Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2021

23.06.2021 | Research Article-Mechanical Engineering

Assessment of Wind Fin Performance Run by Mixed Flows: Experimental and Numerical Investigation

verfasst von: Hasanain A. Abdul Wahhab, Sattar Aljabair, Sadoon K. Ayed

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wind energy considers an important source for a clean power generation. Several problems in the wind-power generation are due to its uncertainty the sudden change in both wind speed rates and direction. Especially, for small wind power generation system, when wind turbines are connected to a small system or isolated grid, the output power fluctuates from time to time. More so, the need for a new wind blade design that works at low air velocities and different direction wind currents requires further investigation. In this work, the numerical and experimental analysis of mixed flows turbine, the possibility of air currents with horizontal and vertical directions on rotating the proposed models was studied. Firstly, two models of a mixed flows turbine were designed and fabricated for experiments. The experiments were conducted to test two important parameters; inlet velocity at 0.8, 1.4, 2.8, and 4.3 m/s, and yaw angles at 45° and 70°, respectively. Secondly, the modeling has been conducted in the environment of CFD, and the turbine system simulation utilized a SST k-ω model to solve and post process the problem. The results can be drawn from the analysis: the characteristics of the mixed flows turbine have the best self-starting and the lower-starting torque as standard for developing the turbine; the starting torque is dependent on the yaw angle for the blade, in which the wind turbine with a large yaw angles for blades is needed to the smaller starting torques; also the output power increased by increasing the wind velocity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chong, W.T.; Fazlizan, A.; Poh, S.C.; Pan, K.C.; Hew, W.P.; Hsiao, F.B.: The design simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Appl. Energy 112, 601–609 (2013)CrossRef Chong, W.T.; Fazlizan, A.; Poh, S.C.; Pan, K.C.; Hew, W.P.; Hsiao, F.B.: The design simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Appl. Energy 112, 601–609 (2013)CrossRef
2.
Zurück zum Zitat Toshimitsu, K.; Kikugawa, H.; Sato, K.; Sato, T.: Experimental investigation of performance of the wind turbine with the flanged-diffuser shroud in sinusoid ally oscillating and fluctuating velocity flows. Open J. Fluid Dyn. 2(4), 215–221 (2012)CrossRef Toshimitsu, K.; Kikugawa, H.; Sato, K.; Sato, T.: Experimental investigation of performance of the wind turbine with the flanged-diffuser shroud in sinusoid ally oscillating and fluctuating velocity flows. Open J. Fluid Dyn. 2(4), 215–221 (2012)CrossRef
3.
Zurück zum Zitat Dragomirescu, A.: Performance assessment of a small wind turbine with cross flow runner by numerical simulations. Renew. Energy 36, 957–965 (2011)CrossRef Dragomirescu, A.: Performance assessment of a small wind turbine with cross flow runner by numerical simulations. Renew. Energy 36, 957–965 (2011)CrossRef
4.
Zurück zum Zitat Diniar, M.K.; Dominicus, D.P.T.; Budi, S.: Experimental investigation on performance of cross flow wind turbine as effect of blades number. AIP Conf. Proc. 1931, 030045 (2018) Diniar, M.K.; Dominicus, D.P.T.; Budi, S.: Experimental investigation on performance of cross flow wind turbine as effect of blades number. AIP Conf. Proc. 1931, 030045 (2018)
5.
Zurück zum Zitat Petru, T.; Thiringer, T.: Modeling of wind turbines for power system studies. IEEE Trans. Power Syst. 17(4), 1132–1139 (2002)CrossRef Petru, T.; Thiringer, T.: Modeling of wind turbines for power system studies. IEEE Trans. Power Syst. 17(4), 1132–1139 (2002)CrossRef
6.
Zurück zum Zitat Rasekh, S.; HosseiniDoust, M.; KarimianAliabadi, S.: Accuracy of dynamic stall response for wind turbine airfoils based on semi-empirical and numerical methods. J. Appl. Fluid Mech. 11(5), 1287–1296 (2018)CrossRef Rasekh, S.; HosseiniDoust, M.; KarimianAliabadi, S.: Accuracy of dynamic stall response for wind turbine airfoils based on semi-empirical and numerical methods. J. Appl. Fluid Mech. 11(5), 1287–1296 (2018)CrossRef
7.
Zurück zum Zitat Bianchi, F.D.; Mantz, R.J.; Christiansen, C.F.: Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models. Control. Eng. Pract. 13, 247–255 (2005)CrossRef Bianchi, F.D.; Mantz, R.J.; Christiansen, C.F.: Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models. Control. Eng. Pract. 13, 247–255 (2005)CrossRef
8.
Zurück zum Zitat Eisenhut, C.; Krug, F.; Schram, C.; Klockl, B.: Wind-turbine model for system simulations near cut-in wind speed. IEEE Trans. Energy Convers. 22(2), 414–420 (2007)CrossRef Eisenhut, C.; Krug, F.; Schram, C.; Klockl, B.: Wind-turbine model for system simulations near cut-in wind speed. IEEE Trans. Energy Convers. 22(2), 414–420 (2007)CrossRef
9.
Zurück zum Zitat Ekanayake, J.B.; Holdsworth, L.; Wu, X.; Jenkins, N.: Dynamic modeling of doubly fed induction generator wind turbines. IEEE Trans. Power Syst. 18(2), 803–809 (2003)CrossRef Ekanayake, J.B.; Holdsworth, L.; Wu, X.; Jenkins, N.: Dynamic modeling of doubly fed induction generator wind turbines. IEEE Trans. Power Syst. 18(2), 803–809 (2003)CrossRef
10.
Zurück zum Zitat Bolin, K.; Bluhm, G.; Eriksson, G.; Nilsson, M.E.: Infrasound and low frequency noise from wind turbines: exposure and health effects. Environ. Res. Lett. 6, 035103 (2011)CrossRef Bolin, K.; Bluhm, G.; Eriksson, G.; Nilsson, M.E.: Infrasound and low frequency noise from wind turbines: exposure and health effects. Environ. Res. Lett. 6, 035103 (2011)CrossRef
11.
Zurück zum Zitat Dahne, M.; Gilles, A.; Lucke, K.; Peschko, V.; Adler, S.; Krügel, K.; Sundermeyer, J.; Siebert, U.: Effects of pile-driving on harbour porpoises (Phocoenaphocoena) at the first offshore wind farm in Germany. Environ. Res. Lett. 8, 025002 (2013)CrossRef Dahne, M.; Gilles, A.; Lucke, K.; Peschko, V.; Adler, S.; Krügel, K.; Sundermeyer, J.; Siebert, U.: Effects of pile-driving on harbour porpoises (Phocoenaphocoena) at the first offshore wind farm in Germany. Environ. Res. Lett. 8, 025002 (2013)CrossRef
12.
Zurück zum Zitat Abanteriba, S.; Kosasih, B.; Tondelli, A.: Experimental study of shrouded micro-wind turbine. Procedia Eng. 49, 92–98 (2012)CrossRef Abanteriba, S.; Kosasih, B.; Tondelli, A.: Experimental study of shrouded micro-wind turbine. Procedia Eng. 49, 92–98 (2012)CrossRef
13.
Zurück zum Zitat Aranake, A.C.; Lakshminarayan, V.K.; Duraisamy, K.: Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver. Renew. Energy 75, 818–832 (2015)CrossRef Aranake, A.C.; Lakshminarayan, V.K.; Duraisamy, K.: Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver. Renew. Energy 75, 818–832 (2015)CrossRef
14.
Zurück zum Zitat Noura, B.; Dobrev, I.; Kerfah, R.; Massouh, F.; Khelladi, S.: Investigation of the rotor wake of horizontal axis wind turbine under yawed condition. J. Appl. Fluid Mech. 9(6), 2695–2705 (2016)CrossRef Noura, B.; Dobrev, I.; Kerfah, R.; Massouh, F.; Khelladi, S.: Investigation of the rotor wake of horizontal axis wind turbine under yawed condition. J. Appl. Fluid Mech. 9(6), 2695–2705 (2016)CrossRef
15.
Zurück zum Zitat Baoqing, X.; Tian, D.: Simulation and test of the blade models output characteristics of wind turbine. Energy Procedia 17, 1201–1208 (2012)CrossRef Baoqing, X.; Tian, D.: Simulation and test of the blade models output characteristics of wind turbine. Energy Procedia 17, 1201–1208 (2012)CrossRef
16.
Zurück zum Zitat Djavareshkian, M.H.; LatifiBidarouni, A.; Saber, M.R.: New approach to high fidelity aerodynamic design optimization of a wind turbine blade. Int. J. Renew. Energy Res. 3(3), 725–735 (2013) Djavareshkian, M.H.; LatifiBidarouni, A.; Saber, M.R.: New approach to high fidelity aerodynamic design optimization of a wind turbine blade. Int. J. Renew. Energy Res. 3(3), 725–735 (2013)
17.
Zurück zum Zitat Peter, J.; Schubel, R.; Crossley, J.: Wind turbine blade design. Energies 5, 3425–3449 (2012)CrossRef Peter, J.; Schubel, R.; Crossley, J.: Wind turbine blade design. Energies 5, 3425–3449 (2012)CrossRef
18.
Zurück zum Zitat Jureczko, M.; Pawlak, M.; Mezyk, A.: Optimization of wind turbine blades. J. Mater. Process. Technol. 167, 463–471 (2005)CrossRef Jureczko, M.; Pawlak, M.; Mezyk, A.: Optimization of wind turbine blades. J. Mater. Process. Technol. 167, 463–471 (2005)CrossRef
19.
Zurück zum Zitat Yurdusev, M.A.; Ata, R.; Cetin, N.S.: Assessment of optimum tip speed ratio in wind turbines using artificial neural networks. Energy 31, 2153–2161 (2006)CrossRef Yurdusev, M.A.; Ata, R.; Cetin, N.S.: Assessment of optimum tip speed ratio in wind turbines using artificial neural networks. Energy 31, 2153–2161 (2006)CrossRef
20.
Zurück zum Zitat Peter, J.S.; Richard, J.C.: Wind turbine blade design. Energies 5, 3425–3449 (2012)CrossRef Peter, J.S.; Richard, J.C.: Wind turbine blade design. Energies 5, 3425–3449 (2012)CrossRef
21.
Zurück zum Zitat Atmaca, M.; Girgin, I.; Ezgi, C.: CFD modeling of a diesel evaporator used in fuel cell systems. Int. J. Hydrogen Energy 41(14), 6004–6012 (2016)CrossRef Atmaca, M.; Girgin, I.; Ezgi, C.: CFD modeling of a diesel evaporator used in fuel cell systems. Int. J. Hydrogen Energy 41(14), 6004–6012 (2016)CrossRef
22.
Zurück zum Zitat Atmaca, M.; Çetin, B.; Yılmaz, E.: CFD analysis of unmanned aerial vehicles (UAV) moving in flocks. Acta Phys. Pol. A 135, 694–696 (2019)CrossRef Atmaca, M.; Çetin, B.; Yılmaz, E.: CFD analysis of unmanned aerial vehicles (UAV) moving in flocks. Acta Phys. Pol. A 135, 694–696 (2019)CrossRef
23.
Zurück zum Zitat Atmaca, M.: Wind tunnel experiments and CFD simulations for gable-roof buildings with different roof slopes. Acta Phys. Pol. A 135, 690–693 (2019)CrossRef Atmaca, M.: Wind tunnel experiments and CFD simulations for gable-roof buildings with different roof slopes. Acta Phys. Pol. A 135, 690–693 (2019)CrossRef
25.
Zurück zum Zitat Shojaeefard, M.H.; Tahani, M.; Ehghaghi, M.B.; Fallahian, M.A.; Beglari, M.: Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid. Comput. Fluids 60, 61–70 (2012)CrossRef Shojaeefard, M.H.; Tahani, M.; Ehghaghi, M.B.; Fallahian, M.A.; Beglari, M.: Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid. Comput. Fluids 60, 61–70 (2012)CrossRef
26.
Zurück zum Zitat Mojtaba, T.; Ali, R.; Alibakhsh, K.; Mehdi, M.; Mojtaba, M.: Design and numerical investigation of savories wind turbine with discharge flow directing capability. Energy 130, 327–338 (2017)CrossRef Mojtaba, T.; Ali, R.; Alibakhsh, K.; Mehdi, M.; Mojtaba, M.: Design and numerical investigation of savories wind turbine with discharge flow directing capability. Energy 130, 327–338 (2017)CrossRef
27.
Zurück zum Zitat Sarah, A.; Sattar, A.; Abdul Hassan, A.K.: Optimization and experimental investigation of savonius wind turbine performance at low wind speed condition. Int. J. Mech. Mechatron. Eng. 20(5), 1–15 (2020) Sarah, A.; Sattar, A.; Abdul Hassan, A.K.: Optimization and experimental investigation of savonius wind turbine performance at low wind speed condition. Int. J. Mech. Mechatron. Eng. 20(5), 1–15 (2020)
28.
Zurück zum Zitat Nawfal, M.A.; Abdul Hassan, A.K.; Sattar, A.: Effect of conventional multistage savonius wind turbines on the performance of the turbine at low wind velocity. J. Adv. Res. Dyn. Control Syst. 11(11), 229–239 (2019)CrossRef Nawfal, M.A.; Abdul Hassan, A.K.; Sattar, A.: Effect of conventional multistage savonius wind turbines on the performance of the turbine at low wind velocity. J. Adv. Res. Dyn. Control Syst. 11(11), 229–239 (2019)CrossRef
Metadaten
Titel
Assessment of Wind Fin Performance Run by Mixed Flows: Experimental and Numerical Investigation
verfasst von
Hasanain A. Abdul Wahhab
Sattar Aljabair
Sadoon K. Ayed
Publikationsdatum
23.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05843-w

Weitere Artikel der Ausgabe 12/2021

Arabian Journal for Science and Engineering 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.