Skip to main content
Erschienen in: Wireless Networks 2/2017

29.12.2015

An overview of spectrum sharing techniques in cognitive radio communication system

verfasst von: Shweta Pandit, G. Singh

Erschienen in: Wireless Networks | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the complexities of wireless technologies increase, novel multidisciplinary approaches for the spectrum sharing/management are required with inputs from the technology, economics and regulations. Recently, the cognitive radio technology comes into action to handle the spectrum scarcity problem. To identify the available spectrum resource, decision on the optimal sensing and transmission time with proper coordination among the users for spectrum access are the important characteristics of spectrum sharing methods. In this paper, we have technically overviewed the state-of-the-art of the various spectrum sharing techniques and discussed their potential issues with emerging applications of the communication system, especially to enhance the spectral efficiency. The potential advantages, limiting factors, and characteristic features of the existing cognitive radio spectrum sharing domains are thoroughly discussed and an overview of the spectrum sharing is provided as it ensures the channel access without the interference/collision to the licensed users in the spectrum.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Hoossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. New York: Cambridge University Press.CrossRef Hoossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. New York: Cambridge University Press.CrossRef
3.
Zurück zum Zitat Zhao, Qing, & Sadler, B. M. (2007). A survey of dynamic spectrum access: Signal processing, networking, and regulatory policy. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRef Zhao, Qing, & Sadler, B. M. (2007). A survey of dynamic spectrum access: Signal processing, networking, and regulatory policy. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRef
4.
Zurück zum Zitat Santivanez, C., Ramanathan, R., Partridge, C., Krishnan, R., Condell, M., & Polit, S. (2006). Opportunistic spectrum access: Challenges, architecture, protocols. In Proceedings of 2nd Annual International Workshop on Wireless Internet (WICON), New York, USA, pp. 1–9. Santivanez, C., Ramanathan, R., Partridge, C., Krishnan, R., Condell, M., & Polit, S. (2006). Opportunistic spectrum access: Challenges, architecture, protocols. In Proceedings of 2nd Annual International Workshop on Wireless Internet (WICON), New York, USA, pp. 1–9.
5.
Zurück zum Zitat Mitola, J., III (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Thesis, Royal Institute of Technology (KTH) Sweden, May, 2000. Mitola, J., III (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Thesis, Royal Institute of Technology (KTH) Sweden, May, 2000.
6.
Zurück zum Zitat Jondral, F. K. (2005). Software-defined radio: Basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 5(3), 275–283.MATH Jondral, F. K. (2005). Software-defined radio: Basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 5(3), 275–283.MATH
7.
Zurück zum Zitat Ramacher, U. (2007). Software-defined radio prospects for multi-standard mobile phones. IEEE Journal of Computer, 40(10), 62–69.CrossRef Ramacher, U. (2007). Software-defined radio prospects for multi-standard mobile phones. IEEE Journal of Computer, 40(10), 62–69.CrossRef
8.
Zurück zum Zitat Bagheri, R., Mirzaei, A., Heidari, M. E., Chehrazi, S., Lee, M., Mikhemar, M., et al. (2006). Software-defined radio receiver: Dream to reality. IEEE Communications Magazine, 44(8), 111–118.CrossRef Bagheri, R., Mirzaei, A., Heidari, M. E., Chehrazi, S., Lee, M., Mikhemar, M., et al. (2006). Software-defined radio receiver: Dream to reality. IEEE Communications Magazine, 44(8), 111–118.CrossRef
9.
Zurück zum Zitat Arslan, H., & Yarkan, S. (2007). Cognitive radio, software defined radio, and adaptive wireless systems. Netherlands: Springer.CrossRef Arslan, H., & Yarkan, S. (2007). Cognitive radio, software defined radio, and adaptive wireless systems. Netherlands: Springer.CrossRef
10.
Zurück zum Zitat Stevenson, C., Chouinard, G., Lei, Z. D., Hu, W. D., Shellhammer, S., & Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138.CrossRef Stevenson, C., Chouinard, G., Lei, Z. D., Hu, W. D., Shellhammer, S., & Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138.CrossRef
11.
Zurück zum Zitat Phunchongharn, P., Hossain, E., Niyato, D., & Camorlinga, S. (2010). A cognitive radio system for e-health applications in a hospital environment. IEEE Wireless Communications, 17(1), 20–28.CrossRef Phunchongharn, P., Hossain, E., Niyato, D., & Camorlinga, S. (2010). A cognitive radio system for e-health applications in a hospital environment. IEEE Wireless Communications, 17(1), 20–28.CrossRef
12.
Zurück zum Zitat Felice, M.- D., Chowdhury, K.- R., & Bononi, L. (2010). Analyzing the potential of cooperative cognitive radio technology on inter-vehicle communication. In Proceedings of wireless days (WD) IFIP, Venice, October 20–22, 2010, pp. 1–6. Felice, M.- D., Chowdhury, K.- R., & Bononi, L. (2010). Analyzing the potential of cooperative cognitive radio technology on inter-vehicle communication. In Proceedings of wireless days (WD) IFIP, Venice, October 20–22, 2010, pp. 1–6.
13.
Zurück zum Zitat Pawelczak, P., Prasad, R.- V., Xia, L., & Niemegeers, I.- G.- M.- M. (2005). Cognitive radio emergency networks–requirements and design. In Proceedings of IEEE 1st international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Baltimore, MD, USA, November 8–11, 2005, pp. 601–606. Pawelczak, P., Prasad, R.- V., Xia, L., & Niemegeers, I.- G.- M.- M. (2005). Cognitive radio emergency networks–requirements and design. In Proceedings of IEEE 1st international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Baltimore, MD, USA, November 8–11, 2005, pp. 601–606.
14.
Zurück zum Zitat Hinman, R.- D. (2006). Application of cognitive radio technology to legacy military waveforms in a JTRS (Joint Tactical Radio System) radio. In Proceedings of IEEE Military Communications Conference (MILCOM), Washington, DC, October 23–25, 2006, pp. 1–5. Hinman, R.- D. (2006). Application of cognitive radio technology to legacy military waveforms in a JTRS (Joint Tactical Radio System) radio. In Proceedings of IEEE Military Communications Conference (MILCOM), Washington, DC, October 23–25, 2006, pp. 1–5.
15.
Zurück zum Zitat Akyildiz, I.-F., Lee, W.-Y., Vuran, M.-C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.MATHCrossRef Akyildiz, I.-F., Lee, W.-Y., Vuran, M.-C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.MATHCrossRef
16.
Zurück zum Zitat Wang, B., & Liu, K.-J.-R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.CrossRef Wang, B., & Liu, K.-J.-R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.CrossRef
17.
Zurück zum Zitat Akyildiz, I.-F., Lee, W.-Y., Vuran, M.-C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.CrossRef Akyildiz, I.-F., Lee, W.-Y., Vuran, M.-C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.CrossRef
18.
Zurück zum Zitat Zhang, G., Yang, K., Song, J., & Li, Y. (2013). Fair and efficient spectrum splitting for unlicensed secondary users in cooperative cognitive radio networks. Wireless Personal Communications, 71(1), 299–316.CrossRef Zhang, G., Yang, K., Song, J., & Li, Y. (2013). Fair and efficient spectrum splitting for unlicensed secondary users in cooperative cognitive radio networks. Wireless Personal Communications, 71(1), 299–316.CrossRef
19.
Zurück zum Zitat Akyildiz, I.-F., Lo, B.-F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks. Physical Communication, 4(1), 40–62.CrossRef Akyildiz, I.-F., Lo, B.-F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks. Physical Communication, 4(1), 40–62.CrossRef
20.
Zurück zum Zitat Lee, C.-H., & Wolf, W. (2008). Energy efficient techniques for cooperative spectrum sensing in cognitive radios. In Proceedings of IEEE consumer communications and networking conference (CCNC), Las Vegas, NV, January 10–12, pp. 968–972. Lee, C.-H., & Wolf, W. (2008). Energy efficient techniques for cooperative spectrum sensing in cognitive radios. In Proceedings of IEEE consumer communications and networking conference (CCNC), Las Vegas, NV, January 10–12, pp. 968–972.
21.
Zurück zum Zitat Sun, C., Zhang, W., & Letaief, K.-B. (2007). Cooperative spectrum sensing for cognitive radios under bandwidth constraints. In Proceedings of IEEE wireless communications and networking conference (WCNC), Kowloon, March 11–15, 2007, pp. 1–5. Sun, C., Zhang, W., & Letaief, K.-B. (2007). Cooperative spectrum sensing for cognitive radios under bandwidth constraints. In Proceedings of IEEE wireless communications and networking conference (WCNC), Kowloon, March 11–15, 2007, pp. 1–5.
22.
Zurück zum Zitat Sun, C., Zhang, W., & Letaief, K. B. (2007). Cluster-based cooperative spectrum sensing in cognitive radio systems. In: Proceedings of IEEE international conference on communications (ICC’ 07), Glasgow, June 24–28, pp. 2511–2515. Sun, C., Zhang, W., & Letaief, K. B. (2007). Cluster-based cooperative spectrum sensing in cognitive radio systems. In: Proceedings of IEEE international conference on communications (ICC’ 07), Glasgow, June 24–28, pp. 2511–2515.
23.
Zurück zum Zitat Flajolet, P., & Martin, G. N. (1985). Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2), 182–209.MathSciNetMATHCrossRef Flajolet, P., & Martin, G. N. (1985). Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2), 182–209.MathSciNetMATHCrossRef
24.
Zurück zum Zitat Quan, Z., Cui, S., & Sayed, A.-H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef Quan, Z., Cui, S., & Sayed, A.-H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef
25.
Zurück zum Zitat Ma, J. & Li, Y. G. (2007). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Washington, DC, November 26–30, pp. 3139–3143. Ma, J. & Li, Y. G. (2007). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Washington, DC, November 26–30, pp. 3139–3143.
26.
Zurück zum Zitat Song, M., Xin, C., Zhao, Y., & Cheng, X. (2012). Dynamic spectrum access: From cognitive radio to network radio. IEEE Wireless Communications, 19(1), 23–29.CrossRef Song, M., Xin, C., Zhao, Y., & Cheng, X. (2012). Dynamic spectrum access: From cognitive radio to network radio. IEEE Wireless Communications, 19(1), 23–29.CrossRef
27.
Zurück zum Zitat Chang, C.-W., & Kuo, C.-C. (2010). An interweave cognitive radio system based on the hierarchical 2D-spread MC-DS-CDMA. In Proceedings of IEEE vehicular technology conference fall (VTC 2010-Fall), Ottawa, Canada, September 6–9, 2010, pp. 1–5. Chang, C.-W., & Kuo, C.-C. (2010). An interweave cognitive radio system based on the hierarchical 2D-spread MC-DS-CDMA. In Proceedings of IEEE vehicular technology conference fall (VTC 2010-Fall), Ottawa, Canada, September 6–9, 2010, pp. 1–5.
28.
Zurück zum Zitat Soysal, A., Ulukus, S., & Clancy C. (2008). Channel estimation and adaptive M-QAM in cognitive radio links. In IEEE proceedings of the international conference on communications (ICC’ 08), Beijing, May 19–23, 2008, pp. 4043–4047. Soysal, A., Ulukus, S., & Clancy C. (2008). Channel estimation and adaptive M-QAM in cognitive radio links. In IEEE proceedings of the international conference on communications (ICC’ 08), Beijing, May 19–23, 2008, pp. 4043–4047.
29.
Zurück zum Zitat Pursley, M.-B., & Royster, T. C. (2008). Low-complexity adaptive transmission for cognitive radios in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 26(1), 83–94.CrossRef Pursley, M.-B., & Royster, T. C. (2008). Low-complexity adaptive transmission for cognitive radios in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 26(1), 83–94.CrossRef
30.
Zurück zum Zitat Kim, D. I., Le, L. B., & Hossain, E. (2008). Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Transactions on Wireless Communications, 7(12), 5517–5527.CrossRef Kim, D. I., Le, L. B., & Hossain, E. (2008). Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Transactions on Wireless Communications, 7(12), 5517–5527.CrossRef
31.
Zurück zum Zitat Srinivasa, S. & Jafar, S.-A. (2006). The throughput potential of cognitive radio: A theoretical perspective. In Proceedings of the 40th Asilomar conference on signals, systems and computers (ACSSC’ 06), Pacific Grove, CA, 29 Oct.–1 Nov. 2006, pp. 221–225. Srinivasa, S. & Jafar, S.-A. (2006). The throughput potential of cognitive radio: A theoretical perspective. In Proceedings of the 40th Asilomar conference on signals, systems and computers (ACSSC’ 06), Pacific Grove, CA, 29 Oct.–1 Nov. 2006, pp. 221–225.
32.
Zurück zum Zitat Taki M., & Lahouti, F. (2009). Spectral efficiency optimized adaptive transmission for interfering cognitive radios. In Proceedings of the IEEE international conference on communications workshops (ICC 2009), Dresden, June 2009, pp. 1–6. Taki M., & Lahouti, F. (2009). Spectral efficiency optimized adaptive transmission for interfering cognitive radios. In Proceedings of the IEEE international conference on communications workshops (ICC 2009), Dresden, June 2009, pp. 1–6.
34.
Zurück zum Zitat Ghosh, C. (2009). Innovative approaches to spectrum selection, sensing, and sharing in cognitive radio networks. Ph. D. Thesis, University of Cincinnati, Ohio, April 2009. Ghosh, C. (2009). Innovative approaches to spectrum selection, sensing, and sharing in cognitive radio networks. Ph. D. Thesis, University of Cincinnati, Ohio, April 2009.
35.
Zurück zum Zitat Dashti, M., Azmi, P., Navaie, K., & Razavizadeh, S.-M. (2013). Ergodic sum rate maximization for underlay spectrum sharing with heterogeneous traffic. Wireless Personal Communications, 71(1), 586–610.CrossRef Dashti, M., Azmi, P., Navaie, K., & Razavizadeh, S.-M. (2013). Ergodic sum rate maximization for underlay spectrum sharing with heterogeneous traffic. Wireless Personal Communications, 71(1), 586–610.CrossRef
36.
Zurück zum Zitat Kang, X., Liang, Y.-C., Garg, H.-K., & Zhang, L. (2009). Sensing based spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(8), 4649–4654.CrossRef Kang, X., Liang, Y.-C., Garg, H.-K., & Zhang, L. (2009). Sensing based spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(8), 4649–4654.CrossRef
37.
Zurück zum Zitat Xu, D., Feng, Z., & Zhang, P. (2013). On the impacts of channel estimation errors and feedback delay on the ergodic capacity for spectrum sharing cognitive radio. Wireless Personal Communications, 72(4), 1875–1887.CrossRef Xu, D., Feng, Z., & Zhang, P. (2013). On the impacts of channel estimation errors and feedback delay on the ergodic capacity for spectrum sharing cognitive radio. Wireless Personal Communications, 72(4), 1875–1887.CrossRef
38.
Zurück zum Zitat Pandit, Shweta, & Singh, G. (2015). Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system. Wireless Networks, 21(4), 1275–1288.CrossRef Pandit, Shweta, & Singh, G. (2015). Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system. Wireless Networks, 21(4), 1275–1288.CrossRef
39.
Zurück zum Zitat Chen, Y., Yu, G., Zhang, Z., Chen, H., & Qiu, P. (2008). On cognitive radio networks with opportunistic power control strategies in fading channels. IEEE Transactions on Wireless Communications, 7, 2752–2761.CrossRef Chen, Y., Yu, G., Zhang, Z., Chen, H., & Qiu, P. (2008). On cognitive radio networks with opportunistic power control strategies in fading channels. IEEE Transactions on Wireless Communications, 7, 2752–2761.CrossRef
40.
Zurück zum Zitat Kang, X. (2013). Optimal power allocation for fading cognitive multiple access channels: A two-user case. IEEE Wireless Communications Letters, 2(6), 683–686.CrossRef Kang, X. (2013). Optimal power allocation for fading cognitive multiple access channels: A two-user case. IEEE Wireless Communications Letters, 2(6), 683–686.CrossRef
41.
Zurück zum Zitat Bansal, G., Hossain, Md.- J., & Bhargava, V.- K. (2011). Adaptive power loading for OFDM based cognitive radio systems with statistical interference constraint. IEEE Transactions on Wireless Communications, 10(9), 2786–2791.CrossRef Bansal, G., Hossain, Md.- J., & Bhargava, V.- K. (2011). Adaptive power loading for OFDM based cognitive radio systems with statistical interference constraint. IEEE Transactions on Wireless Communications, 10(9), 2786–2791.CrossRef
42.
Zurück zum Zitat Pao, W.-C., & Chen, Y.-F. (2014). Adaptive gradient based method for adaptive power allocation in OFDM based cognitive radio networks. IEEE Transactions of Vehicular Technology, 63(2), 836–848.CrossRef Pao, W.-C., & Chen, Y.-F. (2014). Adaptive gradient based method for adaptive power allocation in OFDM based cognitive radio networks. IEEE Transactions of Vehicular Technology, 63(2), 836–848.CrossRef
43.
Zurück zum Zitat Zhang, Y., & Leung, C. (2010). An efficient power loading scheme for OFDM based cognitive radio systems. IEEE Transactions on Vehicular Technology, 59(4), 1858–1864.CrossRef Zhang, Y., & Leung, C. (2010). An efficient power loading scheme for OFDM based cognitive radio systems. IEEE Transactions on Vehicular Technology, 59(4), 1858–1864.CrossRef
44.
Zurück zum Zitat Li, D. (2011). Efficient power allocation for multi user cognitive radio networks. Wireless Personal Communications, 59(4), 589–597.CrossRef Li, D. (2011). Efficient power allocation for multi user cognitive radio networks. Wireless Personal Communications, 59(4), 589–597.CrossRef
45.
Zurück zum Zitat Chen, Z., & Zhang, X.-D. (2012). Power and time allocation between multiple channels in cognitive radio networks. Wireless Personal Communications, 64(4), 783–794.CrossRef Chen, Z., & Zhang, X.-D. (2012). Power and time allocation between multiple channels in cognitive radio networks. Wireless Personal Communications, 64(4), 783–794.CrossRef
46.
Zurück zum Zitat Wang, S., Huang, F., & Wang, C. (2013). Adaptive proportional fairness resource allocation for OFDM-based cognitive radio networks. Wireless Networks, 19(3), 273–284.CrossRef Wang, S., Huang, F., & Wang, C. (2013). Adaptive proportional fairness resource allocation for OFDM-based cognitive radio networks. Wireless Networks, 19(3), 273–284.CrossRef
47.
Zurück zum Zitat Le, L.-B., & Hossain, E. (2008). Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 5306–5315.CrossRef Le, L.-B., & Hossain, E. (2008). Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 5306–5315.CrossRef
48.
Zurück zum Zitat Peng, C., Zheng, H., & Zhao, B.-Y. (2006). Utilization and fairness in spectrum assignment for opportunistic spectrum access. Mobile Networks and Applications, 11(4), 555–576.CrossRef Peng, C., Zheng, H., & Zhao, B.-Y. (2006). Utilization and fairness in spectrum assignment for opportunistic spectrum access. Mobile Networks and Applications, 11(4), 555–576.CrossRef
49.
Zurück zum Zitat Zhang, L., Liang, Y.-C., & Xin, Y. (2008). Joint beam forming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 38–51.CrossRef Zhang, L., Liang, Y.-C., & Xin, Y. (2008). Joint beam forming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 38–51.CrossRef
50.
Zurück zum Zitat Wang, S., Huang, F., & Zhou, Z.-H. (2011). Fast power allocation algorithm for cognitive radio networks. IEEE Communications Letters, 15(8), 845–847.CrossRef Wang, S., Huang, F., & Zhou, Z.-H. (2011). Fast power allocation algorithm for cognitive radio networks. IEEE Communications Letters, 15(8), 845–847.CrossRef
51.
Zurück zum Zitat Shaat, M., & Bader, F. (2009) Low complexity power loading scheme in cognitive radio networks: FBMC capability. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications, Tokyo, September 13–16, 2009, pp. 2597–2602. Shaat, M., & Bader, F. (2009) Low complexity power loading scheme in cognitive radio networks: FBMC capability. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications, Tokyo, September 13–16, 2009, pp. 2597–2602.
52.
Zurück zum Zitat Xie, R., Yu, F.-R., & Ji, H. (2012). Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Transactions on Vehicular Technology, 61(2), 770–780.CrossRef Xie, R., Yu, F.-R., & Ji, H. (2012). Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Transactions on Vehicular Technology, 61(2), 770–780.CrossRef
53.
Zurück zum Zitat Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013) Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of international symposium on intelligent signal processing and communications systems (ISPACS), Naha, Japan, November 12–15, 2013, pp. 770–774. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013) Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of international symposium on intelligent signal processing and communications systems (ISPACS), Naha, Japan, November 12–15, 2013, pp. 770–774.
54.
Zurück zum Zitat Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013) System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of 24th IEEE international symposium on personal indoor and mobile radio communications (PIMRC), London, United Kingdom, September 8–11, 2013, pp. 611–615. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013) System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of 24th IEEE international symposium on personal indoor and mobile radio communications (PIMRC), London, United Kingdom, September 8–11, 2013, pp. 611–615.
55.
Zurück zum Zitat Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of 77th IEEE vehicular technology conference (VTC), Dresden, 2–5 June 2013, pp. 1–5. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of 77th IEEE vehicular technology conference (VTC), Dresden, 2–5 June 2013, pp. 1–5.
56.
Zurück zum Zitat Teng, Y., Yu, F.-R., Wei, Y., Wang, L., & Zhang, Y. (2012). Behavior modeling for spectrum sharing in wireless cognitive networks. Wireless Networks, 18(8), 99–947.CrossRef Teng, Y., Yu, F.-R., Wei, Y., Wang, L., & Zhang, Y. (2012). Behavior modeling for spectrum sharing in wireless cognitive networks. Wireless Networks, 18(8), 99–947.CrossRef
57.
Zurück zum Zitat Guo, S., Dang, C., & Liao, X. (2011). Distributed algorithm for resource allocation of physical and transport layer in wireless cognitive ad-hoc networks. Wireless Networks, 17(2), 337–356.CrossRef Guo, S., Dang, C., & Liao, X. (2011). Distributed algorithm for resource allocation of physical and transport layer in wireless cognitive ad-hoc networks. Wireless Networks, 17(2), 337–356.CrossRef
58.
Zurück zum Zitat Xi, Y., & Yeh, E.-M. (2007). Distributed algorithm for spectrum allocation, power control, routing ad congestion control in wireless networks. In Proceedings of the ACM international symposium on mobile ad hoc networking and computing canada, September 9–14, pp. 180–189. Xi, Y., & Yeh, E.-M. (2007). Distributed algorithm for spectrum allocation, power control, routing ad congestion control in wireless networks. In Proceedings of the ACM international symposium on mobile ad hoc networking and computing canada, September 9–14, pp. 180–189.
59.
Zurück zum Zitat Guo, S., Dang, C., & Liao, X. (2011). Distributed resource allocation with fairness for cognitive radios in wireless mobile ad-hoc networks. Wireless Networks, 17(6), 1493–1512.CrossRef Guo, S., Dang, C., & Liao, X. (2011). Distributed resource allocation with fairness for cognitive radios in wireless mobile ad-hoc networks. Wireless Networks, 17(6), 1493–1512.CrossRef
60.
Zurück zum Zitat Niyato, D., & Hossain, E. (2008). Spectrum trading in cognitive radio networks: A market equilibrium based approach. IEEE Wireless Communications, 15(6), 71–80.CrossRef Niyato, D., & Hossain, E. (2008). Spectrum trading in cognitive radio networks: A market equilibrium based approach. IEEE Wireless Communications, 15(6), 71–80.CrossRef
61.
Zurück zum Zitat Yu, Q. (2013). A survey of cooperative games for cognitive radio networks. Wireless Personal Communications, 73(3), 949–966.CrossRef Yu, Q. (2013). A survey of cooperative games for cognitive radio networks. Wireless Personal Communications, 73(3), 949–966.CrossRef
62.
Zurück zum Zitat Nie, N., & Comaniciu, C. (2006). Adaptive channel allocation spectrum etiquette for cognitive radio networks. Journal of Mobile Networks and Applications, 11(6), 779–797.CrossRef Nie, N., & Comaniciu, C. (2006). Adaptive channel allocation spectrum etiquette for cognitive radio networks. Journal of Mobile Networks and Applications, 11(6), 779–797.CrossRef
63.
Zurück zum Zitat Olafsson, S., Glover, B., & Nekovee, M. (2007). Future management of spectrum. BT Technology Journal, 25(2), 52–63.CrossRef Olafsson, S., Glover, B., & Nekovee, M. (2007). Future management of spectrum. BT Technology Journal, 25(2), 52–63.CrossRef
64.
Zurück zum Zitat Niyato, D., & Hossain, E. (2008). A non-cooperative game-theoretic framework for radio resource management in 4G heterogeneous wireless access networks. IEEE Transactions on Mobile Computing, 7(3), 332–345.CrossRef Niyato, D., & Hossain, E. (2008). A non-cooperative game-theoretic framework for radio resource management in 4G heterogeneous wireless access networks. IEEE Transactions on Mobile Computing, 7(3), 332–345.CrossRef
65.
Zurück zum Zitat Pandit, S., & Singh, G. (2013). Spectrum sharing in cognitive radio using game theory. In Proceedings of IEEE international advance computing conference (IACC-2013), India, February 22–23, pp. 1503–1506. Pandit, S., & Singh, G. (2013). Spectrum sharing in cognitive radio using game theory. In Proceedings of IEEE international advance computing conference (IACC-2013), India, February 22–23, pp. 1503–1506.
66.
Zurück zum Zitat Chang, H.-B., & Chen, K.-C. (2010). Auction based spectrum management of cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(4), 1923–1935.CrossRef Chang, H.-B., & Chen, K.-C. (2010). Auction based spectrum management of cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(4), 1923–1935.CrossRef
67.
Zurück zum Zitat Maharjan, S., Zhang, Y., & Gjessing, S. (2011). Economic approaches for cognitive radio networks: A survey. Wireless Personal Communications, 57(1), 33–51.CrossRef Maharjan, S., Zhang, Y., & Gjessing, S. (2011). Economic approaches for cognitive radio networks: A survey. Wireless Personal Communications, 57(1), 33–51.CrossRef
68.
Zurück zum Zitat Ji, Z., & Liu, K.-J.-R. (2007). Dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88–94.CrossRef Ji, Z., & Liu, K.-J.-R. (2007). Dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88–94.CrossRef
69.
Zurück zum Zitat Niyato, D., & Hossain, E. (2008). Competitive spectrum sharing in cognitive radio networks: A dynamic game approach. IEEE Transactions on Wireless Communications, 7(7), 2651–2660.CrossRef Niyato, D., & Hossain, E. (2008). Competitive spectrum sharing in cognitive radio networks: A dynamic game approach. IEEE Transactions on Wireless Communications, 7(7), 2651–2660.CrossRef
70.
Zurück zum Zitat Aftab, O. (2002) Economic mechanisms for efficient wireless coexistence. MIT Tech. Rep. MIT-LCSTR-876. Cambridge, MA: Mass. Inst. Technol., Press. Aftab, O. (2002) Economic mechanisms for efficient wireless coexistence. MIT Tech. Rep. MIT-LCSTR-876. Cambridge, MA: Mass. Inst. Technol., Press.
71.
Zurück zum Zitat Iosifidis, G., & Koutsopoulos, I. (2011). Challenges in auction theory driven spectrum management. IEEE Communications Magazine, 49(8), 128–135.CrossRef Iosifidis, G., & Koutsopoulos, I. (2011). Challenges in auction theory driven spectrum management. IEEE Communications Magazine, 49(8), 128–135.CrossRef
72.
Zurück zum Zitat Teng, Y., Zhang, Y., Dai, C., Yang, F., & Song, M. (2011) Dynamic spectrum sharing through double auction mechanism in cognitive radio networks. In Proceedings of IEEE wireless communications and networking conference (WCNC), Cancun, Quintana Roo, 28–31, pp. 90–95. Teng, Y., Zhang, Y., Dai, C., Yang, F., & Song, M. (2011) Dynamic spectrum sharing through double auction mechanism in cognitive radio networks. In Proceedings of IEEE wireless communications and networking conference (WCNC), Cancun, Quintana Roo, 28–31, pp. 90–95.
73.
Zurück zum Zitat Deshmukh, K., Goldberg, A.- V., Hartline, J.- D., & Karlin, A.- R. (2002) Truthful and competitive double auctions. In Proceedings of the 10th European symposium on algorithms (ESA ‘02), September 2002. Deshmukh, K., Goldberg, A.- V., Hartline, J.- D., & Karlin, A.- R. (2002) Truthful and competitive double auctions. In Proceedings of the 10th European symposium on algorithms (ESA ‘02), September 2002.
74.
Zurück zum Zitat Jackson, M.-O., & Swinkels, J.-M. (2005). Existence of equilibrium in single and double private value auctions. Econometrica, 73(1), 93–139.MathSciNetMATHCrossRef Jackson, M.-O., & Swinkels, J.-M. (2005). Existence of equilibrium in single and double private value auctions. Econometrica, 73(1), 93–139.MathSciNetMATHCrossRef
75.
76.
Zurück zum Zitat Kasbekar, G.-S., & Sarkar, S. (2010). Spectrum auction framework for access allocation in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6), 1841–1854.CrossRef Kasbekar, G.-S., & Sarkar, S. (2010). Spectrum auction framework for access allocation in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6), 1841–1854.CrossRef
77.
Zurück zum Zitat Wang, S.- G., Xu, P., Xu, X.-H., Tang, S., Li, X.-Y., & Liu, X. (2010). TODA: Truthful online double auction for spectrum allocation in wireless networks. In Proceedings of IEEE symposium on new frontiers in dynamic spectrum, 6–9 April 2010, Singapore, pp. 1–10. Wang, S.- G., Xu, P., Xu, X.-H., Tang, S., Li, X.-Y., & Liu, X. (2010). TODA: Truthful online double auction for spectrum allocation in wireless networks. In Proceedings of IEEE symposium on new frontiers in dynamic spectrum, 6–9 April 2010, Singapore, pp. 1–10.
78.
Zurück zum Zitat Wu, Y., Zhu, Q., Huang, J., & Tsang, D.-H.-K. (2014). Revenue sharing based resource allocation for dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 32(11), 2280–2296.CrossRef Wu, Y., Zhu, Q., Huang, J., & Tsang, D.-H.-K. (2014). Revenue sharing based resource allocation for dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 32(11), 2280–2296.CrossRef
79.
Zurück zum Zitat Li, C., Liu, Z., Geng, X., Dong, M., Yang, F., Gan, X., et al. (2014). Two dimension spectrum allocation for cognitive radio networks. IEEE Transactions on Wireless Communications, 13(3), 1410–1423.CrossRef Li, C., Liu, Z., Geng, X., Dong, M., Yang, F., Gan, X., et al. (2014). Two dimension spectrum allocation for cognitive radio networks. IEEE Transactions on Wireless Communications, 13(3), 1410–1423.CrossRef
80.
Zurück zum Zitat Zhang, R., & Liang, Y.-C. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 88–102.CrossRef Zhang, R., & Liang, Y.-C. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 88–102.CrossRef
81.
Zurück zum Zitat Bakr, O., Johnson, M., Mudumbai, R., & Ramchandran, K. (2009). Multi-antenna interference cancellation techniques for cognitive radio applications. In Proceedings of IEEE wireless communications and networking conference (WCNC 2009), Budapest, 5–8 April, 1–6. Bakr, O., Johnson, M., Mudumbai, R., & Ramchandran, K. (2009). Multi-antenna interference cancellation techniques for cognitive radio applications. In Proceedings of IEEE wireless communications and networking conference (WCNC 2009), Budapest, 5–8 April, 1–6.
82.
Zurück zum Zitat Chiani, M., Win, M.-Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Transactions on Information Theory, 49(49), 2363–2371.MathSciNetMATHCrossRef Chiani, M., Win, M.-Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Transactions on Information Theory, 49(49), 2363–2371.MathSciNetMATHCrossRef
83.
Zurück zum Zitat Jeong, W.-C., Chung, J.-M., & Liu, D. (2008). Characteristic-function-based analysis of MIMO systems applying macroscopic selection diversity in mobile communications. Journal of Electronics and Telecommunications Research Institute, 30(3), 335–364. Jeong, W.-C., Chung, J.-M., & Liu, D. (2008). Characteristic-function-based analysis of MIMO systems applying macroscopic selection diversity in mobile communications. Journal of Electronics and Telecommunications Research Institute, 30(3), 335–364.
84.
Zurück zum Zitat Ihan, H.-I., Altunbas, I., & Uysal, M. (2011). Moment generating function-based performance evaluation of amplify-and-forward relaying in N* Nakagami fading channels. IET Communications, 5(3), 253–263.CrossRef Ihan, H.-I., Altunbas, I., & Uysal, M. (2011). Moment generating function-based performance evaluation of amplify-and-forward relaying in N* Nakagami fading channels. IET Communications, 5(3), 253–263.CrossRef
85.
Zurück zum Zitat Wang, Y., & Yue, D.-W. (2009). Capacity of MIMO Rayleigh fading channels in the presence of interference and receive correlation. IEEE Transactions on Vehicular Technology, 58(8), 4398–4405.CrossRef Wang, Y., & Yue, D.-W. (2009). Capacity of MIMO Rayleigh fading channels in the presence of interference and receive correlation. IEEE Transactions on Vehicular Technology, 58(8), 4398–4405.CrossRef
86.
Zurück zum Zitat Bixio, L., Oliveri, G., Ottonello, M., & Raffetto, M. (2010). Cognitive radios with multiple antennas exploiting spatial opportunities. IEEE Transactions on Signal Processing, 58(8), 4453–4459.MathSciNetCrossRef Bixio, L., Oliveri, G., Ottonello, M., & Raffetto, M. (2010). Cognitive radios with multiple antennas exploiting spatial opportunities. IEEE Transactions on Signal Processing, 58(8), 4453–4459.MathSciNetCrossRef
87.
Zurück zum Zitat Kang, M.-S., Jung, B.-C., Sung, D.-K., & Choi, W. (2008). A pre-whitening scheme in a MIMO-based spectrum-sharing environment,”. IEEE Communications Letters, 12(11), 831–833.CrossRef Kang, M.-S., Jung, B.-C., Sung, D.-K., & Choi, W. (2008). A pre-whitening scheme in a MIMO-based spectrum-sharing environment,”. IEEE Communications Letters, 12(11), 831–833.CrossRef
88.
Zurück zum Zitat Phan, K.-T., Vorobyov, S.-A., Sidiropoulos, N.-D., & Tellambura, C. (2009). Spectrum sharing in wireless networks via QoS-aware secondary multicast beam forming. IEEE Transactions on Signal Processing, 57(6), 2323–2335.MathSciNetCrossRef Phan, K.-T., Vorobyov, S.-A., Sidiropoulos, N.-D., & Tellambura, C. (2009). Spectrum sharing in wireless networks via QoS-aware secondary multicast beam forming. IEEE Transactions on Signal Processing, 57(6), 2323–2335.MathSciNetCrossRef
89.
Zurück zum Zitat Sridharan, S., & Vishwanath, S. (2008). On the capacity of a class of MIMO cognitive radios. IEEE Journal of Selected Topics in Signal Processing, 2(1), 103–117.CrossRef Sridharan, S., & Vishwanath, S. (2008). On the capacity of a class of MIMO cognitive radios. IEEE Journal of Selected Topics in Signal Processing, 2(1), 103–117.CrossRef
90.
Zurück zum Zitat Adian, M.-G., & Aghaeinia, H. (2014). Optimal resource allocation in heterogeneous MIMO cognitive radio networks. Wireless Personal Communications, 76(1), 23–39.CrossRef Adian, M.-G., & Aghaeinia, H. (2014). Optimal resource allocation in heterogeneous MIMO cognitive radio networks. Wireless Personal Communications, 76(1), 23–39.CrossRef
91.
Zurück zum Zitat Rini, S., & Goldsmith, A. (2014). On the capacity of the multi-antenna Gaussian cognitive interference channel. IEEE Journal on Selected Areas in Communications, 32(11), 2252–2267.CrossRef Rini, S., & Goldsmith, A. (2014). On the capacity of the multi-antenna Gaussian cognitive interference channel. IEEE Journal on Selected Areas in Communications, 32(11), 2252–2267.CrossRef
92.
Zurück zum Zitat Maharshi, A., Tong, L., & Swami, A. (2003). Cross-layer designs of multichannel reservation MAC under Rayleigh fading. IEEE Transactions on Signal Processing, 51(8), 2054–2067.CrossRef Maharshi, A., Tong, L., & Swami, A. (2003). Cross-layer designs of multichannel reservation MAC under Rayleigh fading. IEEE Transactions on Signal Processing, 51(8), 2054–2067.CrossRef
93.
Zurück zum Zitat Wang, J., Li, L., Low, S. H., & Doyle, J.-C. (2005). Cross-layer optimization in TCP/IP networks. IEEE/ACM Transactions on Networking, 13(3), 582–595.CrossRef Wang, J., Li, L., Low, S. H., & Doyle, J.-C. (2005). Cross-layer optimization in TCP/IP networks. IEEE/ACM Transactions on Networking, 13(3), 582–595.CrossRef
94.
Zurück zum Zitat Kim, H., & Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533–545.CrossRef Kim, H., & Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533–545.CrossRef
95.
Zurück zum Zitat Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.CrossRef Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.CrossRef
96.
Zurück zum Zitat Jia, J., Zhang, Q., & Shen, X. (2008). HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE Journal on Selected Areas in Communications, 26(1), 106–117.CrossRef Jia, J., Zhang, Q., & Shen, X. (2008). HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE Journal on Selected Areas in Communications, 26(1), 106–117.CrossRef
97.
Zurück zum Zitat Cordeiro, C., & Challapali, K. (2007). C-MAC: A cognitive MAC protocol for multi-channel wireless networks. In Proceedings of 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Dublin, 17–20 April 2007, pp. 147–157. Cordeiro, C., & Challapali, K. (2007). C-MAC: A cognitive MAC protocol for multi-channel wireless networks. In Proceedings of 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Dublin, 17–20 April 2007, pp. 147–157.
98.
Zurück zum Zitat Su, H., & Zhang, X. (2008). CREAM-MAC: An efficient cognitive radio-enabled multi-channel MAC protocol for wireless networks. In Proceedings of IEEE international symposium on world of wireless, mobile and multimedia networks (WoWMoM), June 2008, Newport Beach, CA, pp. 1–8. Su, H., & Zhang, X. (2008). CREAM-MAC: An efficient cognitive radio-enabled multi-channel MAC protocol for wireless networks. In Proceedings of IEEE international symposium on world of wireless, mobile and multimedia networks (WoWMoM), June 2008, Newport Beach, CA, pp. 1–8.
99.
Zurück zum Zitat Le, L. B. & Hossain, E. (2008) OSA-MAC: A multi-channel MAC protocol for opportunistic spectrum access in cognitive radio networks. In Proceedings of IEEE wireless communications and networking conference (WCNC), 31 March–3 April 2008, Las Vegas, NV, pp. 1426–1430. Le, L. B. & Hossain, E. (2008) OSA-MAC: A multi-channel MAC protocol for opportunistic spectrum access in cognitive radio networks. In Proceedings of IEEE wireless communications and networking conference (WCNC), 31 March–3 April 2008, Las Vegas, NV, pp. 1426–1430.
101.
Zurück zum Zitat Papadimitratos, P., Sankaranarayanan, S., & Mishra, A. (2005). A bandwidth sharing approach to improve licensed spectrum utilization. IEEE Communications Magazine, 43(12), S10–S14.CrossRef Papadimitratos, P., Sankaranarayanan, S., & Mishra, A. (2005). A bandwidth sharing approach to improve licensed spectrum utilization. IEEE Communications Magazine, 43(12), S10–S14.CrossRef
102.
Zurück zum Zitat Sabharwal, A., Khoshnevis, A., & Knightly, E. (2007). Opportunistic spectral usage: Bounds and a multi-band CSMA/CA protocol. IEEE/ACM Transactions on Networking, 15(3), 533–545.CrossRef Sabharwal, A., Khoshnevis, A., & Knightly, E. (2007). Opportunistic spectral usage: Bounds and a multi-band CSMA/CA protocol. IEEE/ACM Transactions on Networking, 15(3), 533–545.CrossRef
103.
Zurück zum Zitat IEEE 802.11. Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications, IEEE, June 2007. IEEE 802.11. Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications, IEEE, June 2007.
104.
Zurück zum Zitat Lim, S., & Lee, T.-J. (2011). A self-scheduling multi-channel cognitive radio MAC protocol based on cooperative communications. IEICE Transactions on Communications, E94-B(6), 1657–1668.CrossRef Lim, S., & Lee, T.-J. (2011). A self-scheduling multi-channel cognitive radio MAC protocol based on cooperative communications. IEICE Transactions on Communications, E94-B(6), 1657–1668.CrossRef
105.
Zurück zum Zitat Pandit, Shweta, & Singh, G. (2015). Backofff algorithm in cognitive radio MAC-protocol for throughput enhancement. IEEE Transactions on Vehicular Technology, 64(5), 1991–2000.CrossRef Pandit, Shweta, & Singh, G. (2015). Backofff algorithm in cognitive radio MAC-protocol for throughput enhancement. IEEE Transactions on Vehicular Technology, 64(5), 1991–2000.CrossRef
106.
Zurück zum Zitat Hossain, R., Rijul, R.-H., Razzaque, M.-A., & Sarkar, A.-M.-J. (2014). Prioritized medium access control in cognitive radio ad hoc networks: Protocol and analysis. Wireless Personal Communications, 79(3), 2383–2408.CrossRef Hossain, R., Rijul, R.-H., Razzaque, M.-A., & Sarkar, A.-M.-J. (2014). Prioritized medium access control in cognitive radio ad hoc networks: Protocol and analysis. Wireless Personal Communications, 79(3), 2383–2408.CrossRef
107.
Zurück zum Zitat Xie, P., Li, L., Zhu, J., Zheng, R., & Zhang, M. (2015). A cooperation and access spectrum sharing protocol with cooperative interference management. Wireless Personal Communications, 81(3), 997–1015.CrossRef Xie, P., Li, L., Zhu, J., Zheng, R., & Zhang, M. (2015). A cooperation and access spectrum sharing protocol with cooperative interference management. Wireless Personal Communications, 81(3), 997–1015.CrossRef
108.
Zurück zum Zitat Lee, K., & Kim, C. (2013). Distributed sequential access MAC protocol for single hop wireless networks. Wireless Personal Communications, 72(4), 2177–2184.CrossRef Lee, K., & Kim, C. (2013). Distributed sequential access MAC protocol for single hop wireless networks. Wireless Personal Communications, 72(4), 2177–2184.CrossRef
109.
Zurück zum Zitat Shah, G., & Akan, O. (2014). Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 64(2), 757–767.CrossRef Shah, G., & Akan, O. (2014). Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 64(2), 757–767.CrossRef
110.
Zurück zum Zitat Bian, K. & Park, J.-M. (2006). MAC-layer misbehaviors in multi-hop cognitive radio networks. In Proceedings of the US-Korea conference on science, technology and entrepreneurship (UKC2006), 2006, pp. 1–8. Bian, K. & Park, J.-M. (2006). MAC-layer misbehaviors in multi-hop cognitive radio networks. In Proceedings of the US-Korea conference on science, technology and entrepreneurship (UKC2006), 2006, pp. 1–8.
111.
Zurück zum Zitat Jain, R. (1991). The art of computer system performance analysis: Techniques for experimental design, measurement, simulation and modeling. New Delhi: Wiley.MATH Jain, R. (1991). The art of computer system performance analysis: Techniques for experimental design, measurement, simulation and modeling. New Delhi: Wiley.MATH
112.
Zurück zum Zitat Timmers, M., Pollin, S., Dejonghe, A., Perre, L.-V., & Catthoor, F. (2010). A distributed multichannel MAC protocol for multihop cognitive radio networks,”. IEEE Transactions on Vehicular Technology, 59(1), 446–459.CrossRef Timmers, M., Pollin, S., Dejonghe, A., Perre, L.-V., & Catthoor, F. (2010). A distributed multichannel MAC protocol for multihop cognitive radio networks,”. IEEE Transactions on Vehicular Technology, 59(1), 446–459.CrossRef
113.
Zurück zum Zitat Liang, Y.-C., Zeng, Y., Peh, E.-C.-Y., & Hoang, A.-T. (2008). Sensing-throughput trade-off for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y.-C., Zeng, Y., Peh, E.-C.-Y., & Hoang, A.-T. (2008). Sensing-throughput trade-off for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef
114.
Zurück zum Zitat Fan, R., & Jiang, H. (2010). Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 9(3), 1128–1138.CrossRef Fan, R., & Jiang, H. (2010). Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 9(3), 1128–1138.CrossRef
115.
Zurück zum Zitat Chu, E., Liang, Y.-C., Guan, Y.-L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.CrossRef Chu, E., Liang, Y.-C., Guan, Y.-L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.CrossRef
116.
Zurück zum Zitat Chair, Z., & Varshney, P. K. (1986). Optimal data fusion in multiple sensor detection systems. IEEE Transactions on Aerospace and Electronic Systems, 22(1), 98–101.CrossRef Chair, Z., & Varshney, P. K. (1986). Optimal data fusion in multiple sensor detection systems. IEEE Transactions on Aerospace and Electronic Systems, 22(1), 98–101.CrossRef
117.
Zurück zum Zitat Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef
118.
Zurück zum Zitat Lee, W.-Y., & Akyildiz, I.-F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.CrossRef Lee, W.-Y., & Akyildiz, I.-F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.CrossRef
119.
Zurück zum Zitat Akbar, I.-A. & Tranter, W.-H. (2007) Dynamic spectrum allocation in cognitive radio using hidden markov models: Poisson distributed case. In Proceedings of IEEE SoutheastCon, Richmond, VA, 22–25 March 2007, pp. 196–201. Akbar, I.-A. & Tranter, W.-H. (2007) Dynamic spectrum allocation in cognitive radio using hidden markov models: Poisson distributed case. In Proceedings of IEEE SoutheastCon, Richmond, VA, 22–25 March 2007, pp. 196–201.
120.
Zurück zum Zitat Stotas, S. & Nallanathan, A. (2010). On the throughput maximization of spectrum sharing cognitive radio networks. In Proceedings of IEEE global telecommunications conference (GLOBECOM 2010), Miami, FL, December 6–10, pp. 1–5. Stotas, S. & Nallanathan, A. (2010). On the throughput maximization of spectrum sharing cognitive radio networks. In Proceedings of IEEE global telecommunications conference (GLOBECOM 2010), Miami, FL, December 6–10, pp. 1–5.
121.
Zurück zum Zitat Pandit, S., & Singh, G. (2014). Throughput maximization with reduced data loss rate in cognitive radio network. Telecommunication Systems, 57(2), 209–215.CrossRef Pandit, S., & Singh, G. (2014). Throughput maximization with reduced data loss rate in cognitive radio network. Telecommunication Systems, 57(2), 209–215.CrossRef
122.
Zurück zum Zitat Pandit, S. (2012) Spectrum sharing in cognitive radio system for throughput optimization and interference reduction. M. Tech. Thesis, Jaypee University of Information Technology, India, May 2012. Pandit, S. (2012) Spectrum sharing in cognitive radio system for throughput optimization and interference reduction. M. Tech. Thesis, Jaypee University of Information Technology, India, May 2012.
123.
Zurück zum Zitat Shannon, C. (1958). Channels with side information at the transmitter. IBM Journal of Research and Development, 2(2), 289–293.MathSciNetCrossRef Shannon, C. (1958). Channels with side information at the transmitter. IBM Journal of Research and Development, 2(2), 289–293.MathSciNetCrossRef
124.
Zurück zum Zitat Lee, W. (1990). Estimate of channel capacity in Rayleigh fading environment. IEEE Transactions on Vehicular Technology, 39(3), 187–189.CrossRef Lee, W. (1990). Estimate of channel capacity in Rayleigh fading environment. IEEE Transactions on Vehicular Technology, 39(3), 187–189.CrossRef
125.
Zurück zum Zitat Ghasem, A., & Sousa, E.-S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.CrossRef Ghasem, A., & Sousa, E.-S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.CrossRef
126.
Zurück zum Zitat Goldsmith, A.-J., & Varaiya, P.-P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.MathSciNetMATHCrossRef Goldsmith, A.-J., & Varaiya, P.-P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.MathSciNetMATHCrossRef
127.
Zurück zum Zitat Alouini, M.-S., & Goldsmith, A.-J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.CrossRef Alouini, M.-S., & Goldsmith, A.-J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.CrossRef
128.
Zurück zum Zitat Mallik, R. K., Win, M. Z., Shao, J. W., Alouini, M.-S., & Goldsmith, A. J. (2004). Channel capacity of adaptive transmission with maximal ratio combining in correlated Rayleigh fading. IEEE Transactions on Wireless Communications, 3(4), 1124–1133.CrossRef Mallik, R. K., Win, M. Z., Shao, J. W., Alouini, M.-S., & Goldsmith, A. J. (2004). Channel capacity of adaptive transmission with maximal ratio combining in correlated Rayleigh fading. IEEE Transactions on Wireless Communications, 3(4), 1124–1133.CrossRef
129.
Zurück zum Zitat Peppas, K., Lazarakis, F., Alexandridis, A., & Dangakis, K. (2010). Cascaded generalized-K fading channel. IET Communications, 4(1), 116–124.MATHCrossRef Peppas, K., Lazarakis, F., Alexandridis, A., & Dangakis, K. (2010). Cascaded generalized-K fading channel. IET Communications, 4(1), 116–124.MATHCrossRef
130.
Zurück zum Zitat Bithas, P.-S., Mathiopoulos, P.-T., & Kotsopoulos, S.-A. (2007). Diversity reception over Generalized-K (K G ) fading channels. IEEE Transactions on Wireless Communications, 6(12), 4238–4243.CrossRef Bithas, P.-S., Mathiopoulos, P.-T., & Kotsopoulos, S.-A. (2007). Diversity reception over Generalized-K (K G ) fading channels. IEEE Transactions on Wireless Communications, 6(12), 4238–4243.CrossRef
131.
Zurück zum Zitat Dwivedi, Vivek K., & Singh, G. (2012). A novel Marginal MGF based analysis of the channel capacity over correlated Nakagami-m fading with maximal-ratio combining diversity. Progress Electromagnetic Research B, 41, 333–356.CrossRef Dwivedi, Vivek K., & Singh, G. (2012). A novel Marginal MGF based analysis of the channel capacity over correlated Nakagami-m fading with maximal-ratio combining diversity. Progress Electromagnetic Research B, 41, 333–356.CrossRef
132.
Zurück zum Zitat Dwivedi, Vivek K., & Singh, G. (2012). A novel MGF based analysis of channel capacity of generalized-K fading with maximal ratio combining diversity. Progress Electromagnetic Research C, 26, 153–165.CrossRef Dwivedi, Vivek K., & Singh, G. (2012). A novel MGF based analysis of channel capacity of generalized-K fading with maximal ratio combining diversity. Progress Electromagnetic Research C, 26, 153–165.CrossRef
133.
Zurück zum Zitat Renzo, M.-D., Graziosi, F., & Santucci, F. (2010). Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Transactions on Vehicular Technology, 59(1), 127–149.CrossRef Renzo, M.-D., Graziosi, F., & Santucci, F. (2010). Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Transactions on Vehicular Technology, 59(1), 127–149.CrossRef
134.
Zurück zum Zitat Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio channels. IEEE Transactions on Information Theory, 52(5), 1813–1827.MathSciNetMATHCrossRef Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio channels. IEEE Transactions on Information Theory, 52(5), 1813–1827.MathSciNetMATHCrossRef
135.
Zurück zum Zitat Chang, J.-H., Tassiulas, L., & Farrokhi, F.-R. (2002). Joint transmitter receiver diversity for efficient space division multiaccess. IEEE Transactions Wireless Communications, 1(1), 16–27.CrossRef Chang, J.-H., Tassiulas, L., & Farrokhi, F.-R. (2002). Joint transmitter receiver diversity for efficient space division multiaccess. IEEE Transactions Wireless Communications, 1(1), 16–27.CrossRef
136.
Zurück zum Zitat Spencer, Q.-H., Swindlehurst, A.-L., & Haardt, M. (2004). Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing, 52(2), 461–471.MathSciNetCrossRef Spencer, Q.-H., Swindlehurst, A.-L., & Haardt, M. (2004). Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing, 52(2), 461–471.MathSciNetCrossRef
137.
Zurück zum Zitat Jafar, S.-A., & Srinivasa, S. (2007). Capacity limits of cognitive radio with distributed and dynamic spectral activity. IEEE Journal Selected Areas in Communications, 25(3), 529–537.CrossRef Jafar, S.-A., & Srinivasa, S. (2007). Capacity limits of cognitive radio with distributed and dynamic spectral activity. IEEE Journal Selected Areas in Communications, 25(3), 529–537.CrossRef
138.
Zurück zum Zitat Gastpar, M. (2007). On capacity under receive and spatial spectrum-sharing constraints. IEEE Transactions on Information Theory, 53(2), 471–487.MathSciNetMATHCrossRef Gastpar, M. (2007). On capacity under receive and spatial spectrum-sharing constraints. IEEE Transactions on Information Theory, 53(2), 471–487.MathSciNetMATHCrossRef
139.
Zurück zum Zitat Akin, S. (2011) Wireless communications and cognitive radio transmissions under quality of service constraints and channel uncertainty. Ph. D. Thesis, University of Nebraska. Akin, S. (2011) Wireless communications and cognitive radio transmissions under quality of service constraints and channel uncertainty. Ph. D. Thesis, University of Nebraska.
140.
Zurück zum Zitat Rappaport, T. S., Shu Sun, R., Mayzus, H., Zhao, Y., Azar, K., Wang, G. N., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef Rappaport, T. S., Shu Sun, R., Mayzus, H., Zhao, Y., Azar, K., Wang, G. N., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef
Metadaten
Titel
An overview of spectrum sharing techniques in cognitive radio communication system
verfasst von
Shweta Pandit
G. Singh
Publikationsdatum
29.12.2015
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-1171-1

Weitere Artikel der Ausgabe 2/2017

Wireless Networks 2/2017 Zur Ausgabe

Neuer Inhalt