Skip to main content
Erschienen in: Rare Metals 7/2020

01.03.2019

Inorganic shell nanostructures to enhance performance and stability of metal nanoparticles in catalytic applications

verfasst von: Inhee Choi, Hyeon Kyeong Lee, Gyoung Woo Lee, Jiyull Kim, Ji Bong Joo

Erschienen in: Rare Metals | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we review the recent progress and our research activity on the synthesis of inorganic shell nanostructures to enhance the catalytic performance and stability of metal nanoparticles in catalytic applications. First, we introduce general synthetic strategies for the fabrication of inorganic nanoscale shell layers, including template-assisted sol-gel coating, hydrothermal (or solvothermal) synthesis and the self-templating process. We also discuss recent examples of metal nanoparticles (NPs) with nanoscale shell layers, namely core–shell, yolk–shell and multiple NPs-embedded nanoscale shell. We then discuss the performance and stability of metal particles in practical catalytic applications. Finally, we conclude with a summary and perspective on the further progress of inorganic nanostructure with nanoscale shell layers for catalytic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P. Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Ed. 2006;45(46):7824. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P. Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Ed. 2006;45(46):7824.
[2]
Zurück zum Zitat Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007;7(10):3097. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007;7(10):3097.
[3]
Zurück zum Zitat Lee I, Delbecq F, Morales R, Albiter MA, Zaera F. Tuning selectivity in catalysis by controlling particle shape. Nat Mater. 2009;8:132. Lee I, Delbecq F, Morales R, Albiter MA, Zaera F. Tuning selectivity in catalysis by controlling particle shape. Nat Mater. 2009;8:132.
[4]
Zurück zum Zitat Lee I, Zaera F. Catalytic conversion of olefins on supported cubic platinum nanoparticles: selectivity of (100) versus (111) surfaces. J Catal. 2010;269(2):359. Lee I, Zaera F. Catalytic conversion of olefins on supported cubic platinum nanoparticles: selectivity of (100) versus (111) surfaces. J Catal. 2010;269(2):359.
[5]
Zurück zum Zitat Kim P, Joo JB, Kim H, Kim W, Kim Y, Song IK, Yi J. Preparation of mesoporous Ni–alumina catalyst by one-step sol–gel method: control of textural properties and catalytic application to the hydrodechlorination of o-dichlorobenzene. Catal Lett. 2005;104(3):181. Kim P, Joo JB, Kim H, Kim W, Kim Y, Song IK, Yi J. Preparation of mesoporous Ni–alumina catalyst by one-step sol–gel method: control of textural properties and catalytic application to the hydrodechlorination of o-dichlorobenzene. Catal Lett. 2005;104(3):181.
[6]
Zurück zum Zitat Kim P, Kim H, Joo JB, Kim W, Song IK, Yi J. Effect of nickel precursor on the catalytic performance of Ni/Al2O3 catalysts in the hydrodechlorination of 1,1,2-trichloroethane. J Mol Catal A Chem. 2006;256(1–2):178. Kim P, Kim H, Joo JB, Kim W, Song IK, Yi J. Effect of nickel precursor on the catalytic performance of Ni/Al2O3 catalysts in the hydrodechlorination of 1,1,2-trichloroethane. J Mol Catal A Chem. 2006;256(1–2):178.
[7]
Zurück zum Zitat Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J. Preparation of highly dispersed Pt catalyst using sodium alkoxide as a reducing agent and its application to the methanol electro-oxidation. J Mol Catal A Chem. 2007;263(1–2):15. Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J. Preparation of highly dispersed Pt catalyst using sodium alkoxide as a reducing agent and its application to the methanol electro-oxidation. J Mol Catal A Chem. 2007;263(1–2):15.
[8]
Zurück zum Zitat Joo JB, Kim P, Kim W, Yi J. Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation. Catal Today. 2008;131(1–4):219. Joo JB, Kim P, Kim W, Yi J. Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation. Catal Today. 2008;131(1–4):219.
[9]
Zurück zum Zitat Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J. NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J Power Sources. 2006;160(2):987. Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J. NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J Power Sources. 2006;160(2):987.
[10]
Zurück zum Zitat Kim C, Lee H. Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Catal Commun. 2009;11(1):7. Kim C, Lee H. Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Catal Commun. 2009;11(1):7.
[11]
Zurück zum Zitat Jia CJ, Schüth F. Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys. 2011;13:2457. Jia CJ, Schüth F. Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys. 2011;13:2457.
[12]
Zurück zum Zitat Mahmoud MA, Tabor CE, El-Sayed MA, Ding Y, Wang ZL. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal. J Am Chem Soc. 2008;130(14):4590. Mahmoud MA, Tabor CE, El-Sayed MA, Ding Y, Wang ZL. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal. J Am Chem Soc. 2008;130(14):4590.
[13]
Zurück zum Zitat Taguchi A, Schüth F. Ordered mesoporous materials in catalysis. Micropor Mesopor Mat. 2005;77(1):1. Taguchi A, Schüth F. Ordered mesoporous materials in catalysis. Micropor Mesopor Mat. 2005;77(1):1.
[14]
Zurück zum Zitat Li W, Wu Z, Wang J, Elzatahry AA, Zhao D. A perspective on mesoporous TiO2 materials. Chem Mater. 2014;26(1):287. Li W, Wu Z, Wang J, Elzatahry AA, Zhao D. A perspective on mesoporous TiO2 materials. Chem Mater. 2014;26(1):287.
[15]
Zurück zum Zitat Davidson M, Ji Y, Leong GJ, Kovach NC, Trewyn BG, Richards RM. Hybrid mesoporous silica/noble-metal nanoparticle materials—synthesis and catalytic applications. ACS Appl Nano Mater. 2018;1(9):4386. Davidson M, Ji Y, Leong GJ, Kovach NC, Trewyn BG, Richards RM. Hybrid mesoporous silica/noble-metal nanoparticle materials—synthesis and catalytic applications. ACS Appl Nano Mater. 2018;1(9):4386.
[16]
Zurück zum Zitat Zhang Q, Joo JB, Lu Z, Dahl M, Oliveira D, Ye M, Yin Y. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011;4(1):103. Zhang Q, Joo JB, Lu Z, Dahl M, Oliveira D, Ye M, Yin Y. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011;4(1):103.
[17]
Zurück zum Zitat Park J, Song H. Metal@Silica yolk–shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011;4(1):33. Park J, Song H. Metal@Silica yolk–shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011;4(1):33.
[18]
Zurück zum Zitat Zhang Q, Lee I, Joo JB, Zaera F, Yin Y. Core–shell nanostructured catalysts. Acc Chem Res. 2012;46(8):1816. Zhang Q, Lee I, Joo JB, Zaera F, Yin Y. Core–shell nanostructured catalysts. Acc Chem Res. 2012;46(8):1816.
[19]
Zurück zum Zitat Chen D, Cao L, Huang F, Imperia P, Cheng YB, Caruso RA. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J Am Chem Soc. 2010;132(12):4438. Chen D, Cao L, Huang F, Imperia P, Cheng YB, Caruso RA. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J Am Chem Soc. 2010;132(12):4438.
[20]
Zurück zum Zitat Zhang Q, Ge J, Goebl J, Hu Y, Lu Z, Yin Y. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009;2(7):583. Zhang Q, Ge J, Goebl J, Hu Y, Lu Z, Yin Y. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009;2(7):583.
[21]
Zurück zum Zitat Yun HJ, Lee H, Joo JB, Kim W, Yi J. Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. J Phys Chem C. 2009;113(8):3050. Yun HJ, Lee H, Joo JB, Kim W, Yi J. Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. J Phys Chem C. 2009;113(8):3050.
[22]
Zurück zum Zitat Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science. 2004;304(5671):711. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science. 2004;304(5671):711.
[23]
Zurück zum Zitat Yang Z, Niu Z, Lu Y, Hu Z, Han CC. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core–shell gel particles. Angew Chem Int Ed. 2003;42(17):1943. Yang Z, Niu Z, Lu Y, Hu Z, Han CC. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core–shell gel particles. Angew Chem Int Ed. 2003;42(17):1943.
[24]
Zurück zum Zitat Joo JB, Dahl M, Li N, Zaera F, Yin Y. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energ Environ Sci. 2013;6:2082. Joo JB, Dahl M, Li N, Zaera F, Yin Y. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energ Environ Sci. 2013;6:2082.
[25]
Zurück zum Zitat Joo JB, Liu H, Lee YJ, Dahl M, Yu H, Zaera F, Yin Y. Tailored synthesis of C@TiO2 yolk–shell nanostructures for highly efficient photocatalysis. Catal Today. 2016;264(15):261. Joo JB, Liu H, Lee YJ, Dahl M, Yu H, Zaera F, Yin Y. Tailored synthesis of C@TiO2 yolk–shell nanostructures for highly efficient photocatalysis. Catal Today. 2016;264(15):261.
[26]
Zurück zum Zitat Moon GD, Joo JB, Dahl M, Jung H, Yin Y. Nitridation and layered assembly of hollow TiO2 shells for electrochemical energy storage. Adv Funct Mater. 2014;24(6):848. Moon GD, Joo JB, Dahl M, Jung H, Yin Y. Nitridation and layered assembly of hollow TiO2 shells for electrochemical energy storage. Adv Funct Mater. 2014;24(6):848.
[27]
Zurück zum Zitat Liang X, Li J, Joo JB, Gutiérrez A, Tillekaratne A, Lee I, Yin Y, Zaera F. Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew Chem Int Ed. 2012;51(32):8034. Liang X, Li J, Joo JB, Gutiérrez A, Tillekaratne A, Lee I, Yin Y, Zaera F. Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew Chem Int Ed. 2012;51(32):8034.
[28]
Zurück zum Zitat Li J, Liang X, Joo JB, Lee I, Yin Y, Zaera F. Mass transport across the porous oxide shells of core–shell and yolk–shell nanostructures in liquid phase. J Phys Chem C. 2013;117(39):20043. Li J, Liang X, Joo JB, Lee I, Yin Y, Zaera F. Mass transport across the porous oxide shells of core–shell and yolk–shell nanostructures in liquid phase. J Phys Chem C. 2013;117(39):20043.
[29]
Zurück zum Zitat Zhang Q, Zhang T, Ge J, Yin Y. Permeable silica shell through surface-protected etching. Nano Lett. 2008;8(9):2867. Zhang Q, Zhang T, Ge J, Yin Y. Permeable silica shell through surface-protected etching. Nano Lett. 2008;8(9):2867.
[30]
Zurück zum Zitat Lee I, Joo JB, Yin Y, Zaera F. A Yolk@Shell nanoarchitecture for Au/TiO2 catalysts. Angew Chem Int Ed. 2011;50(43):10208. Lee I, Joo JB, Yin Y, Zaera F. A Yolk@Shell nanoarchitecture for Au/TiO2 catalysts. Angew Chem Int Ed. 2011;50(43):10208.
[31]
Zurück zum Zitat Joo JB, Zhang Q, Dahl M, Zaera F, Yin Y. Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells. J Mater Res. 2013;28(3):362. Joo JB, Zhang Q, Dahl M, Zaera F, Yin Y. Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells. J Mater Res. 2013;28(3):362.
[32]
Zurück zum Zitat Lee H, Jeong U, Kim Y, Joo JB. Magnetically-separable and thermally-stable Au nanoparticles encapsulated in mesoporous silica for catalytic applications. Top Catal. 2017;60(9–11):763. Lee H, Jeong U, Kim Y, Joo JB. Magnetically-separable and thermally-stable Au nanoparticles encapsulated in mesoporous silica for catalytic applications. Top Catal. 2017;60(9–11):763.
[33]
Zurück zum Zitat Jeong U, Joo JB, Kim Y. Au nanoparticle-embedded SiO2–Au@SiO2 catalysts with improved catalytic activity, enhanced stability to metal sintering and excellent recyclability. RSC Adv. 2015;5:55608. Jeong U, Joo JB, Kim Y. Au nanoparticle-embedded SiO2–Au@SiO2 catalysts with improved catalytic activity, enhanced stability to metal sintering and excellent recyclability. RSC Adv. 2015;5:55608.
[34]
Zurück zum Zitat Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y. Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Funct Mater. 2013;23(34):4246. Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y. Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Funct Mater. 2013;23(34):4246.
[35]
Zurück zum Zitat Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energ Environ Sci. 2012;5:6321. Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energ Environ Sci. 2012;5:6321.
[36]
Zurück zum Zitat Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv Funct Mater. 2012;22(1):166. Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv Funct Mater. 2012;22(1):166.
[37]
Zurück zum Zitat Joo JB, Vu A, Zhang Q, Dahl M, Gu M, Zaera F, Yin Y. A sulfated ZrO2 hollow nanostructure as an acid catalyst in the dehydration of fructose to 5-hydroxymethylfurfural. ChemSusChem. 2013;6(10):2001. Joo JB, Vu A, Zhang Q, Dahl M, Gu M, Zaera F, Yin Y. A sulfated ZrO2 hollow nanostructure as an acid catalyst in the dehydration of fructose to 5-hydroxymethylfurfural. ChemSusChem. 2013;6(10):2001.
[38]
Zurück zum Zitat Lou XW, Yuan C, Zhang Q, Archer LA. Platinum-functionalized octahedral silica nanocages: synthesis and characterization. Angew Chem Int Ed. 2006;45(23):3825. Lou XW, Yuan C, Zhang Q, Archer LA. Platinum-functionalized octahedral silica nanocages: synthesis and characterization. Angew Chem Int Ed. 2006;45(23):3825.
[39]
Zurück zum Zitat Teo JJ, Chang Y, Zeng HC. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir. 2006;22(17):7369. Teo JJ, Chang Y, Zeng HC. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir. 2006;22(17):7369.
[40]
Zurück zum Zitat Cao SW, Zhu YJ, Cheng GF, Huang YH. Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures. J Phys Chem Solids. 2010;71(12):1680. Cao SW, Zhu YJ, Cheng GF, Huang YH. Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures. J Phys Chem Solids. 2010;71(12):1680.
[41]
Zurück zum Zitat Li N, Zhang Q, Liu J, Joo JB, Lee A, Gan Y, Yin Y. Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun. 2013;49:5135. Li N, Zhang Q, Liu J, Joo JB, Lee A, Gan Y, Yin Y. Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun. 2013;49:5135.
[42]
Zurück zum Zitat Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed. 2011;50(30):6799. Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed. 2011;50(30):6799.
[43]
Zurück zum Zitat Lee I, Joo JB, Yin Y, Zaera F. Au@Void@TiO2 yolk–shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surf Sci. 2016;648:150. Lee I, Joo JB, Yin Y, Zaera F. Au@Void@TiO2 yolk–shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surf Sci. 2016;648:150.
[44]
Zurück zum Zitat Pastoriza-Santos I, Koktysh DS, Mamedov AA, Giersig M, Kotov NA, Liz-Marzán LM. One-pot synthesis of Ag@TiO2 core–shell nanoparticles and their layer-by-layer assembly. Langmuir. 2000;16(6):2731. Pastoriza-Santos I, Koktysh DS, Mamedov AA, Giersig M, Kotov NA, Liz-Marzán LM. One-pot synthesis of Ag@TiO2 core–shell nanoparticles and their layer-by-layer assembly. Langmuir. 2000;16(6):2731.
[45]
Zurück zum Zitat Mayya KS, Gittins DI, Dibaj AM, Caruso F. Nanotubes prepared by templating sacrificial nickel nanorods. Nano Lett. 2001;1(12):727. Mayya KS, Gittins DI, Dibaj AM, Caruso F. Nanotubes prepared by templating sacrificial nickel nanorods. Nano Lett. 2001;1(12):727.
[46]
Zurück zum Zitat Zhong Z, Yin Y, Gates B, Xia Y. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv Mater. 2000;12(3):206. Zhong Z, Yin Y, Gates B, Xia Y. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv Mater. 2000;12(3):206.
[47]
Zurück zum Zitat Yoon SB, Kim JY, Kim JH, Park YJ, Yoon KR, Park SK, Yu JS. Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. J Mater Chem. 2007;17:1758. Yoon SB, Kim JY, Kim JH, Park YJ, Yoon KR, Park SK, Yu JS. Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. J Mater Chem. 2007;17:1758.
[48]
Zurück zum Zitat Lou XW, Yuan C, Archer LA. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. Small. 2007;3(2):261. Lou XW, Yuan C, Archer LA. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. Small. 2007;3(2):261.
[49]
Zurück zum Zitat Chen JS, Archer LA, Lou XW. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem. 2011;21:9912. Chen JS, Archer LA, Lou XW. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem. 2011;21:9912.
[50]
Zurück zum Zitat Lou XW, Yuan C, Archer LA. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater. 2007;19(20):3328. Lou XW, Yuan C, Archer LA. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater. 2007;19(20):3328.
[51]
Zurück zum Zitat Nguyen CC, Vu NN, Do TO. Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness. J Mater Chem A. 2016;4:4413. Nguyen CC, Vu NN, Do TO. Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness. J Mater Chem A. 2016;4:4413.
[52]
Zurück zum Zitat Joo JB, Kim P, Kim W, Kim J, Kim ND, Yi J. Simple preparation of hollow carbon sphere via templating method. Curr Appl Phys. 2008;8(6):814. Joo JB, Kim P, Kim W, Kim J, Kim ND, Yi J. Simple preparation of hollow carbon sphere via templating method. Curr Appl Phys. 2008;8(6):814.
[53]
Zurück zum Zitat Hu Y, Ge J, Sun Y, Zhang T, Yin Y. A self-templated approach to TiO2 microcapsules. Nano Lett. 2007;7(6):1832. Hu Y, Ge J, Sun Y, Zhang T, Yin Y. A self-templated approach to TiO2 microcapsules. Nano Lett. 2007;7(6):1832.
[54]
Zurück zum Zitat Zhang Q, Lee I, Ge J, Zaera F, Yin Y. Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv Funct Mater. 2010;20(14):2201. Zhang Q, Lee I, Ge J, Zaera F, Yin Y. Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv Funct Mater. 2010;20(14):2201.
[55]
Zurück zum Zitat Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA. Hybrid carbon silica nanofibers through sol–gel electrospinning. Langmuir. 2014;30(51):15504. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA. Hybrid carbon silica nanofibers through sol–gel electrospinning. Langmuir. 2014;30(51):15504.
[56]
Zurück zum Zitat Zhang T, Ge J, Hu Y, Zhang Q, Aloni S, Yin Y. Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew Chem Int Ed. 2008;47(31):5806. Zhang T, Ge J, Hu Y, Zhang Q, Aloni S, Yin Y. Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew Chem Int Ed. 2008;47(31):5806.
[57]
Zurück zum Zitat Fang X, Chen C, Liu Z, Liu P, Zheng N. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale. 2011;3:1632. Fang X, Chen C, Liu Z, Liu P, Zheng N. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale. 2011;3:1632.
[58]
Zurück zum Zitat Yang HG, Zeng HC. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening. J Phys Chem B. 2004;108(11):3492. Yang HG, Zeng HC. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening. J Phys Chem B. 2004;108(11):3492.
[59]
Zurück zum Zitat Li J, Zeng HC. Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. J Am Chem Soc. 2007;129(51):15839. Li J, Zeng HC. Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. J Am Chem Soc. 2007;129(51):15839.
[60]
Zurück zum Zitat Lou XW, Wang Y, Yuan C, Lee JY, Archer LA. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater. 2006;18(17):2325. Lou XW, Wang Y, Yuan C, Lee JY, Archer LA. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater. 2006;18(17):2325.
[61]
Zurück zum Zitat Xu Y, Zhang Y, Zhou Y, Xiang S, Wang Q, Zhang C, Sheng X. CeO2 hollow nanospheres synthesized by a one pot template-free hydrothermal method and their application as catalyst support. RSC Adv. 2015;5:58237. Xu Y, Zhang Y, Zhou Y, Xiang S, Wang Q, Zhang C, Sheng X. CeO2 hollow nanospheres synthesized by a one pot template-free hydrothermal method and their application as catalyst support. RSC Adv. 2015;5:58237.
[62]
Zurück zum Zitat Cao CY, Cui ZM, Chen CQ, Song WG, Cai W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem C. 2010;114(21):9865. Cao CY, Cui ZM, Chen CQ, Song WG, Cai W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem C. 2010;114(21):9865.
[63]
Zurück zum Zitat Chang Y, Teo JJ, Zeng HC. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir. 2004;21(3):1074. Chang Y, Teo JJ, Zeng HC. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir. 2004;21(3):1074.
[64]
Zurück zum Zitat Liu B, Zeng HC. Symmetric and asymmetric ostwald ripening in the fabrication of homogeneous core–shell semiconductors. Small. 2005;1(5):566. Liu B, Zeng HC. Symmetric and asymmetric ostwald ripening in the fabrication of homogeneous core–shell semiconductors. Small. 2005;1(5):566.
[65]
Zurück zum Zitat Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed. 2011;50(26):5947. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed. 2011;50(26):5947.
[66]
Zurück zum Zitat Lee YJ, Joo JB, Yin Y, Zaera F. Evaluation of the effective photoexcitation distances in the photocatalytic production of H2 from water using Au@Void@TiO2 yolk–shell nanostructures. ACS Energy Lett. 2016;1(1):52. Lee YJ, Joo JB, Yin Y, Zaera F. Evaluation of the effective photoexcitation distances in the photocatalytic production of H2 from water using Au@Void@TiO2 yolk–shell nanostructures. ACS Energy Lett. 2016;1(1):52.
[67]
Zurück zum Zitat Ge J, Zhang Q, Zhang T, Yin Y. Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew Chem Int Ed. 2008;47(46):8924. Ge J, Zhang Q, Zhang T, Yin Y. Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew Chem Int Ed. 2008;47(46):8924.
[68]
Zurück zum Zitat Dillon RJ, Joo JB, Zaera F, Yin Y, Bardeen CJ. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core–shell nanostructures. Phys Chem Chem Phys. 2013;15:1488. Dillon RJ, Joo JB, Zaera F, Yin Y, Bardeen CJ. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core–shell nanostructures. Phys Chem Chem Phys. 2013;15:1488.
[69]
Zurück zum Zitat Zhang Q, Shu XZ, Lucas JM, Toste FD, Somorjai GA, Alivisatos AP. Inorganic micelles as efficient and recyclable micellar catalysts. Nano Lett. 2014;14(1):379. Zhang Q, Shu XZ, Lucas JM, Toste FD, Somorjai GA, Alivisatos AP. Inorganic micelles as efficient and recyclable micellar catalysts. Nano Lett. 2014;14(1):379.
[70]
Zurück zum Zitat Kim M, Park JC, Kim A, Park KH, Song H. Porosity control of Pd@SiO2 yolk–shell nanocatalysts by the formation of nickel phyllosilicate and its influence on Suzuki coupling reactions. Langmuir. 2012;28(15):6441. Kim M, Park JC, Kim A, Park KH, Song H. Porosity control of Pd@SiO2 yolk–shell nanocatalysts by the formation of nickel phyllosilicate and its influence on Suzuki coupling reactions. Langmuir. 2012;28(15):6441.
[71]
Zurück zum Zitat Nabid MR, Bide Y, Abuali M. Copper core silver shell nanoparticle–yolk/shell Fe3O4@chitosan-derived carbon nanoparticle composite as an efficient catalyst for catalytic epoxidation in water. RSC Adv. 2014;4:35844. Nabid MR, Bide Y, Abuali M. Copper core silver shell nanoparticle–yolk/shell Fe3O4@chitosan-derived carbon nanoparticle composite as an efficient catalyst for catalytic epoxidation in water. RSC Adv. 2014;4:35844.
[72]
Zurück zum Zitat Li X, Zhang W, Zhang L, Yang H. Pd nanoparticles confined in fluoro-functionalized yolk–shell-structured silica for olefin hydrogenation in water. Chin J Catal. 2013;34(6):1192. Li X, Zhang W, Zhang L, Yang H. Pd nanoparticles confined in fluoro-functionalized yolk–shell-structured silica for olefin hydrogenation in water. Chin J Catal. 2013;34(6):1192.
Metadaten
Titel
Inorganic shell nanostructures to enhance performance and stability of metal nanoparticles in catalytic applications
verfasst von
Inhee Choi
Hyeon Kyeong Lee
Gyoung Woo Lee
Jiyull Kim
Ji Bong Joo
Publikationsdatum
01.03.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01203-8

Weitere Artikel der Ausgabe 7/2020

Rare Metals 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.