Skip to main content
Erschienen in: International Journal of Steel Structures 3/2021

17.05.2021

Artificial-Neural-Network-Based Mechanical Simulation Prediction Method for Wheel-Spoke Cable Truss Construction

verfasst von: Zhansheng Liu, Antong Jiang, Wenyuan Shao, Anshan Zhang, Xiuli Du

Erschienen in: International Journal of Steel Structures | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cable force monitoring is an important step in cable truss structural health monitoring. Considering cost effectiveness, the accuracy and quality of safety assessments depend primarily on the usage of reasonable cable monitoring programs. Many monitoring methods have been proposed to design the cable truss structure. The emergence of artificial neural network (ANN) models has resulted in improved predictive abilities. In this study, an ANN-based model is used to estimate parameter changes in static and prestress loss tests during the construction of a cable truss. The finite element model data of 243 cases are analysed by ANSYS and MATLAB. Analysis results indicate the excellent prediction performance as well as high accuracy and generalization of the proposed ANN-based model. Furthermore, the successfully trained ANN-based model is used to predict new cases. As an alternative to finite element analysis and physical test, the proposed model can guide the static loading of the spoke cable truss structure and thus allow the safe usage of the structure during service.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815CrossRef Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815CrossRef
Zurück zum Zitat Beale M, Hagan M, Demuth H. MATLAB Deep Learning Toolbox™ User’s Guide: PDF Documentation for Release R2019a. The MathWorks Inc, 2019. Beale M, Hagan M, Demuth H. MATLAB Deep Learning Toolbox™ User’s Guide: PDF Documentation for Release R2019a. The MathWorks Inc, 2019.
Zurück zum Zitat Belenja E I. Prestressed load-bearing metal structures. Mir, 1977. Belenja E I. Prestressed load-bearing metal structures. Mir, 1977.
Zurück zum Zitat Chen, M. (2013). Principles and examples of MATLAB neural network [M]. (pp. 4–165). Tsinghua University Press. Chen, M. (2013). Principles and examples of MATLAB neural network [M]. (pp. 4–165). Tsinghua University Press.
Zurück zum Zitat Chen, Z. H., Wu, Y. J., Yin, Y., et al. (2010). Formulation and application of multi-node sliding cable element for the analysis of Suspen-Dome structures. Finite Elements in Analysis and Design, 46(9), 743–750MathSciNetCrossRef Chen, Z. H., Wu, Y. J., Yin, Y., et al. (2010). Formulation and application of multi-node sliding cable element for the analysis of Suspen-Dome structures. Finite Elements in Analysis and Design, 46(9), 743–750MathSciNetCrossRef
Zurück zum Zitat Gomes, H. M., Awruch, A. M., & Lopes, P. A. M. (2011). Reliability based optimization of laminated composite structures using genetic algorithms and Artificial Neural Networks. Structural Safety, 33(3), 186–195CrossRef Gomes, H. M., Awruch, A. M., & Lopes, P. A. M. (2011). Reliability based optimization of laminated composite structures using genetic algorithms and Artificial Neural Networks. Structural Safety, 33(3), 186–195CrossRef
Zurück zum Zitat Hashemi, S. S., Sadeghi, K., Fazeli, A., et al. (2019). Predicting the Weight of the Steel Moment-Resisting Frame Structures Using Artificial Neural Networks. International Journal of Steel Structures, 19(1), 168–180CrossRef Hashemi, S. S., Sadeghi, K., Fazeli, A., et al. (2019). Predicting the Weight of the Steel Moment-Resisting Frame Structures Using Artificial Neural Networks. International Journal of Steel Structures, 19(1), 168–180CrossRef
Zurück zum Zitat Khoa, N. L. D., Alamdari, M. M., Rakotoarivelo, T., et al. (2018). Structural health monitoring using machine learning techniques and domain knowledge based features[M]//Human and Machine Learning. (pp. 409–435). Springer. Khoa, N. L. D., Alamdari, M. M., Rakotoarivelo, T., et al. (2018). Structural health monitoring using machine learning techniques and domain knowledge based features[M]//Human and Machine Learning. (pp. 409–435). Springer.
Zurück zum Zitat Kim, B. H., & Park, T. (2007). Estimation of cable tension force using the frequency-based system identification method. Journal of Sound and Vibration, 304(3–5), 660–676CrossRef Kim, B. H., & Park, T. (2007). Estimation of cable tension force using the frequency-based system identification method. Journal of Sound and Vibration, 304(3–5), 660–676CrossRef
Zurück zum Zitat Kurian B, Liyanapathirana R. (2020) Machine Learning Techniques for Structural Health Monitoring[C]//Proceedings of the 13th International Conference on Damage Assessment of Structures. Springer, Singapore, pp. 3–24. Kurian B, Liyanapathirana R. (2020) Machine Learning Techniques for Structural Health Monitoring[C]//Proceedings of the 13th International Conference on Damage Assessment of Structures. Springer, Singapore, pp. 3–24.
Zurück zum Zitat Li, S., Wei, S., Bao, Y., et al. (2018). Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio. Engineering Structures, 155, 1–15CrossRef Li, S., Wei, S., Bao, Y., et al. (2018). Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio. Engineering Structures, 155, 1–15CrossRef
Zurück zum Zitat Liu, X., Zhan, X., Zhang, A., et al. (2017). Random imperfection method for stability analysis of a suspended dome[J]. International Journal of Steel Structures, 17(1), 91–103CrossRef Liu, X., Zhan, X., Zhang, A., et al. (2017). Random imperfection method for stability analysis of a suspended dome[J]. International Journal of Steel Structures, 17(1), 91–103CrossRef
Zurück zum Zitat Liu, Z. S., Han, Z. B., He, J., et al. (2018). Sensitivity test and reliability evaluation of cable relaxation of spoke cable truss. Journal of Tongji University (natural Science Edition), 47, 07 (in Chinese). Liu, Z. S., Han, Z. B., He, J., et al. (2018). Sensitivity test and reliability evaluation of cable relaxation of spoke cable truss. Journal of Tongji University (natural Science Edition), 47, 07 (in Chinese).
Zurück zum Zitat Liu, Z. S., Wang, J. C., Han, Z. B., et al. (2019). Sensitivity test and reliability evaluation of length error of cable truss with spokes. Journal of Tianjin University (natural Science and Engineering Technology Edition), 52(S2), 23–30 (in Chinese). Liu, Z. S., Wang, J. C., Han, Z. B., et al. (2019). Sensitivity test and reliability evaluation of length error of cable truss with spokes. Journal of Tianjin University (natural Science and Engineering Technology Edition), 52(S2), 23–30 (in Chinese).
Zurück zum Zitat Magnel, G. (1950). Prestressed steel structures. The Structural Engineer, 28(11), 285–295 Magnel, G. (1950). Prestressed steel structures. The Structural Engineer, 28(11), 285–295
Zurück zum Zitat Mehrabi, A. B., & Tabatabai, H. (1998). Unified finite difference formulation for free vibration of cables. Journal of Structural Engineering, 124(11), 1313–1322CrossRef Mehrabi, A. B., & Tabatabai, H. (1998). Unified finite difference formulation for free vibration of cables. Journal of Structural Engineering, 124(11), 1313–1322CrossRef
Zurück zum Zitat Rizzo, F., & Caracoglia, L. (2020). Artificial Neural Network model to predict the flutter velocity of suspension bridges. Computers and Structures, 233, 106236CrossRef Rizzo, F., & Caracoglia, L. (2020). Artificial Neural Network model to predict the flutter velocity of suspension bridges. Computers and Structures, 233, 106236CrossRef
Zurück zum Zitat Roy, K., Lau, H. H., Ting, T. C. H., et al. (2020). Flexural capacity of gapped built-up cold-formed steel channel sections including web stiffeners. Journal of Constructional Steel Research, 172, 106154CrossRef Roy, K., Lau, H. H., Ting, T. C. H., et al. (2020). Flexural capacity of gapped built-up cold-formed steel channel sections including web stiffeners. Journal of Constructional Steel Research, 172, 106154CrossRef
Zurück zum Zitat Roy, K., Lau, H. H., Ting, T. C. H., et al. (2021). Flexural behaviour of back-to-back built-up cold-formed steel channel beams: Experiments and finite element modelling[C]//Structures. Elsevier, 29, 235–253 Roy, K., Lau, H. H., Ting, T. C. H., et al. (2021). Flexural behaviour of back-to-back built-up cold-formed steel channel beams: Experiments and finite element modelling[C]//Structures. Elsevier, 29, 235–253
Zurück zum Zitat Roy, K., Mohammadjani, C., & Lim, J. B. P. (2019b). Experimental and numerical investigation into the behaviour of face-to-face built-up cold-formed steel channel sections under compression. Thin-Walled Structures, 134, 291–309CrossRef Roy, K., Mohammadjani, C., & Lim, J. B. P. (2019b). Experimental and numerical investigation into the behaviour of face-to-face built-up cold-formed steel channel sections under compression. Thin-Walled Structures, 134, 291–309CrossRef
Zurück zum Zitat Roy, K., Ting, T. C. H., Lau, H. H., et al. (2018a). Nonlinear behavior of axially loaded back-to-back built-up cold-formed steel un-lipped channel sections. Steel and Composite Structures, 28(2), 233–250 Roy, K., Ting, T. C. H., Lau, H. H., et al. (2018a). Nonlinear behavior of axially loaded back-to-back built-up cold-formed steel un-lipped channel sections. Steel and Composite Structures, 28(2), 233–250
Zurück zum Zitat Roy, K., Ting, T. C. H., Lau, H. H., et al. (2018b). Nonlinear behaviour of back-to-back gapped built-up cold-formed steel channel sections under compression. Journal of Constructional Steel Research, 147, 257–276CrossRef Roy, K., Ting, T. C. H., Lau, H. H., et al. (2018b). Nonlinear behaviour of back-to-back gapped built-up cold-formed steel channel sections under compression. Journal of Constructional Steel Research, 147, 257–276CrossRef
Zurück zum Zitat Roy, K., Ting, T. C. H., Lau, H. H., et al. (2019). Experimental and numerical investigations on the axial capacity of cold-formed steel built-up box sections. Journal of Constructional Steel Research, 160, 411–427CrossRef Roy, K., Ting, T. C. H., Lau, H. H., et al. (2019). Experimental and numerical investigations on the axial capacity of cold-formed steel built-up box sections. Journal of Constructional Steel Research, 160, 411–427CrossRef
Zurück zum Zitat Russell, J. C., & Lardner, T. J. (1998). Experimental determination of frequencies and tension for elastic cables. Journal of Engineering Mechanics, 124(10), 1067–1072CrossRef Russell, J. C., & Lardner, T. J. (1998). Experimental determination of frequencies and tension for elastic cables. Journal of Engineering Mechanics, 124(10), 1067–1072CrossRef
Zurück zum Zitat Ting, T. C. H., Roy, K., Lau, H. H., et al. (2018). Effect of screw spacing on behavior of axially loaded back-to-back cold-formed steel built-up channel sections. Advances in Structural Engineering, 21(3), 474–487CrossRef Ting, T. C. H., Roy, K., Lau, H. H., et al. (2018). Effect of screw spacing on behavior of axially loaded back-to-back cold-formed steel built-up channel sections. Advances in Structural Engineering, 21(3), 474–487CrossRef
Zurück zum Zitat Wu, X., Ghaboussi, J., & Garrett, J. H., Jr. (1992). Use of neural networks in detection of structural damage. Computers and Structures, 42(4), 649–659CrossRef Wu, X., Ghaboussi, J., & Garrett, J. H., Jr. (1992). Use of neural networks in detection of structural damage. Computers and Structures, 42(4), 649–659CrossRef
Zurück zum Zitat Zarbaf, S. E. H. A. M., Norouzi, M., Allemang, R., et al. (2018). Vibration-based cable condition assessment: A novel application of neural networks. Engineering Structures, 177, 291–305CrossRef Zarbaf, S. E. H. A. M., Norouzi, M., Allemang, R., et al. (2018). Vibration-based cable condition assessment: A novel application of neural networks. Engineering Structures, 177, 291–305CrossRef
Metadaten
Titel
Artificial-Neural-Network-Based Mechanical Simulation Prediction Method for Wheel-Spoke Cable Truss Construction
verfasst von
Zhansheng Liu
Antong Jiang
Wenyuan Shao
Anshan Zhang
Xiuli Du
Publikationsdatum
17.05.2021
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 3/2021
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-021-00488-9

Weitere Artikel der Ausgabe 3/2021

International Journal of Steel Structures 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.