Skip to main content
Erschienen in: Rare Metals 7/2020

16.02.2019

An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites

verfasst von: Bhupendra Kumar Singh, Sunwoo Lee, Kyungsu Na

Erschienen in: Rare Metals | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal nanoparticles (NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a wide range of current and future applications, and this is arguably one of the fastest growing research fields. In this review, we highlight various types of metal catalysts that possess great potential in several catalytic reactions. The major focus has been on metal oxides, nanoporous metals and metal NPs supported on metal–organic frameworks (MOFs) and zeolites. Special attention has been given to the synthesis strategies and application of the NPs supported on MOFs and zeolites, which are considered highly interesting and rapidly expanding areas in heterogeneous catalysis. Finally, the prospects of these catalysts have been included in the concluding remarks.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Williams C, Carter JH, Dummer NF, Chow YK, Morgan DJ, Yacob S, Serna P, Willock DJ, Meyer RJ, Taylor SH, Hutchings GH. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catal. 2018;8(3):2567. Williams C, Carter JH, Dummer NF, Chow YK, Morgan DJ, Yacob S, Serna P, Willock DJ, Meyer RJ, Taylor SH, Hutchings GH. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catal. 2018;8(3):2567.
[2]
Zurück zum Zitat Hong E, Jeon SA, Lee SS, Shin CH. Methane combustion over Pd/Ni-Al oxide catalysts: effect of Ni/Al ratio in the Ni-Al oxide support. Korean J Chem Eng. 2018;35(9):1815. Hong E, Jeon SA, Lee SS, Shin CH. Methane combustion over Pd/Ni-Al oxide catalysts: effect of Ni/Al ratio in the Ni-Al oxide support. Korean J Chem Eng. 2018;35(9):1815.
[3]
Zurück zum Zitat Sharma M, Jung N, Yoo SJ. Toward high-performance Pt-based nanocatalysts for oxygen reduction reaction through organic–inorganic hybrid concepts. Chem Mater. 2018;30(1):2. Sharma M, Jung N, Yoo SJ. Toward high-performance Pt-based nanocatalysts for oxygen reduction reaction through organic–inorganic hybrid concepts. Chem Mater. 2018;30(1):2.
[4]
Zurück zum Zitat Yang P, Yuan X, Hu H, Liu Y, Zheng H, Yang D, Chen L, Cao M, Xu Y, Min Y, Li Y, Zhang Q. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv Funct Mater. 2018;28:1704774. Yang P, Yuan X, Hu H, Liu Y, Zheng H, Yang D, Chen L, Cao M, Xu Y, Min Y, Li Y, Zhang Q. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv Funct Mater. 2018;28:1704774.
[5]
Zurück zum Zitat Park JH, Hong E, An SH, Lim DH, Shin CH. Reductive amination of ethanol to ethylamines over Ni/Al2O3 catalysts. Korean J Chem Eng. 2017;34(10):2610. Park JH, Hong E, An SH, Lim DH, Shin CH. Reductive amination of ethanol to ethylamines over Ni/Al2O3 catalysts. Korean J Chem Eng. 2017;34(10):2610.
[6]
Zurück zum Zitat Yang P, Xu Y, Chen L, Wang X, Mao B, Xie Z, Wang S-D, Bao F, Zhang Q. Encapsulated silver nanoparticles can be directly converted to silver nanoshell in the gas phase. Nano Lett. 2015;15(12):8397. Yang P, Xu Y, Chen L, Wang X, Mao B, Xie Z, Wang S-D, Bao F, Zhang Q. Encapsulated silver nanoparticles can be directly converted to silver nanoshell in the gas phase. Nano Lett. 2015;15(12):8397.
[7]
Zurück zum Zitat Park JH, Noh H, Chang TS, Shin CH. Low-temperature CO oxidation of Pt/Al0.1Ce0.9Ox catalysts: Effects of supports prepared with different precipitants. Korean J Chem Eng. 2018;35(3):645. Park JH, Noh H, Chang TS, Shin CH. Low-temperature CO oxidation of Pt/Al0.1Ce0.9Ox catalysts: Effects of supports prepared with different precipitants. Korean J Chem Eng. 2018;35(3):645.
[8]
Zurück zum Zitat Jeon KW, Jeong DW, Jang WJ, Shim JO, Na HS, Kim HM, Lee YL, Jeon BH, Seong Kim SH, Bae JW, Roh HS. Preferential CO oxidation over supported Pt catalysts. Korean J Chem Eng. 2016;33(6):1781. Jeon KW, Jeong DW, Jang WJ, Shim JO, Na HS, Kim HM, Lee YL, Jeon BH, Seong Kim SH, Bae JW, Roh HS. Preferential CO oxidation over supported Pt catalysts. Korean J Chem Eng. 2016;33(6):1781.
[9]
Zurück zum Zitat Chattopadhyay J, Pathak TS, Pak D, Srivastava R. Metal hollow sphere electrocatalysts. Korean J Chem Eng. 2016;33(5):1514. Chattopadhyay J, Pathak TS, Pak D, Srivastava R. Metal hollow sphere electrocatalysts. Korean J Chem Eng. 2016;33(5):1514.
[10]
Zurück zum Zitat Chen YS, Cao YD, Ran R, Wu XD, Weng D. Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Met. 2018;37(2):123. Chen YS, Cao YD, Ran R, Wu XD, Weng D. Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Met. 2018;37(2):123.
[11]
Zurück zum Zitat Yang Q, Hu H, Wang SS. Preparation and desulfurization activity of nano-CeO2/γ-Al2O3 catalysts. Rare Met. 2018;37(7):554. Yang Q, Hu H, Wang SS. Preparation and desulfurization activity of nano-CeO2/γ-Al2O3 catalysts. Rare Met. 2018;37(7):554.
[12]
Zurück zum Zitat Ding Y, Chen M. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009;34(8):569. Ding Y, Chen M. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009;34(8):569.
[13]
Zurück zum Zitat Juarez T, Biener J, Weissmüller J, Hodge AM. Nanoporous metals with structural hierarchy: a review. Adv Eng Mater. 2017;19:1700389. Juarez T, Biener J, Weissmüller J, Hodge AM. Nanoporous metals with structural hierarchy: a review. Adv Eng Mater. 2017;19:1700389.
[14]
Zurück zum Zitat Wada T, Geslin PA, Kato H. Preparation of hierarchical porous metals by two-step liquid metal dealloying. Scr Mater. 2018;142:101. Wada T, Geslin PA, Kato H. Preparation of hierarchical porous metals by two-step liquid metal dealloying. Scr Mater. 2018;142:101.
[15]
Zurück zum Zitat Wang Y, Arandiyan H, Scott J, Bagheri A, Dai H, Amal R. Recent advances in ordered meso/microporous metal oxides for heterogeneous catalysis: a review. J Mater Chem A. 2017;5:8825. Wang Y, Arandiyan H, Scott J, Bagheri A, Dai H, Amal R. Recent advances in ordered meso/microporous metal oxides for heterogeneous catalysis: a review. J Mater Chem A. 2017;5:8825.
[17]
Zurück zum Zitat Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal–organic frameworks as heterogeneous catalysts. Chem Commun. 2012;48:11275. Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal–organic frameworks as heterogeneous catalysts. Chem Commun. 2012;48:11275.
[18]
Zurück zum Zitat Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334.
[19]
Zurück zum Zitat Wang M, Xie MH, Wu CD, Wang YG. From one to three: a serine derivate manipulated homochiral metal-organic framework. Chem Commun. 2009;2396. Wang M, Xie MH, Wu CD, Wang YG. From one to three: a serine derivate manipulated homochiral metal-organic framework. Chem Commun. 2009;2396.
[20]
Zurück zum Zitat Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature. 2003;423:705. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature. 2003;423:705.
[21]
Zurück zum Zitat Meek ST, Greathouse JA, Allendorf MD. Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater. 2011;23:249. Meek ST, Greathouse JA, Allendorf MD. Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater. 2011;23:249.
[22]
Zurück zum Zitat Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydin AO, Hupp JT. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134(36):15016. Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydin AO, Hupp JT. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134(36):15016.
[23]
Zurück zum Zitat Nagy JB, Bodart P, Hannus I, Kiricsi I. Synthesis, Characterization and Use of Zeolitic Microporous Materials. Szeged: DecaGen Ltd.; 1998. 192. Nagy JB, Bodart P, Hannus I, Kiricsi I. Synthesis, Characterization and Use of Zeolitic Microporous Materials. Szeged: DecaGen Ltd.; 1998. 192.
[24]
Zurück zum Zitat Jung D, Lee S, Na K. RuO2 supported NaY zeolite catalysts: effect of preparation methods on catalytic performance during aerobic oxidation of benzyl alcohol. Solid State Sci. 2017;72:150. Jung D, Lee S, Na K. RuO2 supported NaY zeolite catalysts: effect of preparation methods on catalytic performance during aerobic oxidation of benzyl alcohol. Solid State Sci. 2017;72:150.
[25]
Zurück zum Zitat Park P, Jung D, Kim HS, Na K, Lee S. Zeolite-based copper catalyst for decarboxylative coupling of alkynyl carboxylic acids with aryl iodides. Catal Commun. 2017;99:83. Park P, Jung D, Kim HS, Na K, Lee S. Zeolite-based copper catalyst for decarboxylative coupling of alkynyl carboxylic acids with aryl iodides. Catal Commun. 2017;99:83.
[26]
Zurück zum Zitat Centi G, Perathoner S. In: Cejka J, Corma A, Zones SI, editors. Zeolites and Catalysis: Synthesis, Reactions and Applications, vol. 2. Weinheim: Wiley-VCH; 2010. 745. Centi G, Perathoner S. In: Cejka J, Corma A, Zones SI, editors. Zeolites and Catalysis: Synthesis, Reactions and Applications, vol. 2. Weinheim: Wiley-VCH; 2010. 745.
[27]
Zurück zum Zitat Luo H, Wu XD, Weng D, Liu S, Ran R. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Met. 2017;36(1):1. Luo H, Wu XD, Weng D, Liu S, Ran R. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Met. 2017;36(1):1.
[28]
Zurück zum Zitat Shelef M, McCabe RW. Twenty-five years after introduction of automotive catalysts: what next. Catal Today. 2000;62:35. Shelef M, McCabe RW. Twenty-five years after introduction of automotive catalysts: what next. Catal Today. 2000;62:35.
[29]
Zurück zum Zitat Ratnasamy C, Wagner JP. Water gas shift catalysis. Catal. Rev. 2009;51(3):325. Ratnasamy C, Wagner JP. Water gas shift catalysis. Catal. Rev. 2009;51(3):325.
[30]
Zurück zum Zitat Kim SC, Shim WG. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ. 2010;98(3–4):180. Kim SC, Shim WG. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ. 2010;98(3–4):180.
[31]
Zurück zum Zitat Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B Environ. 2010;99(1–2):353. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B Environ. 2010;99(1–2):353.
[32]
Zurück zum Zitat Li J, Li L, Cheng W, Wu F, Lu X, Li Z. Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J. 2014;244:59. Li J, Li L, Cheng W, Wu F, Lu X, Li Z. Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J. 2014;244:59.
[33]
Zurück zum Zitat Toberer ES, Schladt TD, Seshadri R. Macroporous manganese oxides with regenerative mesopores. J Am Chem Soc. 2006;128(5):1462. Toberer ES, Schladt TD, Seshadri R. Macroporous manganese oxides with regenerative mesopores. J Am Chem Soc. 2006;128(5):1462.
[34]
Zurück zum Zitat Ye Q, Lu H, Zhao J, Cheng S, Kang T, Wang D, Dai H. A comparative investigation on catalytic oxidation of CO, benzene, and toluene over birnessites derived from different routes. Appl Surf Sci. 2014;317:892. Ye Q, Lu H, Zhao J, Cheng S, Kang T, Wang D, Dai H. A comparative investigation on catalytic oxidation of CO, benzene, and toluene over birnessites derived from different routes. Appl Surf Sci. 2014;317:892.
[35]
Zurück zum Zitat Alipour Z, Rezaei M, Meshkani F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J Ind Eng Chem. 2014;20(5):2858. Alipour Z, Rezaei M, Meshkani F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J Ind Eng Chem. 2014;20(5):2858.
[36]
Zurück zum Zitat Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F. Effects of K2O Promoter on the activity and stability of nickel catalysts supported on mesoporous nanocrystalline zirconia in CH4 reforming with CO2. Energy Fuel. 2008;22(4):2195. Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F. Effects of K2O Promoter on the activity and stability of nickel catalysts supported on mesoporous nanocrystalline zirconia in CH4 reforming with CO2. Energy Fuel. 2008;22(4):2195.
[37]
Zurück zum Zitat Tang W, Yao M, Deng Y, Li X, Han N, Wu X, Chen Y. Decoration of one-dimensional MnO2 with Co3O4 nanoparticles: a heterogeneous interface for remarkably promoting catalytic oxidation activity. Chem Eng J. 2016;306:709. Tang W, Yao M, Deng Y, Li X, Han N, Wu X, Chen Y. Decoration of one-dimensional MnO2 with Co3O4 nanoparticles: a heterogeneous interface for remarkably promoting catalytic oxidation activity. Chem Eng J. 2016;306:709.
[38]
Zurück zum Zitat Putla S, Amin MH, Reddy BM, Nafady A, Farhan KA, Bhargava SK. MnOx nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Appl Mater Interfaces. 2015;7(30):16525. Putla S, Amin MH, Reddy BM, Nafady A, Farhan KA, Bhargava SK. MnOx nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Appl Mater Interfaces. 2015;7(30):16525.
[39]
Zurück zum Zitat Chen H, He J, Zhang C, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J Phys Chem C. 2007;111(49):18033. Chen H, He J, Zhang C, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J Phys Chem C. 2007;111(49):18033.
[40]
Zurück zum Zitat Wei Y, Liu J, Zhao Z, Chen Y, Xu C, Duan A, Jiang G, He H. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angew Chem Int Ed. 2011;50:2326. Wei Y, Liu J, Zhao Z, Chen Y, Xu C, Duan A, Jiang G, He H. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angew Chem Int Ed. 2011;50:2326.
[41]
Zurück zum Zitat Wei Y, Zhao Z, Jiao J, Liu J, Duan A, Jiang G. Facile synthesis of three-dimensionally ordered macroporous LaFeO3-supported gold nanoparticle catalysts with high catalytic activity and stability for soot combustion. Catal Today. 2015;245:37. Wei Y, Zhao Z, Jiao J, Liu J, Duan A, Jiang G. Facile synthesis of three-dimensionally ordered macroporous LaFeO3-supported gold nanoparticle catalysts with high catalytic activity and stability for soot combustion. Catal Today. 2015;245:37.
[42]
Zurück zum Zitat Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G. Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J Catal. 2013;305:146. Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G. Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J Catal. 2013;305:146.
[43]
Zurück zum Zitat Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc. 2003;125(26):7772. Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc. 2003;125(26):7772.
[44]
Zurück zum Zitat Nyce GW, Hayes JR, Hamza AV, Satcher JH. Synthesis and characterization of hierarchical porous gold materials. Chem Mater. 2007;19(3):344. Nyce GW, Hayes JR, Hamza AV, Satcher JH. Synthesis and characterization of hierarchical porous gold materials. Chem Mater. 2007;19(3):344.
[45]
Zurück zum Zitat Liu Z, Searson PC. Single nanoporous gold nanowire sensors. J Phys Chem B. 2006;110(9):4318. Liu Z, Searson PC. Single nanoporous gold nanowire sensors. J Phys Chem B. 2006;110(9):4318.
[46]
Zurück zum Zitat Ji C, Searson PC. Fabrication of nanoporous gold nanowires. Appl Phys Lett. 2002;81(23):4437. Ji C, Searson PC. Fabrication of nanoporous gold nanowires. Appl Phys Lett. 2002;81(23):4437.
[47]
Zurück zum Zitat Liu LF, Pippel E, Scholz R, Gösele U. Nanoporous Pt–Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett. 2009;9(12):4352. Liu LF, Pippel E, Scholz R, Gösele U. Nanoporous Pt–Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett. 2009;9(12):4352.
[48]
Zurück zum Zitat Tominaka S. Facile synthesis of nanostructured gold for microsystems by the combination of electrodeposition and dealloying. J Mater Chem. 2011;21:9725. Tominaka S. Facile synthesis of nanostructured gold for microsystems by the combination of electrodeposition and dealloying. J Mater Chem. 2011;21:9725.
[49]
Zurück zum Zitat Chae WS, Gough DV, Ham SK, Robinson DB, Braun PV. Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes. ACS Appl Mater Interfaces. 2012;4(8):3973. Chae WS, Gough DV, Ham SK, Robinson DB, Braun PV. Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes. ACS Appl Mater Interfaces. 2012;4(8):3973.
[50]
Zurück zum Zitat Shi S, Markmann J, Weissmüller J. Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philos Mag. 2017;97(19):1571. Shi S, Markmann J, Weissmüller J. Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philos Mag. 2017;97(19):1571.
[51]
Zurück zum Zitat Hakamada M, Mabuchi M. Fabrication, microstructure, and properties of nanoporous Pd, Ni, and their alloys by dealloying. Crit Rev Solid State Mater Sci. 2013;38(4):262. Hakamada M, Mabuchi M. Fabrication, microstructure, and properties of nanoporous Pd, Ni, and their alloys by dealloying. Crit Rev Solid State Mater Sci. 2013;38(4):262.
[52]
Zurück zum Zitat Zhang Z, Wang Y, Qi Z, Zhang W, Qin J, Frenzel J. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C. 2009;113(29):12629. Zhang Z, Wang Y, Qi Z, Zhang W, Qin J, Frenzel J. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C. 2009;113(29):12629.
[53]
Zurück zum Zitat Xu Y, Chen L, Wang X, Yao W, Zhang Q. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale. 2015;7:10559. Xu Y, Chen L, Wang X, Yao W, Zhang Q. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale. 2015;7:10559.
[54]
Zurück zum Zitat Jin HJ, Wang XL, Parida S, Wang K, Seo M, Weissmüller J. Nanoporous Au–Pt alloys as large strain electrochemical actuators. Nano Lett. 2010;10(1):187. Jin HJ, Wang XL, Parida S, Wang K, Seo M, Weissmüller J. Nanoporous Au–Pt alloys as large strain electrochemical actuators. Nano Lett. 2010;10(1):187.
[55]
Zurück zum Zitat Snyder J, Asanithi P, Dalton AB, Erlebacher J. Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv Mater. 2008;20:4883. Snyder J, Asanithi P, Dalton AB, Erlebacher J. Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv Mater. 2008;20:4883.
[56]
Zurück zum Zitat Yu J, Ding Y, Xu C, Inoue A, Sakurai T, Chen M. Nanoporous metals by dealloying multicomponent metallic glasses. Chem Mater. 2008;20(14):4548. Yu J, Ding Y, Xu C, Inoue A, Sakurai T, Chen M. Nanoporous metals by dealloying multicomponent metallic glasses. Chem Mater. 2008;20(14):4548.
[57]
Zurück zum Zitat Cox ME, Dunand DC. Bulk gold with hierarchical macro-, micro- and nano-porosity. Mater Sci Eng A. 2011;528(6):2401. Cox ME, Dunand DC. Bulk gold with hierarchical macro-, micro- and nano-porosity. Mater Sci Eng A. 2011;528(6):2401.
[58]
Zurück zum Zitat Raney M. Method of producing finely-divided nickel. U.S. Patent. 1927;1628:190. Raney M. Method of producing finely-divided nickel. U.S. Patent. 1927;1628:190.
[59]
Zurück zum Zitat Smith AJ, Trimm DL. The preparation of skeletal catalysts. Annu Rev Mater Res. 2005;35:127. Smith AJ, Trimm DL. The preparation of skeletal catalysts. Annu Rev Mater Res. 2005;35:127.
[60]
Zurück zum Zitat Kucernak A, Jiang JH. Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxidation. Chem Eng J. 2003;93(1):81. Kucernak A, Jiang JH. Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxidation. Chem Eng J. 2003;93(1):81.
[61]
Zurück zum Zitat Kong Q, Lian L, Liu Y, Zhang J, Wang L, Feng W. Bulk hierarchical nanoporous palladium prepared by dealloying PdAl alloys and its electrochemical properties. Microporous Mesoporous Mater. 2015;208:152. Kong Q, Lian L, Liu Y, Zhang J, Wang L, Feng W. Bulk hierarchical nanoporous palladium prepared by dealloying PdAl alloys and its electrochemical properties. Microporous Mesoporous Mater. 2015;208:152.
[62]
Zurück zum Zitat Xu J, Zhang C, Wang X, Ji H, Zhao C, Wang Y, Zhang Z. Fabrication of bi-modal nanoporous bimetallic Pt–Au alloy with excellent electrocatalytic performance towards formic acid oxidation. Green Chem. 2011;13:1914. Xu J, Zhang C, Wang X, Ji H, Zhao C, Wang Y, Zhang Z. Fabrication of bi-modal nanoporous bimetallic Pt–Au alloy with excellent electrocatalytic performance towards formic acid oxidation. Green Chem. 2011;13:1914.
[63]
Zurück zum Zitat Xu C, Su J, Xu X, Liu P, Zhao H, Tian F, Ding Y. Low temperature CO oxidation over unsupported nanoporous Gold. J Am Chem Soc. 2007;129(1):42. Xu C, Su J, Xu X, Liu P, Zhao H, Tian F, Ding Y. Low temperature CO oxidation over unsupported nanoporous Gold. J Am Chem Soc. 2007;129(1):42.
[64]
Zurück zum Zitat Biener J, Biener MM, Madix RJ, Friend CM. Nanoporous Gold: understanding the origin of the reactivity of a 21st Century catalyst made by pre-Columbian technology. ACS Catal. 2015;5(11):6263. Biener J, Biener MM, Madix RJ, Friend CM. Nanoporous Gold: understanding the origin of the reactivity of a 21st Century catalyst made by pre-Columbian technology. ACS Catal. 2015;5(11):6263.
[65]
Zurück zum Zitat Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M. Nanoporous Gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science. 2010;327(5963):319. Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M. Nanoporous Gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science. 2010;327(5963):319.
[66]
Zurück zum Zitat Zhang Z, Ma H, Zhang D, Liu P, Tian F, Ding Y. Electrocatalytic activity of bimetallic platinum–gold catalysts fabricated based on nanoporous gold. Phys Chem Chem Phys. 2008;10:3250. Zhang Z, Ma H, Zhang D, Liu P, Tian F, Ding Y. Electrocatalytic activity of bimetallic platinum–gold catalysts fabricated based on nanoporous gold. Phys Chem Chem Phys. 2008;10:3250.
[67]
Zurück zum Zitat Xiao S, Xiao F, Hu Y, Yuan S, Wang S, Qian L, Liu Y. Hierarchical nanoporous gold-platinum with heterogeneous interfaces for methanol electrooxidation. Sci Rep. 2014;4:4370. Xiao S, Xiao F, Hu Y, Yuan S, Wang S, Qian L, Liu Y. Hierarchical nanoporous gold-platinum with heterogeneous interfaces for methanol electrooxidation. Sci Rep. 2014;4:4370.
[68]
Zurück zum Zitat Guo X, Han J, Liu P, Chen L, Ito Y, Jian Z, Jin T, Hirata A, Li F, Fujita T, Asao N, Zhou H, Chen M. Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Sci Rep. 2016;6:33466. Guo X, Han J, Liu P, Chen L, Ito Y, Jian Z, Jin T, Hirata A, Li F, Fujita T, Asao N, Zhou H, Chen M. Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Sci Rep. 2016;6:33466.
[69]
Zurück zum Zitat Zhang S, Xing Y, Jiang T, Du Z, Li F, He L, Liu W. A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes. J Power Sources. 2011;196(16):6915. Zhang S, Xing Y, Jiang T, Du Z, Li F, He L, Liu W. A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes. J Power Sources. 2011;196(16):6915.
[70]
Zurück zum Zitat Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15(6):783. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15(6):783.
[71]
Zurück zum Zitat Yu Y, Gu L, Lang XY, Zhu CB, Fujita T, Chen MW. Li storage in 3D nanoporous Au-supported nanocrystalline Tin. J Maier Adv Mater. 2011;23:2443. Yu Y, Gu L, Lang XY, Zhu CB, Fujita T, Chen MW. Li storage in 3D nanoporous Au-supported nanocrystalline Tin. J Maier Adv Mater. 2011;23:2443.
[72]
Zurück zum Zitat Liu D, Yang Z, Wang P, Li F, Wang D, He D. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Nanoscale. 2013;5:1917. Liu D, Yang Z, Wang P, Li F, Wang D, He D. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Nanoscale. 2013;5:1917.
[73]
Zurück zum Zitat Moon HR, Lim DW, Suh MP. Fabrication of metal nanoparticles in metal–organic frameworks. Chem Soc Rev. 2013;42:1807. Moon HR, Lim DW, Suh MP. Fabrication of metal nanoparticles in metal–organic frameworks. Chem Soc Rev. 2013;42:1807.
[74]
Zurück zum Zitat Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework. J Am Chem Soc. 2009;131(32):11302. Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework. J Am Chem Soc. 2009;131(32):11302.
[75]
Zurück zum Zitat Ishida T, Kawakita N, Akita T, Haruta M. One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bull. 2009;42(4):267. Ishida T, Kawakita N, Akita T, Haruta M. One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bull. 2009;42(4):267.
[76]
Zurück zum Zitat Meilikhov M, Yusenko K, Esken D, Turner S, Tendeloo GV, Fischer RA. Metals@MOFs—loading MOFs with metal nanoparticles for hybrid functions. Eur J Inorg Chem. 2010;3701. Meilikhov M, Yusenko K, Esken D, Turner S, Tendeloo GV, Fischer RA. Metals@MOFs—loading MOFs with metal nanoparticles for hybrid functions. Eur J Inorg Chem. 2010;3701.
[77]
Zurück zum Zitat Hermes S, Schröter M-K, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA. Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed. 2005;44:6237. Hermes S, Schröter M-K, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW, Fischer RA. Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed. 2005;44:6237.
[78]
Zurück zum Zitat Park YK, Choi SB, Nam HJ, Jung DY, Ahn HC, Choi K, Furukawa H, Kim J. Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework. Chem Commun. 2010;46:3086. Park YK, Choi SB, Nam HJ, Jung DY, Ahn HC, Choi K, Furukawa H, Kim J. Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework. Chem Commun. 2010;46:3086.
[79]
Zurück zum Zitat Schroder F, Henke S, Zhang XN, Fischer RA. Simultaneous gas-phase loading of MOF-5 with two metal precursors: towards bimetallics@MOF. Eur. J. Inorg. Chem. 2009;3131. Schroder F, Henke S, Zhang XN, Fischer RA. Simultaneous gas-phase loading of MOF-5 with two metal precursors: towards bimetallics@MOF. Eur. J. Inorg. Chem. 2009;3131.
[80]
Zurück zum Zitat Leus K, Dendooven J, Tahir N, Ramachandran RK, Meledina M, Turner S, Van Tendeloo G, Goeman JL, Van der Eycken J, Detavernier C, Van Der Voort P. Atomic layer deposition of Pt nanoparticles within the cages of MIL-101: a mild and recyclable hydrogenation catalyst. Nanomaterials. 2016;6(3):45. Leus K, Dendooven J, Tahir N, Ramachandran RK, Meledina M, Turner S, Van Tendeloo G, Goeman JL, Van der Eycken J, Detavernier C, Van Der Voort P. Atomic layer deposition of Pt nanoparticles within the cages of MIL-101: a mild and recyclable hydrogenation catalyst. Nanomaterials. 2016;6(3):45.
[81]
Zurück zum Zitat Miikkulainen V, Leskela M, Ritala M, Puurunen RL. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys. 2013;113:021301. Miikkulainen V, Leskela M, Ritala M, Puurunen RL. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys. 2013;113:021301.
[82]
Zurück zum Zitat Pan H, Li X, Yu Y, Li J, Hu J, Guan Y, Wu P. Pt nanoparticles entrapped in mesoporous metal–organic frameworks MIL-101 as an efficient catalyst for liquid-phase hydrogenation of benzaldehydes and nitrobenzenes. J Mol Catal A Chem. 2015;399:1. Pan H, Li X, Yu Y, Li J, Hu J, Guan Y, Wu P. Pt nanoparticles entrapped in mesoporous metal–organic frameworks MIL-101 as an efficient catalyst for liquid-phase hydrogenation of benzaldehydes and nitrobenzenes. J Mol Catal A Chem. 2015;399:1.
[83]
Zurück zum Zitat Henschel A, Gedrich K, Kraehnert R, Kaskel S. Catalytic properties of MIL-101. Chem Commun 2008;4192. Henschel A, Gedrich K, Kraehnert R, Kaskel S. Catalytic properties of MIL-101. Chem Commun 2008;4192.
[84]
Zurück zum Zitat Na K, Choi KM, Yaghi OM, Somorjai GA. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014;14(10):5979. Na K, Choi KM, Yaghi OM, Somorjai GA. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014;14(10):5979.
[85]
Zurück zum Zitat Liu H, Li Y, Luque R, Jiang H. A Tuneable bifunctional water-compatible heterogeneous catalyst for the selective squeous hydrogenation of phenols. Adv Synth Catal. 2011;353:3107. Liu H, Li Y, Luque R, Jiang H. A Tuneable bifunctional water-compatible heterogeneous catalyst for the selective squeous hydrogenation of phenols. Adv Synth Catal. 2011;353:3107.
[86]
Zurück zum Zitat Akbayrak S, Tonbul Y, Özkar S. Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Appl Catal B Environ. 2016;198:162. Akbayrak S, Tonbul Y, Özkar S. Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Appl Catal B Environ. 2016;198:162.
[87]
Zurück zum Zitat Tilgner D, Friedrich M, Hermannsdofer J, Kempe R. Titanium dioxide reinforced metal–organic framework Pd catalysts: activity and reusability enhancement in alcohol dehydrogenation reactions and improved photocatalytic performance. ChemCatChem. 2015;7:3916. Tilgner D, Friedrich M, Hermannsdofer J, Kempe R. Titanium dioxide reinforced metal–organic framework Pd catalysts: activity and reusability enhancement in alcohol dehydrogenation reactions and improved photocatalytic performance. ChemCatChem. 2015;7:3916.
[88]
Zurück zum Zitat Cheng J, Gu X, Liu P, Wang T, Su H. Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal–organic frameworks at room temperature. J Mater Chem A. 2016;4:16645. Cheng J, Gu X, Liu P, Wang T, Su H. Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal–organic frameworks at room temperature. J Mater Chem A. 2016;4:16645.
[89]
Zurück zum Zitat Aijaz A, Karkamka A, Choi YJ, Tsumori N, Ronnebro E, Autrey T, Shioyama H, Xu Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: a double solvents approach. J Am Chem Soc. 2012;134(34):13926. Aijaz A, Karkamka A, Choi YJ, Tsumori N, Ronnebro E, Autrey T, Shioyama H, Xu Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: a double solvents approach. J Am Chem Soc. 2012;134(34):13926.
[90]
Zurück zum Zitat Yang KZ, Zhou LQ, Xiong X, Ye ML, Li L, Xia QH. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane. Microporous Mesoporous Mater. 2016;225:1. Yang KZ, Zhou LQ, Xiong X, Ye ML, Li L, Xia QH. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane. Microporous Mesoporous Mater. 2016;225:1.
[91]
Zurück zum Zitat Wen L, Du XQ, Su J, Luo W, Cai P, Cheng GZ. Ni–Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature. Dalton Trans. 2015;44:6212. Wen L, Du XQ, Su J, Luo W, Cai P, Cheng GZ. Ni–Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature. Dalton Trans. 2015;44:6212.
[92]
Zurück zum Zitat Islam SM, Mondal P, Roy AS, Mondal S, Hossain D. Heterogeneous Suzuki and copper-free Sonogashira cross-coupling reactions catalyzed by a reusable palladium(II) complex in water medium. Tetrahedron Lett. 2010;51(15):2067. Islam SM, Mondal P, Roy AS, Mondal S, Hossain D. Heterogeneous Suzuki and copper-free Sonogashira cross-coupling reactions catalyzed by a reusable palladium(II) complex in water medium. Tetrahedron Lett. 2010;51(15):2067.
[93]
Zurück zum Zitat Evangelisti C, Panziera N, D’Alessio A, Bertinetti L, Botavina M, Vitulli G. New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal. 2010;272(2):246. Evangelisti C, Panziera N, D’Alessio A, Bertinetti L, Botavina M, Vitulli G. New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): preparation, structural study and catalytic properties. J Catal. 2010;272(2):246.
[94]
Zurück zum Zitat Yuan BZ, Pan YY, Li YW, Yin BL, Jiang HF. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew Chem Int Ed. 2010;49:4054. Yuan BZ, Pan YY, Li YW, Yin BL, Jiang HF. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew Chem Int Ed. 2010;49:4054.
[95]
Zurück zum Zitat Han FS. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem Soc Rev. 2013;42:5270. Han FS. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem Soc Rev. 2013;42:5270.
[96]
Zurück zum Zitat Yuan E, Zhang K, Lu G, Mo Z, Tang Z. Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of NOx with NH3. J Ind Eng Chem. 2016;42:142. Yuan E, Zhang K, Lu G, Mo Z, Tang Z. Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of NOx with NH3. J Ind Eng Chem. 2016;42:142.
[97]
Zurück zum Zitat Cürdaneli PE, Özkar S. Ruthenium(III) ion-exchanged zeolite Y as highly active and reusable catalyst in decomposition of nitrous oxide to sole nitrogen and oxygen. Microporous Mesoporous Mater. 2014;196:51. Cürdaneli PE, Özkar S. Ruthenium(III) ion-exchanged zeolite Y as highly active and reusable catalyst in decomposition of nitrous oxide to sole nitrogen and oxygen. Microporous Mesoporous Mater. 2014;196:51.
[98]
Zurück zum Zitat Zhang J, Tu R, Goto T. Precipitation of Ni nanoparticle on Al2O3 powders by novel rotary chemical vapor deposition. J Ceram Soc Jpn. 2013;121(2):226. Zhang J, Tu R, Goto T. Precipitation of Ni nanoparticle on Al2O3 powders by novel rotary chemical vapor deposition. J Ceram Soc Jpn. 2013;121(2):226.
[99]
Zurück zum Zitat Li P, Liu G, Wu H, Liu Y, Jiang JG, Wu P. Postsynthesis and selective oxidation properties of nanosized Sn-Beta zeolite. J Phys Chem C. 2011;115(9):3663. Li P, Liu G, Wu H, Liu Y, Jiang JG, Wu P. Postsynthesis and selective oxidation properties of nanosized Sn-Beta zeolite. J Phys Chem C. 2011;115(9):3663.
[100]
Zurück zum Zitat Rane N, Kersbulck M, van Santen RA, Hensen EJM. Cracking of n-heptane over Brønsted acid sites and Lewis acid Ga sites in ZSM-5 zeolite. Microporous Mesoporous Mater. 2008;110(2–3):279. Rane N, Kersbulck M, van Santen RA, Hensen EJM. Cracking of n-heptane over Brønsted acid sites and Lewis acid Ga sites in ZSM-5 zeolite. Microporous Mesoporous Mater. 2008;110(2–3):279.
[101]
Zurück zum Zitat Blasco T, Camblor MA, Corma A, Esteve P, Guil JM, Martínez A, Perdigón-Melón JA, Valencia S. Direct synthesis and characterization of hydrophobic aluminumfFree Ti–Beta zeolite. J. Phys. Chem. B. 1998;102(1):75. Blasco T, Camblor MA, Corma A, Esteve P, Guil JM, Martínez A, Perdigón-Melón JA, Valencia S. Direct synthesis and characterization of hydrophobic aluminumfFree Ti–Beta zeolite. J. Phys. Chem. B. 1998;102(1):75.
[102]
Zurück zum Zitat Hammond C, Conrad S, Hermans I. Simple and scalable preparation of highly active Lewis acidic Sn-β. Angew Chem Int Ed. 2012;51:11736. Hammond C, Conrad S, Hermans I. Simple and scalable preparation of highly active Lewis acidic Sn-β. Angew Chem Int Ed. 2012;51:11736.
[103]
Zurück zum Zitat Liu L, Díaz U, Arenal R, Agostini G, Concepción P, Corma A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat Mater. 2017;16:132. Liu L, Díaz U, Arenal R, Agostini G, Concepción P, Corma A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat Mater. 2017;16:132.
[104]
Zurück zum Zitat Li S, Boucheron T, Tuel A, Farrusseng D, Meunier F. Size-selective hydrogenation at the subnanometer scale over platinum nanoparticles encapsulated in silicalite-1 single crystal hollow shells. Chem Commun. 2014;50:1824. Li S, Boucheron T, Tuel A, Farrusseng D, Meunier F. Size-selective hydrogenation at the subnanometer scale over platinum nanoparticles encapsulated in silicalite-1 single crystal hollow shells. Chem Commun. 2014;50:1824.
[105]
Zurück zum Zitat Li S, Burel L, Aquino C, Tuel A, Morfin F, Rousset JL, Farrusseng D. Ultimate size control of encapsulated gold nanoparticles. Chem Commun. 2013;49:8507. Li S, Burel L, Aquino C, Tuel A, Morfin F, Rousset JL, Farrusseng D. Ultimate size control of encapsulated gold nanoparticles. Chem Commun. 2013;49:8507.
[106]
Zurück zum Zitat Holm MS, Saravanamurugan S, Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science. 2010;328(5978):602. Holm MS, Saravanamurugan S, Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science. 2010;328(5978):602.
[107]
Zurück zum Zitat Dijkmans J, Dusselier M, Gabriels D, Houthoofd K, Magusin PCMM, Huang S, Pontikes Y, Trekels M, Vantomme A, Giebeler L, Oswald S, Sels BF. Cooperative catalysis for multistep biomass conversion with Sn/Al beta zeolite. ACS Catal. 2015;5(2):928. Dijkmans J, Dusselier M, Gabriels D, Houthoofd K, Magusin PCMM, Huang S, Pontikes Y, Trekels M, Vantomme A, Giebeler L, Oswald S, Sels BF. Cooperative catalysis for multistep biomass conversion with Sn/Al beta zeolite. ACS Catal. 2015;5(2):928.
[108]
Zurück zum Zitat Mielby J, Abildstrøm JO, Wang F, Kasama T, Weidenthaler C, Kegnaes S. Oxidation of bioethanol using zeolite encapsulated gold nanoparticles. Angew Chem Int Ed. 2014;53:12513. Mielby J, Abildstrøm JO, Wang F, Kasama T, Weidenthaler C, Kegnaes S. Oxidation of bioethanol using zeolite encapsulated gold nanoparticles. Angew Chem Int Ed. 2014;53:12513.
[109]
Zurück zum Zitat Na K, Alayoglu S, Ye R, Somorjai GA. Effect of acidic properties of mesoporous zeolites supporting pt nanoparticles on hydrogenative conversion of methylcyclopentane. J Am Chem Soc. 2014;136(49):17207. Na K, Alayoglu S, Ye R, Somorjai GA. Effect of acidic properties of mesoporous zeolites supporting pt nanoparticles on hydrogenative conversion of methylcyclopentane. J Am Chem Soc. 2014;136(49):17207.
[110]
Zurück zum Zitat Sun Q, Wang N, Bing Q, Si R, Liu J, Bai R, Zhang P, Jia M, Yu J. Subnanometric hybrid Pd-M(OH)2, M = Ni Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem. 2017;3(3):477. Sun Q, Wang N, Bing Q, Si R, Liu J, Bai R, Zhang P, Jia M, Yu J. Subnanometric hybrid Pd-M(OH)2, M = Ni Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem. 2017;3(3):477.
[111]
Zurück zum Zitat Tomkins P, Ranocchiari M, van Bokhoven JA. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc Chem Res. 2017;50(2):418. Tomkins P, Ranocchiari M, van Bokhoven JA. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc Chem Res. 2017;50(2):418.
[112]
Zurück zum Zitat Wang N, Sun Q, Bai R, Li X, Guo G, Yu J. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc. 2016;138(24):7484. Wang N, Sun Q, Bai R, Li X, Guo G, Yu J. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc. 2016;138(24):7484.
[113]
Zurück zum Zitat Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science. 2017;356(6337):523. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science. 2017;356(6337):523.
[114]
Zurück zum Zitat Kaur B, Srivastava R, Satpati B. Highly efficient CeO2 decorated nano-ZSM-5 catalyst for electrochemical oxidation of methanol. ACS Catal. 2016;6(4):2654. Kaur B, Srivastava R, Satpati B. Highly efficient CeO2 decorated nano-ZSM-5 catalyst for electrochemical oxidation of methanol. ACS Catal. 2016;6(4):2654.
[115]
Zurück zum Zitat Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc. 2012;134(4):1970. Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc. 2012;134(4):1970.
[116]
Zurück zum Zitat Guo P, Shin J, Greenaway AG, Min JG, Su J, Choi HJ, Liu L, Cox PA, Hong SB, Wright PA, Zou X. A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature. 2015;524:74. Guo P, Shin J, Greenaway AG, Min JG, Su J, Choi HJ, Liu L, Cox PA, Hong SB, Wright PA, Zou X. A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature. 2015;524:74.
Metadaten
Titel
An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites
verfasst von
Bhupendra Kumar Singh
Sunwoo Lee
Kyungsu Na
Publikationsdatum
16.02.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01205-6

Weitere Artikel der Ausgabe 7/2020

Rare Metals 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.