Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2019

13.03.2019

Applying BaTiO3-coated TiO2 core–shell nanoparticles films as scaffold layers to optimize interfaces for better-performing perovskite solar cells

verfasst von: Jiejing Zhang, Xianwei Meng, Pengyu Su, Li Liu, Shuang Feng, Jun Wang, Tie Liu, Jiandong Yang, Haibin Yang, Wuyou Fu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we replaced mesoporous TiO2 nanoparticles scaffold layers by BaTiO3-coated TiO2 core–shell nanoparticles films which obtained by treating pure mesoporous TiO2 layers with 1.0 wt% barium nitrate solution, successfully realized the aim of optimizing interfaces bonding at TiO2/CH3NH3PbI3. Ultrathin BaTiO3 shell layer can combine better with CH3NH3PbI3 layer so as to reduce the existence of carrier recombination centers. Moreover, better optical absorption and larger fill factor were obtained in this manner by the reason of larger CH3NH3PbI3 grain size and fewer crystal boundaries. Furthermore, photoluminescence spectra and electrochemical impedance spectroscopy verified that our core–shell scaffold material contributes to accelerate carrier separation and retard carrier recombination. As a result, average power conversion efficiency enhanced from 11.20 to 13.76% under ambient conditions, which realized almost a quarter improvement than the devices based on pure mesoporous TiO2 layers. Such results have a certain guiding effect on solving interface defects and carrier recombination.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat N.S. Lewis, Toward cost-effective solar energy use. Science 315, 798–801 (2007)CrossRef N.S. Lewis, Toward cost-effective solar energy use. Science 315, 798–801 (2007)CrossRef
2.
Zurück zum Zitat S. Weitemeyer, D. Kleinhans, T. Vogt, C. Agert, Integration of renewable energy sources in future power systems: the role of storage. Renew. Energy 75, 14–20 (2015)CrossRef S. Weitemeyer, D. Kleinhans, T. Vogt, C. Agert, Integration of renewable energy sources in future power systems: the role of storage. Renew. Energy 75, 14–20 (2015)CrossRef
3.
Zurück zum Zitat A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef
4.
Zurück zum Zitat N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018)CrossRef N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018)CrossRef
5.
Zurück zum Zitat H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRef H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRef
6.
Zurück zum Zitat J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013)CrossRef J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013)CrossRef
7.
Zurück zum Zitat C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ. Sci. 7, 2269–2275 (2014)CrossRef C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, L.M. Herz, Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ. Sci. 7, 2269–2275 (2014)CrossRef
8.
Zurück zum Zitat X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M.G. Kanatzidis, From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 159, 227–234 (2017)CrossRef X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M.G. Kanatzidis, From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 159, 227–234 (2017)CrossRef
9.
Zurück zum Zitat C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)CrossRef C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)CrossRef
10.
Zurück zum Zitat C. Wehrenfennig, E. Eperon Giles, B. Johnston Michael, J. Snaith Henry, M. Herz Laura. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2013)CrossRef C. Wehrenfennig, E. Eperon Giles, B. Johnston Michael, J. Snaith Henry, M. Herz Laura. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2013)CrossRef
11.
Zurück zum Zitat J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)CrossRef J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)CrossRef
12.
Zurück zum Zitat T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, Y.M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015)CrossRef T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, Y.M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015)CrossRef
13.
Zurück zum Zitat M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)CrossRef M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)CrossRef
14.
Zurück zum Zitat H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014) H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)
15.
Zurück zum Zitat A. Bera, A.D. Sheikh, M.A. Haque, R. Bose, E. Alarousu, O.F. Mohammed, T. Wu, Fast crystallization and improved stability of perovskite solar cells with zn2sno4 electron transporting layer: interface matters. ACS Appl. Mater. Interfaces 7, 28404–28411 (2015)CrossRef A. Bera, A.D. Sheikh, M.A. Haque, R. Bose, E. Alarousu, O.F. Mohammed, T. Wu, Fast crystallization and improved stability of perovskite solar cells with zn2sno4 electron transporting layer: interface matters. ACS Appl. Mater. Interfaces 7, 28404–28411 (2015)CrossRef
16.
Zurück zum Zitat J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927 (2014)CrossRef J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927 (2014)CrossRef
17.
Zurück zum Zitat Z. Huang, X. Duan, Y. Zhang, X. Hu, L. Tan, Y. Chen, Pure- or mixed-solvent assisted treatment for crystallization dynamics of planar lead halide perovskite solar cells. Sol. Energy Mater. Sol. Cells 155, 166–175 (2016)CrossRef Z. Huang, X. Duan, Y. Zhang, X. Hu, L. Tan, Y. Chen, Pure- or mixed-solvent assisted treatment for crystallization dynamics of planar lead halide perovskite solar cells. Sol. Energy Mater. Sol. Cells 155, 166–175 (2016)CrossRef
18.
Zurück zum Zitat C. Liu, K. Wang, C. Yi, X. Shi, W. Smith Adam, X. Gong, J. Heeger Alan, Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment. Adv. Funct. Mater. 26, 101–110 (2015)CrossRef C. Liu, K. Wang, C. Yi, X. Shi, W. Smith Adam, X. Gong, J. Heeger Alan, Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment. Adv. Funct. Mater. 26, 101–110 (2015)CrossRef
19.
Zurück zum Zitat H. Liu, H. Bala, B. Zhang, B. Zong, L. Huang, W. Fu, G. Sun, J. Cao, Z. Zhan, Thickness-dependent photovoltaic performance of TiO2 blocking layer for perovskite solar cells. J. Alloys Compd. 736, 87–92 (2018)CrossRef H. Liu, H. Bala, B. Zhang, B. Zong, L. Huang, W. Fu, G. Sun, J. Cao, Z. Zhan, Thickness-dependent photovoltaic performance of TiO2 blocking layer for perovskite solar cells. J. Alloys Compd. 736, 87–92 (2018)CrossRef
20.
Zurück zum Zitat A. Dualeh, N. Tétreault, T. Moehl, P. Gao, K. Nazeeruddin Mohammad, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014)CrossRef A. Dualeh, N. Tétreault, T. Moehl, P. Gao, K. Nazeeruddin Mohammad, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014)CrossRef
21.
Zurück zum Zitat Y. Yang, J. Song, Y.L. Zhao, L. Zhu, X.Q. Gu, Y.Q. Gu, M. Che, Y.H. Qiang, Ammonium-iodide-salt additives induced photovoltaic performance enhancement in one-step solution process for perovskite solar cells. J. Alloys Compd. 684, 84–90 (2016)CrossRef Y. Yang, J. Song, Y.L. Zhao, L. Zhu, X.Q. Gu, Y.Q. Gu, M. Che, Y.H. Qiang, Ammonium-iodide-salt additives induced photovoltaic performance enhancement in one-step solution process for perovskite solar cells. J. Alloys Compd. 684, 84–90 (2016)CrossRef
22.
Zurück zum Zitat Y. Hu, C. Wang, Y. Tang, L. Huang, J. Fu, W. Shi, L. Wang, W. Yang, Three-dimensional self-branching anatase TiO2 nanorods with the improved carrier collection for SrTiO3-based perovskite solar cells. J. Alloys Compd. 679, 32–38 (2016)CrossRef Y. Hu, C. Wang, Y. Tang, L. Huang, J. Fu, W. Shi, L. Wang, W. Yang, Three-dimensional self-branching anatase TiO2 nanorods with the improved carrier collection for SrTiO3-based perovskite solar cells. J. Alloys Compd. 679, 32–38 (2016)CrossRef
23.
Zurück zum Zitat W. Liu, L. Li, M. Chen, X. Ding, M. Wang, G. Liu, X. Wang, Nucleation mechanism of CH3NH3PbI3 with two-step method for rational design of high performance perovskite solar cells. J. Alloys Compd. 697, 374–379 (2017)CrossRef W. Liu, L. Li, M. Chen, X. Ding, M. Wang, G. Liu, X. Wang, Nucleation mechanism of CH3NH3PbI3 with two-step method for rational design of high performance perovskite solar cells. J. Alloys Compd. 697, 374–379 (2017)CrossRef
24.
Zurück zum Zitat D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133 (2013)CrossRef D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133 (2013)CrossRef
25.
Zurück zum Zitat D.K. Hyung, H. Ohkita, H. Benten, S. Ito, Photovoltaic performance of perovskite solar cells with different grain sizes. Adv. Mater 28, 917–922 (2015) D.K. Hyung, H. Ohkita, H. Benten, S. Ito, Photovoltaic performance of perovskite solar cells with different grain sizes. Adv. Mater 28, 917–922 (2015)
26.
Zurück zum Zitat W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015)CrossRef W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015)CrossRef
27.
Zurück zum Zitat M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. Paiva-Santos, E. Longo, J.A. Varela, Hydrothermal microwave: a new route to obtain photoluminescent crystalline batio3 nanoparticles. Chem. Mater. 20, 5381–5387 (2008)CrossRef M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. Paiva-Santos, E. Longo, J.A. Varela, Hydrothermal microwave: a new route to obtain photoluminescent crystalline batio3 nanoparticles. Chem. Mater. 20, 5381–5387 (2008)CrossRef
28.
Zurück zum Zitat W.F. Zhang, Z. Yin, M.S. Zhang, Study of photoluminescence and electronic states in nanophase strontium titanate. Appl. Phys. A 70, 93–96 (2000)CrossRef W.F. Zhang, Z. Yin, M.S. Zhang, Study of photoluminescence and electronic states in nanophase strontium titanate. Appl. Phys. A 70, 93–96 (2000)CrossRef
29.
Zurück zum Zitat T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578–15581 (1992)CrossRef T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578–15581 (1992)CrossRef
30.
Zurück zum Zitat R. Li, Q. Li, L. Zong, X. Wang, J. Yang, BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity. Electrochima Acta 91, 30–35 (2013)CrossRef R. Li, Q. Li, L. Zong, X. Wang, J. Yang, BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity. Electrochima Acta 91, 30–35 (2013)CrossRef
31.
Zurück zum Zitat J. Fujisawa, T. Eda, M. Hanaya, Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem. Phys. Lett. 685, 23–26 (2017)CrossRef J. Fujisawa, T. Eda, M. Hanaya, Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem. Phys. Lett. 685, 23–26 (2017)CrossRef
32.
Zurück zum Zitat Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193 (2014)CrossRef Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193 (2014)CrossRef
33.
Zurück zum Zitat R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014)CrossRef R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014)CrossRef
34.
Zurück zum Zitat X. Hou, L. Pan, S. Huang, O.-Y. Wei, X. Chen, Enhanced efficiency and stability of perovskite solar cells using porous hierarchical tio2 nanostructures of scattered distribution as scaffold. Electrochima Acta 236, 351–358 (2017)CrossRef X. Hou, L. Pan, S. Huang, O.-Y. Wei, X. Chen, Enhanced efficiency and stability of perovskite solar cells using porous hierarchical tio2 nanostructures of scattered distribution as scaffold. Electrochima Acta 236, 351–358 (2017)CrossRef
35.
Zurück zum Zitat W. Wu, H. Li, S. Liu, B. Zheng, Y. Xue, X. Liu, C. Gao, Tuning PbI2 layers by n-butanol additive for improving CH3NH3PbI3 light harvesters of perovskite solar cells. RSC Adv. 6, 89609–89613 (2016)CrossRef W. Wu, H. Li, S. Liu, B. Zheng, Y. Xue, X. Liu, C. Gao, Tuning PbI2 layers by n-butanol additive for improving CH3NH3PbI3 light harvesters of perovskite solar cells. RSC Adv. 6, 89609–89613 (2016)CrossRef
36.
Zurück zum Zitat M. Cai, V.T. Tiong, T. Hreid, J. Bell, H. Wang, An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J. Mater. Chem. A 3, 2784–2793 (2015)CrossRef M. Cai, V.T. Tiong, T. Hreid, J. Bell, H. Wang, An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J. Mater. Chem. A 3, 2784–2793 (2015)CrossRef
37.
Zurück zum Zitat C. Sun, Y. Guo, B. Fang, L. Guan, H. Duan, Y. Chen, H. Li, H. Liu, Facile preparation of high-quality perovskites for efficient solar cells via a fast conversion of wet PbI2 precursor films. RSC Adv. 7, 22492–22500 (2017)CrossRef C. Sun, Y. Guo, B. Fang, L. Guan, H. Duan, Y. Chen, H. Li, H. Liu, Facile preparation of high-quality perovskites for efficient solar cells via a fast conversion of wet PbI2 precursor films. RSC Adv. 7, 22492–22500 (2017)CrossRef
38.
Zurück zum Zitat Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D.L. Phillips, S. Yang, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136, 3760–3763 (2014)CrossRef Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D.L. Phillips, S. Yang, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136, 3760–3763 (2014)CrossRef
39.
Zurück zum Zitat A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M.K. Nazeeruddin, M. Grätzel, Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014)CrossRef A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M.K. Nazeeruddin, M. Grätzel, Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014)CrossRef
40.
Zurück zum Zitat V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, General working principles of CH3NH3PBX3 perovskite solar cells. Nano Lett. 14, 888–893 (2014)CrossRef V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, General working principles of CH3NH3PBX3 perovskite solar cells. Nano Lett. 14, 888–893 (2014)CrossRef
41.
Zurück zum Zitat E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680–685 (2014)CrossRef E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680–685 (2014)CrossRef
42.
Zurück zum Zitat G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)CrossRef G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)CrossRef
43.
Zurück zum Zitat Y. Zhao, X. Gu, Y. Qiang, Influence of growth time and annealing on rutile TiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films 520, 2814–2818 (2012)CrossRef Y. Zhao, X. Gu, Y. Qiang, Influence of growth time and annealing on rutile TiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films 520, 2814–2818 (2012)CrossRef
Metadaten
Titel
Applying BaTiO3-coated TiO2 core–shell nanoparticles films as scaffold layers to optimize interfaces for better-performing perovskite solar cells
verfasst von
Jiejing Zhang
Xianwei Meng
Pengyu Su
Li Liu
Shuang Feng
Jun Wang
Tie Liu
Jiandong Yang
Haibin Yang
Wuyou Fu
Publikationsdatum
13.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01090-w

Weitere Artikel der Ausgabe 8/2019

Journal of Materials Science: Materials in Electronics 8/2019 Zur Ausgabe

Neuer Inhalt