steel with Twinning-Induced Plasticity, Metall. Mater. Trans. A., 2012, 43A, p 1598–1609.CrossRef
6.
Zurück zum Zitat V. Shterner, A. Molotnikov, I. Timokhina, Y. Estrin and H. Beladi, A Constitutive Model of the Deformation Behavior of Twinning Induced Plasticity (TWIP) Steel at Different Temperatures, Mater. Sci. Eng. A., 2014, 613, p 224–231.CrossRef V. Shterner, A. Molotnikov, I. Timokhina, Y. Estrin and H. Beladi, A Constitutive Model of the Deformation Behavior of Twinning Induced Plasticity (TWIP) Steel at Different Temperatures, Mater. Sci. Eng. A., 2014, 613, p 224–231.CrossRef
7.
Zurück zum Zitat D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay and J.E. Wittig, The Influence of Manganese Content on the Stacking Fault and Austenite/ε-martensite Interfacial Energies in Fe-Mn-(Al-Si) Steels Investigated by Experiment and Theory, Acta Mater., 2014, 68, p 238–253.CrossRef D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay and J.E. Wittig, The Influence of Manganese Content on the Stacking Fault and Austenite/ε-martensite Interfacial Energies in Fe-Mn-(Al-Si) Steels Investigated by Experiment and Theory, Acta Mater., 2014, 68, p 238–253.CrossRef
8.
Zurück zum Zitat S. Curtze and V.T. Kuokkala, Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate, Acta Mater., 2010, 58(15), p 5129–5141.CrossRef S. Curtze and V.T. Kuokkala, Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate, Acta Mater., 2010, 58(15), p 5129–5141.CrossRef
9.
Zurück zum Zitat Y. Ha, H. Kim, K.H. Kwon, S.G. Lee, S. Lee and N.J. Kim, Microstructural Evolution in Fe-22Mn-0.4C Twinning-Induced Plasticity Steel During High Strain Rate Deformation, Metall. Mater. Trans. A., 2005, 46, p 545–548.CrossRef Y. Ha, H. Kim, K.H. Kwon, S.G. Lee, S. Lee and N.J. Kim, Microstructural Evolution in Fe-22Mn-0.4C Twinning-Induced Plasticity Steel During High Strain Rate Deformation, Metall. Mater. Trans. A., 2005, 46, p 545–548.CrossRef
10.
Zurück zum Zitat S. Allain, J.P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys, Mater. Sci. Eng. A., 2004, 387-389, p 158–162.CrossRef S. Allain, J.P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys, Mater. Sci. Eng. A., 2004, 387-389, p 158–162.CrossRef
11.
Zurück zum Zitat A. Saeed-Akbari, J. Imlau, U. Prahl and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A., 2009, 40A, p 3076–3090.CrossRef A. Saeed-Akbari, J. Imlau, U. Prahl and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A., 2009, 40A, p 3076–3090.CrossRef
12.
Zurück zum Zitat C. Haase, L.A. Barralesmora, D.A. Molodov and G. Gottstein, Tailoring the Mechanical Properties of a Twinning-Induced Plasticity Steel by Retention of Deformation Twins During Heat Treatment, Metall. Mater. Trans. A., 2013, 44, p 4445–4449.CrossRef C. Haase, L.A. Barralesmora, D.A. Molodov and G. Gottstein, Tailoring the Mechanical Properties of a Twinning-Induced Plasticity Steel by Retention of Deformation Twins During Heat Treatment, Metall. Mater. Trans. A., 2013, 44, p 4445–4449.CrossRef
13.
Zurück zum Zitat P. Kusakin, A. Belyakov, C. Haase, R. Kaibysheva and D.A. Molodovb, Microstructure Evolution and Strengthening Mechanisms of Fe-23Mn-0.3C-1.5Al TWIP Steel During Cold Rolling, Mater. Sci. Eng. A., 2014, 617, p 52–60.CrossRef P. Kusakin, A. Belyakov, C. Haase, R. Kaibysheva and D.A. Molodovb, Microstructure Evolution and Strengthening Mechanisms of Fe-23Mn-0.3C-1.5Al TWIP Steel During Cold Rolling, Mater. Sci. Eng. A., 2014, 617, p 52–60.CrossRef
14.
Zurück zum Zitat Y. Yang, C.F. Li and K.H. Song, Effect of Strain Rate on the Microstructures and Properties of Hot-Rolled TWIP Steel in the Solution Condition, Adv. Mater. Res., 2012, 430–432, p 256-259.CrossRef Y. Yang, C.F. Li and K.H. Song, Effect of Strain Rate on the Microstructures and Properties of Hot-Rolled TWIP Steel in the Solution Condition, Adv. Mater. Res., 2012, 430–432, p 256-259.CrossRef
15.
Zurück zum Zitat Y.I. Wei-Fa, D.Y. Zhu, H.U. Zhen-Ming, Z.B. Yang and S.M. Lin, Effect of Hot Rolling Deformation on Microstructure Defects and Mechanical Properties of High Carbon TWIP Steel, Mater. Sci. Tech-lond., 2011, 19, p 45–49. Y.I. Wei-Fa, D.Y. Zhu, H.U. Zhen-Ming, Z.B. Yang and S.M. Lin, Effect of Hot Rolling Deformation on Microstructure Defects and Mechanical Properties of High Carbon TWIP Steel, Mater. Sci. Tech-lond., 2011, 19, p 45–49.
16.
Zurück zum Zitat O. Bouaziz, C.P. Scott and G. Petitgand, Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels, Scr. Mater., 2009, 60, p 714–716.CrossRef O. Bouaziz, C.P. Scott and G. Petitgand, Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels, Scr. Mater., 2009, 60, p 714–716.CrossRef
17.
Zurück zum Zitat R. Ueji, N. Tsuchida, H. Fujii, D. Kondo and K. Kunishige, Effect of Grain Size on Tensile Properties of TWIP Steel, J Jpn I Met., 2007, 71(9), p 815–821.CrossRef R. Ueji, N. Tsuchida, H. Fujii, D. Kondo and K. Kunishige, Effect of Grain Size on Tensile Properties of TWIP Steel, J Jpn I Met., 2007, 71(9), p 815–821.CrossRef
18.
Zurück zum Zitat G. Dini, A. Najafizadeh, R. Ueji and S.M. Monir-Vaghefi, Improved Tensile Properties of Partially Recrystallized Submicron Grained TWIP Steel, Mater. Lett., 2010, 64, p 15–18.CrossRef G. Dini, A. Najafizadeh, R. Ueji and S.M. Monir-Vaghefi, Improved Tensile Properties of Partially Recrystallized Submicron Grained TWIP Steel, Mater. Lett., 2010, 64, p 15–18.CrossRef
19.
Zurück zum Zitat G. Dini, A. Najafizadeh, R. Ueji and S.M. Monir-Vaghefi, Tensile Deformation Behavior of High Manganese Austenitic Steel: The Role of Grain Size, Mater Des., 2010, 31, p 3395–3402.CrossRef G. Dini, A. Najafizadeh, R. Ueji and S.M. Monir-Vaghefi, Tensile Deformation Behavior of High Manganese Austenitic Steel: The Role of Grain Size, Mater Des., 2010, 31, p 3395–3402.CrossRef
20.
Zurück zum Zitat T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee and C.S. Lee, Tensile Deformation Behavior of Fe-Mn-C TWIP Steel with Ultrafine Elongated Grain Structure, Mater Lett., 2012, 75, p 169–171.CrossRef T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee and C.S. Lee, Tensile Deformation Behavior of Fe-Mn-C TWIP Steel with Ultrafine Elongated Grain Structure, Mater Lett., 2012, 75, p 169–171.CrossRef
21.
Zurück zum Zitat L. Wang, J.A. Benito, J. Calvo and J.M. Cabrera, Equal Channel Angular Pressing of a TWIP Steel: Microstructure and Mechanical Response, J Mater Sci., 2017, 52, p 6291–6309.CrossRef L. Wang, J.A. Benito, J. Calvo and J.M. Cabrera, Equal Channel Angular Pressing of a TWIP Steel: Microstructure and Mechanical Response, J Mater Sci., 2017, 52, p 6291–6309.CrossRef
22.
Zurück zum Zitat W.H. Jiang, X.F. Sun, H.R. Guan and Z.Q. Hu, Influence of high-Temperature Air Pre-exposure on Mechanical Strength of a Directionally Solidified Cobalt-Base Superalloy, J. Mater Sci., 2001, 36(4), p 859–863.CrossRef W.H. Jiang, X.F. Sun, H.R. Guan and Z.Q. Hu, Influence of high-Temperature Air Pre-exposure on Mechanical Strength of a Directionally Solidified Cobalt-Base Superalloy, J. Mater Sci., 2001, 36(4), p 859–863.CrossRef
23.
Zurück zum Zitat H. Bei, G.M. Pharr and E.P. George, A Review of Directionally Solidified Intermetallic Composites for High-Temperature Structural Applications, J Mater Sci., 2004, 39(12), p 3975–3984.CrossRef H. Bei, G.M. Pharr and E.P. George, A Review of Directionally Solidified Intermetallic Composites for High-Temperature Structural Applications, J Mater Sci., 2004, 39(12), p 3975–3984.CrossRef
24.
Zurück zum Zitat X.B. Zhao, L. Liu, Z.H. Yu, W.G. Zhang, J. Zhang and H.G. Fu, Influence of Directional Solidification Variables on the Microstructure and Crystal Orientation of AM3 Under High Thermal Gradient, J Mater Sci., 2009, 45(22), p 6101–6107.CrossRef X.B. Zhao, L. Liu, Z.H. Yu, W.G. Zhang, J. Zhang and H.G. Fu, Influence of Directional Solidification Variables on the Microstructure and Crystal Orientation of AM3 Under High Thermal Gradient, J Mater Sci., 2009, 45(22), p 6101–6107.CrossRef
25.
Zurück zum Zitat J.J. Tang and X. Xue, Phase-field Simulation of Directional Solidification of a Binary Alloy under Different Boundary Heat Flux Conditions, J. Mater Sci., 2009, 44(3), p 745–753.CrossRef J.J. Tang and X. Xue, Phase-field Simulation of Directional Solidification of a Binary Alloy under Different Boundary Heat Flux Conditions, J. Mater Sci., 2009, 44(3), p 745–753.CrossRef
26.
Zurück zum Zitat H.R. Zhang, X.X. Tang, L. Zhou, M. Gao, C.G. Zhou and H. Zhang, Interactions Between Ni-44Ti-5Al-2Nb-Mo Alloy and Oxide Ceramics During Directional Solidification Process, J. Mater Sci., 2012, 47, p 6451–6458.CrossRef H.R. Zhang, X.X. Tang, L. Zhou, M. Gao, C.G. Zhou and H. Zhang, Interactions Between Ni-44Ti-5Al-2Nb-Mo Alloy and Oxide Ceramics During Directional Solidification Process, J. Mater Sci., 2012, 47, p 6451–6458.CrossRef
27.
Zurück zum Zitat Y. Tomita and K. Okabayashi, Tensile Stress-Strain Analysis of Cold Worked Metals and Steels and Dual-Phase Steels, Metall. Mater. Trans. A., 1985, 16, p 865–872.CrossRef Y. Tomita and K. Okabayashi, Tensile Stress-Strain Analysis of Cold Worked Metals and Steels and Dual-Phase Steels, Metall. Mater. Trans. A., 1985, 16, p 865–872.CrossRef
28.
Zurück zum Zitat M.S. Nagorka, C.G. Levi, G.E. Lucas and S.D. Ridder, The Potential of Rapid Solidification in Oxide-Dispersion-Strengthened Copper Alloy Development, Mater. Sci. Eng. A., 1991, 142(2), p 277–289.CrossRef M.S. Nagorka, C.G. Levi, G.E. Lucas and S.D. Ridder, The Potential of Rapid Solidification in Oxide-Dispersion-Strengthened Copper Alloy Development, Mater. Sci. Eng. A., 1991, 142(2), p 277–289.CrossRef
29.
Zurück zum Zitat Z. Jiang, J. Lian and J. Chen, Strain Hardening Behaviour and its Relationship to Tensile Mechanical Properties of Dual Phase Steel, Mater. Sci. Technol., 1992, 8, p 1075–1081.CrossRef Z. Jiang, J. Lian and J. Chen, Strain Hardening Behaviour and its Relationship to Tensile Mechanical Properties of Dual Phase Steel, Mater. Sci. Technol., 1992, 8, p 1075–1081.CrossRef
30.
Zurück zum Zitat M. Umemoto, Z.G. Liu, S. Sugimoto and K. Tsuchiya, Tensile Stress-Strain Analysis of Single-Structure Steels, Metall. Mater. Trans. A., 2000, 31, p 1785–1794.CrossRef M. Umemoto, Z.G. Liu, S. Sugimoto and K. Tsuchiya, Tensile Stress-Strain Analysis of Single-Structure Steels, Metall. Mater. Trans. A., 2000, 31, p 1785–1794.CrossRef
31.
Zurück zum Zitat G. Dini, R. Ueji, A. Najafizadeh and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A., 2010, 527, p 2759–2763.CrossRef G. Dini, R. Ueji, A. Najafizadeh and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A., 2010, 527, p 2759–2763.CrossRef
32.
Zurück zum Zitat O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168.CrossRef O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168.CrossRef
33.
Zurück zum Zitat I. Gutierrez-Urrutia and D. Raabe, Multistage Strain Hardening Through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-Reduced Fe-Mn-Al-C Steel, Acta Mater., 2012, 60, p 5791–5802.CrossRef I. Gutierrez-Urrutia and D. Raabe, Multistage Strain Hardening Through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-Reduced Fe-Mn-Al-C Steel, Acta Mater., 2012, 60, p 5791–5802.CrossRef
34.
Zurück zum Zitat D.A. Hughes, N. Hansen and D.J. Bammann, Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations, Scripta Mater., 2003, 48, p 147–153.CrossRef D.A. Hughes, N. Hansen and D.J. Bammann, Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations, Scripta Mater., 2003, 48, p 147–153.CrossRef
35.
Zurück zum Zitat K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater Des., 2016, 111, p 548–574.CrossRef K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater Des., 2016, 111, p 548–574.CrossRef
36.
Zurück zum Zitat L.S. Toth, Y. Estrin, R. Lapovok and C. Gu, A Model of Grain Fragmentation Based on Lattice Curvature, Acta Mater., 2010, 58, p 1782–1794.CrossRef L.S. Toth, Y. Estrin, R. Lapovok and C. Gu, A Model of Grain Fragmentation Based on Lattice Curvature, Acta Mater., 2010, 58, p 1782–1794.CrossRef
37.
Zurück zum Zitat I. Gutierrez-Urrutia, S. Zaefferer and D. Raabe, The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22wt.%Mn-06wt.%C TWIP Steel, Mater. Sci. Eng. A, 2010, 527, p 3552–60.CrossRef I. Gutierrez-Urrutia, S. Zaefferer and D. Raabe, The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22wt.%Mn-06wt.%C TWIP Steel, Mater. Sci. Eng. A, 2010, 527, p 3552–60.CrossRef
38.
Zurück zum Zitat E.E. Pattersona, D.P. Fielda and Y.D. Zhang, Characterization of Twin Boundaries in an Fe-17.5Mn-0.56C Twinning Induced Plasticity Steel, Mater, Charact., 2013, 85, p 100–110.CrossRef E.E. Pattersona, D.P. Fielda and Y.D. Zhang, Characterization of Twin Boundaries in an Fe-17.5Mn-0.56C Twinning Induced Plasticity Steel, Mater, Charact., 2013, 85, p 100–110.CrossRef
39.
Zurück zum Zitat I. Karaman, H. Sehitoglu, H.J. Maier and Y.I. Chumlyakov, Competing Mechanisms and Modeling of Deformation in Austenitic Stainless Steel Single Crystals with and Without Nitrogen, Acta Mater., 2001, 49(19), p 3919–3933.CrossRef I. Karaman, H. Sehitoglu, H.J. Maier and Y.I. Chumlyakov, Competing Mechanisms and Modeling of Deformation in Austenitic Stainless Steel Single Crystals with and Without Nitrogen, Acta Mater., 2001, 49(19), p 3919–3933.CrossRef
40.
Zurück zum Zitat X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, M. Attarian Shandiz, N. Brodusch, R. Gauvin and M. Brochu, Characterization of Single Crystalline Austenitic Stainless Steel Thin Struts Processed by Laser Powder Bed Fusion, Scr. Mater., 2019, 163, p 51–56.CrossRef X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, M. Attarian Shandiz, N. Brodusch, R. Gauvin and M. Brochu, Characterization of Single Crystalline Austenitic Stainless Steel Thin Struts Processed by Laser Powder Bed Fusion, Scr. Mater., 2019, 163, p 51–56.CrossRef
41.
Zurück zum Zitat D. Raabe, M. Sachtleber, H. Weiland, G. Scheele and Z. Zhao, Grain-Scale Micromechanics of Polycrystal Surfaces During Plastic Straining, Acta Mater., 2003, 51, p 1539–1560.CrossRef D. Raabe, M. Sachtleber, H. Weiland, G. Scheele and Z. Zhao, Grain-Scale Micromechanics of Polycrystal Surfaces During Plastic Straining, Acta Mater., 2003, 51, p 1539–1560.CrossRef
42.
Zurück zum Zitat I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov and H.J. Maier, Deformation of Single Crystal Hadfield Steel by Twinning and Slip, Acta Mater., 2000, 48, p 1345–1359.CrossRef I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov and H.J. Maier, Deformation of Single Crystal Hadfield Steel by Twinning and Slip, Acta Mater., 2000, 48, p 1345–1359.CrossRef
43.
Zurück zum Zitat H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. De Cooman and S.K. Kim, Orientation Dependence of Twinning and Strain Hardening Behaviour of a High Manganese Twinning Induced Plasticity Steel with Polycrystalline Structure Acta, Materialia, 2011, 59, p 7787–7799. H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. De Cooman and S.K. Kim, Orientation Dependence of Twinning and Strain Hardening Behaviour of a High Manganese Twinning Induced Plasticity Steel with Polycrystalline Structure Acta, Materialia, 2011, 59, p 7787–7799.
44.
Zurück zum Zitat N.P. Gurao, P. Kumar, B. Bhattacharya, A. Haldar and S. Suwas, Evolution of Crystallographic Texture and Microstructure During Cold Rolling of Twinning-Induced Plasticity (TWIP) Steel: Experiments and Simulations, Metall. Mater. Trans. A, 2012, 43, p 5193–5201.CrossRef N.P. Gurao, P. Kumar, B. Bhattacharya, A. Haldar and S. Suwas, Evolution of Crystallographic Texture and Microstructure During Cold Rolling of Twinning-Induced Plasticity (TWIP) Steel: Experiments and Simulations, Metall. Mater. Trans. A, 2012, 43, p 5193–5201.CrossRef
45.
Zurück zum Zitat V. Tari, A.D. Rollett, H.E. Kadiri, H. Beladi, A.L. Oppedal and R.L. King, The Effect of Deformation Twinning on Stress Localization in a Three Dimensional TWIP Steel Microstructure, Modelling Simul. Mater. Sci. Eng., 2015, 23, p 045010.CrossRef V. Tari, A.D. Rollett, H.E. Kadiri, H. Beladi, A.L. Oppedal and R.L. King, The Effect of Deformation Twinning on Stress Localization in a Three Dimensional TWIP Steel Microstructure, Modelling Simul. Mater. Sci. Eng., 2015, 23, p 045010.CrossRef
46.
Zurück zum Zitat M.X. Huang, Z.Y. Liang and Z.C. Luo, Critical Assessment 15: Science of Deformation and Failure Mechanisms in Twinning Induced Plasticity Steels, Mater. Sci. Technol., 2015, 31, p 1265–12702.CrossRef M.X. Huang, Z.Y. Liang and Z.C. Luo, Critical Assessment 15: Science of Deformation and Failure Mechanisms in Twinning Induced Plasticity Steels, Mater. Sci. Technol., 2015, 31, p 1265–12702.CrossRef
47.
Zurück zum Zitat Z.Y. Liang, Z.C. Luo and M.X. Huang, Temperature Dependence of Strengthening Mechanisms in a Twinning-Induced Plasticity Steel, Int. J. Plast., 2019, 116, p 192–202.CrossRef Z.Y. Liang, Z.C. Luo and M.X. Huang, Temperature Dependence of Strengthening Mechanisms in a Twinning-Induced Plasticity Steel, Int. J. Plast., 2019, 116, p 192–202.CrossRef
48.
Zurück zum Zitat J.S. Jeong, Y.M. Koo, I.K. Jeong, S.K. Kim and S.K. Kwon, Micro-Structural Study of High-Mn TWIP Steels using Diffraction Profile Analysis, Mater. Sci. Eng. A, 2011, 530, p 128–134.CrossRef J.S. Jeong, Y.M. Koo, I.K. Jeong, S.K. Kim and S.K. Kwon, Micro-Structural Study of High-Mn TWIP Steels using Diffraction Profile Analysis, Mater. Sci. Eng. A, 2011, 530, p 128–134.CrossRef
49.
Zurück zum Zitat A.S. Hamadaa, A. Kisko, A. Khosravifard, M.A. Hassan, L.P. Karjalainen and D. Porter, Ductility and Formability of Three High-Mn TWIP Steels in Quasi-Static and High-Speed Tensile and Erichsen Tests, Mater. Sci. Eng. A, 2018, 712, p 255–265.CrossRef A.S. Hamadaa, A. Kisko, A. Khosravifard, M.A. Hassan, L.P. Karjalainen and D. Porter, Ductility and Formability of Three High-Mn TWIP Steels in Quasi-Static and High-Speed Tensile and Erichsen Tests, Mater. Sci. Eng. A, 2018, 712, p 255–265.CrossRef
50.
Zurück zum Zitat H.R. Abedi, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh and A.A. Roostaei, The Semi-Solid Tensile Deformation Behavior of Wrought AZ31 Magnesium Alloy, Mater. Des., 2010, 31, p 4386–4391.CrossRef H.R. Abedi, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh and A.A. Roostaei, The Semi-Solid Tensile Deformation Behavior of Wrought AZ31 Magnesium Alloy, Mater. Des., 2010, 31, p 4386–4391.CrossRef
51.
Zurück zum Zitat A.R. Khalesian, A. Zarei-Hanzaki, H.R. Abedi and F. Pilehva, An Investigation into the Room Temperature Mechanical Properties and Microstructural Evolution of Thermomechanically Processed TWIP Steel, Mater. Sci. Eng. A., 2014, 596, p 200–206.CrossRef A.R. Khalesian, A. Zarei-Hanzaki, H.R. Abedi and F. Pilehva, An Investigation into the Room Temperature Mechanical Properties and Microstructural Evolution of Thermomechanically Processed TWIP Steel, Mater. Sci. Eng. A., 2014, 596, p 200–206.CrossRef
Metadaten
Titel
An Investigation on Microstructures and Mechanical Properties of Twinning-Induced Plasticity Steels Prepared by Directional Solidification
verfasst von
Dan Wang
Wen Wang
Yingjie Huang
Xinfu wang
Publikationsdatum
17.11.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06423-7

Weitere Artikel der Ausgabe 4/2022

Journal of Materials Engineering and Performance 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.