Skip to main content
Erschienen in: Water Resources Management 13/2021

16.09.2021

Assessment of Shear Stress Distribution in Meandering Compound Channels with Differential Roughness Through Various Artificial Intelligence Approach

verfasst von: Abinash Mohanta, Arpan Pradhan, Monalisa Mallick, K. C. Patra

Erschienen in: Water Resources Management | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate prediction of shear stress distribution along the boundary in an open channel is the key to solving numerous critical engineering problems such as flood control, sediment transport, riverbank protection, and others. Similarly, the estimation of flow discharge in flood conditions is also challenging for engineers and scientists. The flow structure in compound channels becomes complicated due to the transfer of momentum between the deep main channel and the adjoining floodplains, which affects the distribution of shear force and flow rate across the width. Percentage sharing of shear force at floodplain (%Sfp) is dependent on the non-dimensional parameters like width ratio of the channel \((\alpha )\), relative depth \((\beta )\), sinuosity \((s)\), longitudinal channel bed slope \((S_{{\text{o}}} ),\) meander belt width ratio \((\omega )\), and differential roughness \((\gamma )\). In this paper, various artificial intelligence approaches such as multivariate adaptive regression spline (MARS), group method of data handling Neural Network (GMDH-NN), and gene-expression programming (GEP) are adopted to construct model equations for determining %Sfp for meandering compound channels with relative roughness. The influence of each parameter used in the model for predicting the %Sfp is also analyzed through sensitivity analysis. Statistical indices are employed to assess the performance of these models. Validation of the developed %Sfp model is performed for the experimental observations by conventional analytical models; to verify their effectiveness. Results indicate that the proposed GMDH-NN model predicted the %Sfp satisfactorily with the coefficient of determination (R2) of 0.98 and 0.97 and mean absolute percentage error (MAPE) of 0.05% and 0.04% for training and testing dataset, respectively as compared to GEP and MARS. The developed model is also validated with various sinuous channels having sinuosity 1.343, 1.91 and 2.06.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ackers P (1993) Stage-discharge functions for two-stage channels: the impact of new research. Water Environ J 7(1):52–59CrossRef Ackers P (1993) Stage-discharge functions for two-stage channels: the impact of new research. Water Environ J 7(1):52–59CrossRef
Zurück zum Zitat Adamowski J, Chan HF, Prasher SO, Sharda VN (2012) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinf 14(3):731–744CrossRef Adamowski J, Chan HF, Prasher SO, Sharda VN (2012) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinf 14(3):731–744CrossRef
Zurück zum Zitat Akay H (2021a) Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Comput 1–22 Akay H (2021a) Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Comput 1–22
Zurück zum Zitat Akay H (2021b) Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques. CATENA 206:105524 Akay H (2021b) Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques. CATENA 206:105524
Zurück zum Zitat Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A (2008) Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. Energy Convers Manag 49(10):2588–2594CrossRef Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A (2008) Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. Energy Convers Manag 49(10):2588–2594CrossRef
Zurück zum Zitat Arcement GJ, Schneider VR (1989) Guide for selecting Manning's roughness coefficients for natural channels and flood plains. US Government Printing Office Washington, DC Arcement GJ, Schneider VR (1989) Guide for selecting Manning's roughness coefficients for natural channels and flood plains. US Government Printing Office Washington, DC
Zurück zum Zitat Berlamont JE, Trouw K, Luyckx G (2003) Shear stress distribution in partially filled pipes. J Hydraul Eng 129(9):697–705CrossRef Berlamont JE, Trouw K, Luyckx G (2003) Shear stress distribution in partially filled pipes. J Hydraul Eng 129(9):697–705CrossRef
Zurück zum Zitat Bhattacharya AK (1995) Mathematical model of flow in a meandering channel. IIT Kharagpur Bhattacharya AK (1995) Mathematical model of flow in a meandering channel. IIT Kharagpur
Zurück zum Zitat Bonakdari H, Baghalian S, Nazari F, Fazli M (2011) Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm. Eng Appl Comput Fluid Mech 5(3):384–396 Bonakdari H, Baghalian S, Nazari F, Fazli M (2011) Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm. Eng Appl Comput Fluid Mech 5(3):384–396
Zurück zum Zitat Christensen HB, Fredsoe J (1998) Bed shear stress distribution in straight channels with arbitrary cross section Christensen HB, Fredsoe J (1998) Bed shear stress distribution in straight channels with arbitrary cross section
Zurück zum Zitat Cobaner M, Seckin G, Seckin N, Yurtal R (2010) Boundary shear stress analysis in smooth rectangular channels and ducts using neural networks. Water Environ J 24(2):133–139CrossRef Cobaner M, Seckin G, Seckin N, Yurtal R (2010) Boundary shear stress analysis in smooth rectangular channels and ducts using neural networks. Water Environ J 24(2):133–139CrossRef
Zurück zum Zitat Craven P, Wahba G (1978) Smoothing noisy data with spline functions. Numer Math 31(4):377–403CrossRef Craven P, Wahba G (1978) Smoothing noisy data with spline functions. Numer Math 31(4):377–403CrossRef
Zurück zum Zitat Das AK (1984) A study of river flood plain interaction and boundary shear stress distribution in a meander channel with one sided flood plain. Ph. D, Indian Institute of Technology Kharagpur, Kharagpur, India Das AK (1984) A study of river flood plain interaction and boundary shear stress distribution in a meander channel with one sided flood plain. Ph. D, Indian Institute of Technology Kharagpur, Kharagpur, India
Zurück zum Zitat Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 1–67 Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 1–67
Zurück zum Zitat Ferreira C (2001) “Algorithm for solving gene expression programming: a new adaptive problem.” Complex Systems 13(2):87-129 Ferreira C (2001) “Algorithm for solving gene expression programming: a new adaptive problem.” Complex Systems 13(2):87-129
Zurück zum Zitat Ferreira C (2002) “Gene expression programming in problem solving.” In: Soft computing and industry, Springer, 635-653 Ferreira C (2002) “Gene expression programming in problem solving.” In: Soft computing and industry, Springer, 635-653
Zurück zum Zitat Friedman JH, Roosen CB (1995) “An introduction to multivariate adaptive regression splines.” Sage Publications Sage CA: Thousand Oaks, CA Friedman JH, Roosen CB (1995) “An introduction to multivariate adaptive regression splines.” Sage Publications Sage CA: Thousand Oaks, CA
Zurück zum Zitat Gholamnia K, Gudiyangada Nachappa T, Ghorbanzadeh O, Blaschke T (2020) Comparisons of diverse machine learning approaches for wildfire susceptibility mapping. Symmetry 12(4):604CrossRef Gholamnia K, Gudiyangada Nachappa T, Ghorbanzadeh O, Blaschke T (2020) Comparisons of diverse machine learning approaches for wildfire susceptibility mapping. Symmetry 12(4):604CrossRef
Zurück zum Zitat Ghosh S, Jena SB (1971) Boundary shear distribution in open channel compound. Proc Inst Civ Eng 49(4):417–430 Ghosh S, Jena SB (1971) Boundary shear distribution in open channel compound. Proc Inst Civ Eng 49(4):417–430
Zurück zum Zitat James CS, Wark JB (1992) Conveyance estimation for meandering channels. SR329, HR Wallingford James CS, Wark JB (1992) Conveyance estimation for meandering channels. SR329, HR Wallingford
Zurück zum Zitat Kar SK (1977) A study of distribution of boundary shear in meander channel with and without floodplain and river floodplain interaction. Ph. D Indian Institute of Technology Kharagpur, Kharagpur, India Kar SK (1977) A study of distribution of boundary shear in meander channel with and without floodplain and river floodplain interaction. Ph. D Indian Institute of Technology Kharagpur, Kharagpur, India
Zurück zum Zitat Khatua KK (2007) Interaction of flow and estimation of discharge in two stage meandering compound channels. Ph.D, National Institute of Technology Rourkela, Odisha, India Khatua KK (2007) Interaction of flow and estimation of discharge in two stage meandering compound channels. Ph.D, National Institute of Technology Rourkela, Odisha, India
Zurück zum Zitat Khatua KK, Patra KC (2007) Boundary shear stress distribution in compound open channel flow. ISH J Hydraul Eng 13(3):39–54CrossRef Khatua KK, Patra KC (2007) Boundary shear stress distribution in compound open channel flow. ISH J Hydraul Eng 13(3):39–54CrossRef
Zurück zum Zitat Khatua KK, Patra KC, Mohanty PK (2011a) Stage-discharge prediction for straight and smooth compound channels with wide floodplains. J Hydraul Eng 138(1):93–99CrossRef Khatua KK, Patra KC, Mohanty PK (2011a) Stage-discharge prediction for straight and smooth compound channels with wide floodplains. J Hydraul Eng 138(1):93–99CrossRef
Zurück zum Zitat Khatua KK, Patra KC, Nayak P (2011b) Meandering effect for evaluation of roughness coefficients in open channel flow. WIT Trans Ecol Environ 146:213–224CrossRef Khatua KK, Patra KC, Nayak P (2011b) Meandering effect for evaluation of roughness coefficients in open channel flow. WIT Trans Ecol Environ 146:213–224CrossRef
Zurück zum Zitat Khatua KK, Patra KC, Nayak P, Sahoo N (2012) “Stage-discharge prediction for meandering channels.” International Journal of Computational Methods and Experimental Measurements 1(1):80-92 Khatua KK, Patra KC, Nayak P, Sahoo N (2012) “Stage-discharge prediction for meandering channels.” International Journal of Computational Methods and Experimental Measurements 1(1):80-92
Zurück zum Zitat Knight DW (1981) Boundary shear in smooth and rough channels. J Hydraul Div 107(7):839–851CrossRef Knight DW (1981) Boundary shear in smooth and rough channels. J Hydraul Div 107(7):839–851CrossRef
Zurück zum Zitat Knight DW, Demetriou JD (1983) Flood plain and main channel flow interaction. J Hydraul Eng 109(8):1073–1092CrossRef Knight DW, Demetriou JD (1983) Flood plain and main channel flow interaction. J Hydraul Eng 109(8):1073–1092CrossRef
Zurück zum Zitat Knight DW, Hamed ME (1984) Boundary shear in symmetrical compound channels. J Hydraul Eng 110(10):1412–1430CrossRef Knight DW, Hamed ME (1984) Boundary shear in symmetrical compound channels. J Hydraul Eng 110(10):1412–1430CrossRef
Zurück zum Zitat Knight DW, Sterling M (2000) Boundary shear in circular pipes running partially full. J Hydraul Eng 126(4):263–275CrossRef Knight DW, Sterling M (2000) Boundary shear in circular pipes running partially full. J Hydraul Eng 126(4):263–275CrossRef
Zurück zum Zitat Koza JR (1992) “Genetic programming: On the programming of computers by means of natural selection. MA.” MIT Press, Cambridge Koza JR (1992) “Genetic programming: On the programming of computers by means of natural selection. MA.” MIT Press, Cambridge
Zurück zum Zitat Leighly JB (1932) Toward a theory of the morphologic significance of turbulence in the flow of water in streams. University of California Press Leighly JB (1932) Toward a theory of the morphologic significance of turbulence in the flow of water in streams. University of California Press
Zurück zum Zitat Leutheusser HJ (1963) Turbulent flow in rectangular ducts. J Hydraul Div 89(3):1–19CrossRef Leutheusser HJ (1963) Turbulent flow in rectangular ducts. J Hydraul Div 89(3):1–19CrossRef
Zurück zum Zitat Mallick M, Mohanta A, Kumar A (2020a) Multivariate adaptive regression spline approach to the assessment of surface mean pressure coefficient on surfaces of C-shaped building. Sci Iran 27(6):2967–2984 Mallick M, Mohanta A, Kumar A (2020a) Multivariate adaptive regression spline approach to the assessment of surface mean pressure coefficient on surfaces of C-shaped building. Sci Iran 27(6):2967–2984
Zurück zum Zitat Mallick M, Mohanta A, Kumar A, Charan Patra K (2020b) Prediction of wind-induced mean pressure coefficients using GMDH neural network. J Aerosp Eng 33(1):04019104CrossRef Mallick M, Mohanta A, Kumar A, Charan Patra K (2020b) Prediction of wind-induced mean pressure coefficients using GMDH neural network. J Aerosp Eng 33(1):04019104CrossRef
Zurück zum Zitat Mallick M, Mohanta A, Kumar A, Patra KC (2020c) Gene-expression programming for the assessment of surface mean pressure coefficient on building surfaces. Build Simul 13(2):401–418CrossRef Mallick M, Mohanta A, Kumar A, Patra KC (2020c) Gene-expression programming for the assessment of surface mean pressure coefficient on building surfaces. Build Simul 13(2):401–418CrossRef
Zurück zum Zitat Mehdizadeh S, Behmanesh J, Khalili K (2017a) Application of gene expression programming to predict daily dew point temperature. Appl Therm Eng 112:1097–1107CrossRef Mehdizadeh S, Behmanesh J, Khalili K (2017a) Application of gene expression programming to predict daily dew point temperature. Appl Therm Eng 112:1097–1107CrossRef
Zurück zum Zitat Mehdizadeh S, Behmanesh J, Khalili K (2017b) Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput Electron Agric 139:103–114CrossRef Mehdizadeh S, Behmanesh J, Khalili K (2017b) Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput Electron Agric 139:103–114CrossRef
Zurück zum Zitat Milukow HA, Binns AD, Adamowski J, Bonakdari H, Gharabaghi B (2018) Estimation of the darcy-weisbach friction factor for ungauged streams using gene expression programming and extreme learning machines. J Hydrol 568:311–321CrossRef Milukow HA, Binns AD, Adamowski J, Bonakdari H, Gharabaghi B (2018) Estimation of the darcy-weisbach friction factor for ungauged streams using gene expression programming and extreme learning machines. J Hydrol 568:311–321CrossRef
Zurück zum Zitat Mohanta A, Patra KC (2019) MARS for prediction of shear force and discharge in two-stage meandering channel. J Irrig Drain Eng 145(8):04019016CrossRef Mohanta A, Patra KC (2019) MARS for prediction of shear force and discharge in two-stage meandering channel. J Irrig Drain Eng 145(8):04019016CrossRef
Zurück zum Zitat Mohanta A, Patra KC (2021) Gene-expression programming for calculating discharge in meandering compound channels. Sustain Water Res Manag 7(3):33CrossRef Mohanta A, Patra KC (2021) Gene-expression programming for calculating discharge in meandering compound channels. Sustain Water Res Manag 7(3):33CrossRef
Zurück zum Zitat Mohanta A, Patra KC, Sahoo B (2018) Anticipate Manning’s coefficient in meandering compound channels. Hydrology 5(3):47CrossRef Mohanta A, Patra KC, Sahoo B (2018) Anticipate Manning’s coefficient in meandering compound channels. Hydrology 5(3):47CrossRef
Zurück zum Zitat Mohanta A, Patra KC, Pradhan A (2020) Enhanced channel division method for estimation of discharge in meandering compound channel. Water Resour Manag 34(3):1047–1073CrossRef Mohanta A, Patra KC, Pradhan A (2020) Enhanced channel division method for estimation of discharge in meandering compound channel. Water Resour Manag 34(3):1047–1073CrossRef
Zurück zum Zitat Mohanty PK (2013) Flow analysis of compound channels with wide flood plains prabir. PhD., National Institute of Technology Rourkela, Odisha, India Mohanty PK (2013) Flow analysis of compound channels with wide flood plains prabir. PhD., National Institute of Technology Rourkela, Odisha, India
Zurück zum Zitat Mosavi A, Hosseini FS, Choubin B, Goodarzi M, Dineva AA, Sardooi ER (2021) Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resour Manag 35(1):23–37CrossRef Mosavi A, Hosseini FS, Choubin B, Goodarzi M, Dineva AA, Sardooi ER (2021) Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resour Manag 35(1):23–37CrossRef
Zurück zum Zitat Myers WRC (1987) Velocity and discharge in compound channels. J Hydraul Eng 113(6):753–766CrossRef Myers WRC (1987) Velocity and discharge in compound channels. J Hydraul Eng 113(6):753–766CrossRef
Zurück zum Zitat Nachappa TG, Ghorbanzadeh O, Gholamnia K, Blaschke T (2020) Multi-hazard exposure mapping using machine learning for the State of Salzburg, Austria. Remote Sens 12(17):2757CrossRef Nachappa TG, Ghorbanzadeh O, Gholamnia K, Blaschke T (2020) Multi-hazard exposure mapping using machine learning for the State of Salzburg, Austria. Remote Sens 12(17):2757CrossRef
Zurück zum Zitat Najafzadeh M, Azamathulla HM (2013) Neuro-fuzzy GMDH to predict the scour pile groups due to waves. J Comput Civ Eng 29(5):04014068CrossRef Najafzadeh M, Azamathulla HM (2013) Neuro-fuzzy GMDH to predict the scour pile groups due to waves. J Comput Civ Eng 29(5):04014068CrossRef
Zurück zum Zitat Najafzadeh M, Lim SY (2015) Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Sci Inf 8(1):187–196CrossRef Najafzadeh M, Lim SY (2015) Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Sci Inf 8(1):187–196CrossRef
Zurück zum Zitat Najafzadeh M, Rezaie-Balf M, Tafarojnoruz A (2018) Prediction of riprap stone size under overtopping flow using data-driven models. Int J River Basin Manag 16(4):1–8CrossRef Najafzadeh M, Rezaie-Balf M, Tafarojnoruz A (2018) Prediction of riprap stone size under overtopping flow using data-driven models. Int J River Basin Manag 16(4):1–8CrossRef
Zurück zum Zitat Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17(8):857–872CrossRef Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17(8):857–872CrossRef
Zurück zum Zitat Noutsopoulos G, Hadjipanos P (1983). Discharge computations in compound channels. Proc. 20th IAHR Congress, 173–180 Noutsopoulos G, Hadjipanos P (1983). Discharge computations in compound channels. Proc. 20th IAHR Congress, 173–180
Zurück zum Zitat Patra KC, Kar SK (2000) Flow interaction of meandering river with floodplains. J Hydraul Eng 126(8):593–604CrossRef Patra KC, Kar SK (2000) Flow interaction of meandering river with floodplains. J Hydraul Eng 126(8):593–604CrossRef
Zurück zum Zitat Patra KC, Kar SK, Bhattacharya AK (2004) Flow and velocity distribution in meandering compound channels. J Hydraul Eng 130(5):398–411CrossRef Patra KC, Kar SK, Bhattacharya AK (2004) Flow and velocity distribution in meandering compound channels. J Hydraul Eng 130(5):398–411CrossRef
Zurück zum Zitat Patra KC (1999) Flow interaction of meandering river with flood plains. Doctor of Philosophy, Indian Institute of Technology Kharagpur, Kharagpur, India Patra KC (1999) Flow interaction of meandering river with flood plains. Doctor of Philosophy, Indian Institute of Technology Kharagpur, Kharagpur, India
Zurück zum Zitat Pradhan A, Khatua KK (2017) Gene expression programming to predict Manning’s n in meandering flows. Can J Civ Eng 45(4):304–313CrossRef Pradhan A, Khatua KK (2017) Gene expression programming to predict Manning’s n in meandering flows. Can J Civ Eng 45(4):304–313CrossRef
Zurück zum Zitat Pradhan A (2019) Stage-discharge modelling of meandering compound channels with differential roughness. PhD., National Institute of Technology Rourkela, Odisha, India Pradhan A (2019) Stage-discharge modelling of meandering compound channels with differential roughness. PhD., National Institute of Technology Rourkela, Odisha, India
Zurück zum Zitat Prinos P, Townsend RD (1984) Comparison of methods for predicting discharge in compound open channels. Adv Water Resour 7(4):180–187CrossRef Prinos P, Townsend RD (1984) Comparison of methods for predicting discharge in compound open channels. Adv Water Resour 7(4):180–187CrossRef
Zurück zum Zitat Sattar AMA (2013) Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow. J Pipeline Syst Eng Pract 5(1):04013011CrossRef Sattar AMA (2013) Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow. J Pipeline Syst Eng Pract 5(1):04013011CrossRef
Zurück zum Zitat Stephenson D, Kolovopoulos P (1990) Effects of momentum transfer in compound channels. J Hydraul Eng 116(12):1512–1522CrossRef Stephenson D, Kolovopoulos P (1990) Effects of momentum transfer in compound channels. J Hydraul Eng 116(12):1512–1522CrossRef
Zurück zum Zitat Toebes GH, Sooky AA (1967) Hydraulics of meandering rivers with flood plains. J Waterways Harbors Division 93(2):213–236CrossRef Toebes GH, Sooky AA (1967) Hydraulics of meandering rivers with flood plains. J Waterways Harbors Division 93(2):213–236CrossRef
Zurück zum Zitat Willetts BB, Hardwick RI (1993) Stage dependency for overbank flow in meandering channels. Proc Instit Civil Eng-Water Maritime and Energy 101(1):45–54CrossRef Willetts BB, Hardwick RI (1993) Stage dependency for overbank flow in meandering channels. Proc Instit Civil Eng-Water Maritime and Energy 101(1):45–54CrossRef
Zurück zum Zitat Wormleaton PR, Hadjipanos P (1985) Flow distribution in compound channels. J Hydraul Eng 111(2):357–361CrossRef Wormleaton PR, Hadjipanos P (1985) Flow distribution in compound channels. J Hydraul Eng 111(2):357–361CrossRef
Zurück zum Zitat Wormleaton PR, Hadjipanos P, Allen J (1980) Discussion of iInteraction between main channel and flood-plain flows. J Hydraul Div 106(5):942–942CrossRef Wormleaton PR, Hadjipanos P, Allen J (1980) Discussion of iInteraction between main channel and flood-plain flows. J Hydraul Div 106(5):942–942CrossRef
Zurück zum Zitat Wormleaton PR, Allen J, Hadjipanos P (1982) Discharge assessment in compound channel flow. J Hydraul Div 108(9):975–994CrossRef Wormleaton PR, Allen J, Hadjipanos P (1982) Discharge assessment in compound channel flow. J Hydraul Div 108(9):975–994CrossRef
Zurück zum Zitat Yang S-Q, Lim S-Y (2005) Boundary shear stress distributions in trapezoidal channels. J Hydraul Res 43(1):98–102CrossRef Yang S-Q, Lim S-Y (2005) Boundary shear stress distributions in trapezoidal channels. J Hydraul Res 43(1):98–102CrossRef
Zurück zum Zitat Yen C-L, Overton DE (1973) Shape effects on resistance in flood-plain channels. J Hydraul Div 99(1):219–238CrossRef Yen C-L, Overton DE (1973) Shape effects on resistance in flood-plain channels. J Hydraul Div 99(1):219–238CrossRef
Zurück zum Zitat Yu G, Tan S-K (2007) Estimation of boundary shear stress distribution in open channels using flownet. J Hydraul Res 45(4):486–496CrossRef Yu G, Tan S-K (2007) Estimation of boundary shear stress distribution in open channels using flownet. J Hydraul Res 45(4):486–496CrossRef
Zurück zum Zitat Zahiri A, Eghbali P (2012) Gene expression programming for prediction of flow discharge in compound channels. J Civil Eng Urbanism 2(4):164–169 Zahiri A, Eghbali P (2012) Gene expression programming for prediction of flow discharge in compound channels. J Civil Eng Urbanism 2(4):164–169
Metadaten
Titel
Assessment of Shear Stress Distribution in Meandering Compound Channels with Differential Roughness Through Various Artificial Intelligence Approach
verfasst von
Abinash Mohanta
Arpan Pradhan
Monalisa Mallick
K. C. Patra
Publikationsdatum
16.09.2021
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 13/2021
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-021-02966-5

Weitere Artikel der Ausgabe 13/2021

Water Resources Management 13/2021 Zur Ausgabe