Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 4/2018

24.08.2017 | Original Article

Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis

verfasst von: Nittaya Muangnak, Pakinee Aimmanee, Stanislav Makhanov

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose vessel vector-based phase portrait analysis (VVPPA) and a hybrid between VVPPA and a clustering method proposed earlier for automatic optic disk (OD) detection called the vessel transform (VT). The algorithms are based primarily on the location and direction of retinal blood vessels and work equally well on fine and poor quality images. To localize the OD, the direction vectors derived from the vessel network are constructed, and points of convergence of the resulting vector field are examined by phase portrait analysis. The hybrid method (HM) uses a set of rules acquired from the decision model to alternate the use of VVPPA and VT. To identify the OD contour, the scale space (SS) approach is integrated with VVPPA, HM, and the circular approximation (SSVVPPAC and SSHMC). We test the proposed combination against state-of-the-art OD detection methods. The results show that the proposed algorithms outperform the benchmark methods, especially on poor quality images. Specifically, the HM gets the highest accuracy of 98% for localization of the OD regardless of the image quality. Testing the segmentation routines SSVVPPAC and SSHMC against the conventional methods shows that SSHMC performs better than the existing methods, achieving the highest PPV of 71.81% and the highest sensitivity of 70.67% for poor quality images. Furthermore, the HM can supplement practically any segmentation model as long as it offers multiple OD candidates. In order to prove this claim, we test the efficiency of the HM in detecting retinal abnormalities in a real clinical setting. The images have been obtained by portable lens connected to a smart phone. In detecting the abnormalities related to diabetic retinopathy (DR), the algorithm provided 94.67 and 98.13% for true negatives and true positives, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bourne RR, Sukudom P, Foster PJ, Tantisevi V, Jitapunkul S, Lee PS, Johnson GJ, Rojanapongpun P (2003) Prevalence of glaucoma in Thailand: a population based survey in Rom Klao District, Bangkok. Br J Ophthalmol 87:1069–1074CrossRefPubMedPubMedCentral Bourne RR, Sukudom P, Foster PJ, Tantisevi V, Jitapunkul S, Lee PS, Johnson GJ, Rojanapongpun P (2003) Prevalence of glaucoma in Thailand: a population based survey in Rom Klao District, Bangkok. Br J Ophthalmol 87:1069–1074CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat MacGillivray TJ, Trucco E, Cameron JR, Dhillon B, Houston JG, van Beek EJ (2014) Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br J Radiol 87:20130832. doi:10.1259/bjr.20130832 CrossRefPubMedPubMedCentral MacGillivray TJ, Trucco E, Cameron JR, Dhillon B, Houston JG, van Beek EJ (2014) Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br J Radiol 87:20130832. doi:10.​1259/​bjr.​20130832 CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22:951–958CrossRefPubMed Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22:951–958CrossRefPubMed
5.
Zurück zum Zitat Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51:246–254CrossRefPubMed Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51:246–254CrossRefPubMed
6.
Zurück zum Zitat Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imaging 20:1193–1200CrossRefPubMed Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imaging 20:1193–1200CrossRefPubMed
8.
Zurück zum Zitat Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23:256–264CrossRefPubMed Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23:256–264CrossRefPubMed
9.
Zurück zum Zitat Winder RJ, Morrow PJ, McRitchie IN, Bailie JR, Hart PM (2009) Algorithms for digital image processing in diabetic retinopathy. Comput Med Imaging Graph 33:608–622CrossRefPubMed Winder RJ, Morrow PJ, McRitchie IN, Bailie JR, Hart PM (2009) Algorithms for digital image processing in diabetic retinopathy. Comput Med Imaging Graph 33:608–622CrossRefPubMed
10.
Zurück zum Zitat Li H, Chutatape O (2003) A model-based approach for automated feature extraction in fundus images. In: Ninth IEEE International Conference on Computer Vision, Nice, France. pp 394–399 Li H, Chutatape O (2003) A model-based approach for automated feature extraction in fundus images. In: Ninth IEEE International Conference on Computer Vision, Nice, France. pp 394–399
11.
Zurück zum Zitat Li H, Chutatape O (2003) Boundary detection of optic disk by a modified ASM method. Pattern Recogn 36:2093–2104CrossRef Li H, Chutatape O (2003) Boundary detection of optic disk by a modified ASM method. Pattern Recogn 36:2093–2104CrossRef
12.
Zurück zum Zitat Morales S, Naranjo V, Angulo U, Alcaniz M (2013) Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans Med Imaging 32:786–796CrossRefPubMed Morales S, Naranjo V, Angulo U, Alcaniz M (2013) Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans Med Imaging 32:786–796CrossRefPubMed
13.
Zurück zum Zitat Hsiao H-K, Liu C-C, Yu C-Y, Kuo S-W, Yu S-S (2012) A novel optic disc detection scheme on retinal images. Expert Syst Appl 39:10600–10606CrossRef Hsiao H-K, Liu C-C, Yu C-Y, Kuo S-W, Yu S-S (2012) A novel optic disc detection scheme on retinal images. Expert Syst Appl 39:10600–10606CrossRef
14.
Zurück zum Zitat Sinthanayothin C, Boyce J, Cook H, Williamson T (1999) Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83:902–910CrossRefPubMedPubMedCentral Sinthanayothin C, Boyce J, Cook H, Williamson T (1999) Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83:902–910CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Akram UM, Khan SA (2012) Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J Med Syst 36:3151–3162CrossRefPubMed Akram UM, Khan SA (2012) Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J Med Syst 36:3151–3162CrossRefPubMed
16.
Zurück zum Zitat Lu S, Liu J, Lim JH, Zhang Z, Tan NM, Wong WK, Li H, Wong TY (2010) Automatic optic disc segmentation based on image brightness and contrast. Proc SPIE 7623:76234J-76234J-8. doi:10.1117/12.844654 Lu S, Liu J, Lim JH, Zhang Z, Tan NM, Wong WK, Li H, Wong TY (2010) Automatic optic disc segmentation based on image brightness and contrast. Proc SPIE 7623:76234J-76234J-8. doi:10.​1117/​12.​844654
17.
Zurück zum Zitat Esmaeili M, Rabbani H, Dehnavi AM, Dehghani A (2012) Automatic detection of exudates and optic disk in retinal images using curvelet transform. IET Image Process 6:1005–1013CrossRef Esmaeili M, Rabbani H, Dehnavi AM, Dehghani A (2012) Automatic detection of exudates and optic disk in retinal images using curvelet transform. IET Image Process 6:1005–1013CrossRef
18.
Zurück zum Zitat Esmaeili M, Rabbani H, Dehnavi AM (2012) Automatic optic disk boundary extraction by the use of curvelet transform and deformable variational level set model. Pattern Recogn 45:2832–2842CrossRef Esmaeili M, Rabbani H, Dehnavi AM (2012) Automatic optic disk boundary extraction by the use of curvelet transform and deformable variational level set model. Pattern Recogn 45:2832–2842CrossRef
19.
Zurück zum Zitat Shahbeig S, Pourghassem H (2013) Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform. J Opt Soc Am A Opt Image Sci Vis 30:13–21CrossRefPubMed Shahbeig S, Pourghassem H (2013) Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform. J Opt Soc Am A Opt Image Sci Vis 30:13–21CrossRefPubMed
20.
Zurück zum Zitat Pereira C, Goncalves L, Ferreira M (2013) Optic disc detection in color fundus images using ant colony optimization. Med Biol Eng Comput 51:295–303CrossRefPubMed Pereira C, Goncalves L, Ferreira M (2013) Optic disc detection in color fundus images using ant colony optimization. Med Biol Eng Comput 51:295–303CrossRefPubMed
21.
Zurück zum Zitat Ramakanth SA, Babu RV (2014) Approximate nearest neighbour field based optic disk detection. Comput Med Imaging Graph 38:49–56CrossRefPubMed Ramakanth SA, Babu RV (2014) Approximate nearest neighbour field based optic disk detection. Comput Med Imaging Graph 38:49–56CrossRefPubMed
22.
Zurück zum Zitat Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32:720–727CrossRefPubMed Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32:720–727CrossRefPubMed
23.
Zurück zum Zitat Azuara-Blanco A, Harris A, Cantor L, Abreu M, Weinland M (1998) Effects of short term increase of intraocular pressure on optic disc cupping. Br J Ophthalmol 82:880–883CrossRefPubMedPubMedCentral Azuara-Blanco A, Harris A, Cantor L, Abreu M, Weinland M (1998) Effects of short term increase of intraocular pressure on optic disc cupping. Br J Ophthalmol 82:880–883CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Zhu X, Rangayyan RM, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina using the Hough transform for circles. J Digit Imaging 23:332–341CrossRefPubMed Zhu X, Rangayyan RM, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina using the Hough transform for circles. J Digit Imaging 23:332–341CrossRefPubMed
25.
Zurück zum Zitat Lu S (2011) Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging 30:2126–2133CrossRefPubMed Lu S (2011) Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging 30:2126–2133CrossRefPubMed
26.
Zurück zum Zitat Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LW, Marinho DR (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40:124–137CrossRefPubMed Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LW, Marinho DR (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40:124–137CrossRefPubMed
27.
Zurück zum Zitat Youssif AR, Ghalwash AZ, Ghoneim AR (2008) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging 27:11–18CrossRefPubMed Youssif AR, Ghalwash AZ, Ghoneim AR (2008) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging 27:11–18CrossRefPubMed
28.
Zurück zum Zitat Mahfouz AE, Fahmy AS (2010) Fast localization of the optic disc using projection of image features. IEEE Trans Image Process 19:3285–3289CrossRefPubMed Mahfouz AE, Fahmy AS (2010) Fast localization of the optic disc using projection of image features. IEEE Trans Image Process 19:3285–3289CrossRefPubMed
29.
Zurück zum Zitat Carmona EJ, Rincon M, Garcia-Feijoo J, Martinez-de-la-Casa JM (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43:243–259CrossRefPubMed Carmona EJ, Rincon M, Garcia-Feijoo J, Martinez-de-la-Casa JM (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43:243–259CrossRefPubMed
31.
Zurück zum Zitat Aquino A, Gegúndez ME, Marín D (2010) Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int J Biol Life Sci 8:353–358 Aquino A, Gegúndez ME, Marín D (2010) Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int J Biol Life Sci 8:353–358
32.
Zurück zum Zitat Akita K, Kuga H (1982) A computer method of understanding ocular fundus images. Pattern Recogn 15:431–443CrossRef Akita K, Kuga H (1982) A computer method of understanding ocular fundus images. Pattern Recogn 15:431–443CrossRef
33.
Zurück zum Zitat Chrástek R, Skokan M, Kubecka L, Wolf M, Donath K, Jan J, Michelson G, Niemann H (2004) Multimodal retinal image registration for optic disk segmentation. Methods Inf Med 43:336–342PubMed Chrástek R, Skokan M, Kubecka L, Wolf M, Donath K, Jan J, Michelson G, Niemann H (2004) Multimodal retinal image registration for optic disk segmentation. Methods Inf Med 43:336–342PubMed
34.
Zurück zum Zitat Kavitha D, Shenbaga Devi S (2005) Automatic detection of optic disc and exudates in retinal images. In: IEEE Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, Chennai. pp 501–506 Kavitha D, Shenbaga Devi S (2005) Automatic detection of optic disc and exudates in retinal images. In: IEEE Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, Chennai. pp 501–506
35.
Zurück zum Zitat Foracchia M, Grisan E, Ruggeri A (2004) Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 23:1189–1195CrossRefPubMed Foracchia M, Grisan E, Ruggeri A (2004) Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 23:1189–1195CrossRefPubMed
36.
Zurück zum Zitat Niemeijer M, Abramoff MD, van Ginneken B (2009) Fast detection of the optic disc and fovea in color fundus photographs. Med Image Anal 13:859–870CrossRefPubMedPubMedCentral Niemeijer M, Abramoff MD, van Ginneken B (2009) Fast detection of the optic disc and fovea in color fundus photographs. Med Image Anal 13:859–870CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Dehghani A, Moin M-S, Saghafi M (2012) Localization of the optic disc center in retinal images based on the Harris corner detector. Biomed Eng Lett 2:198–206CrossRef Dehghani A, Moin M-S, Saghafi M (2012) Localization of the optic disc center in retinal images based on the Harris corner detector. Biomed Eng Lett 2:198–206CrossRef
38.
Zurück zum Zitat Zhang D, Zhao Y (2016) Novel accurate and fast optic disc detection in retinal images with vessel distribution and directional characteristics. IEEE J Biomed Health Inform 20:333–342CrossRefPubMed Zhang D, Zhao Y (2016) Novel accurate and fast optic disc detection in retinal images with vessel distribution and directional characteristics. IEEE J Biomed Health Inform 20:333–342CrossRefPubMed
39.
Zurück zum Zitat Mendonca AM, Sousa A, Mendonca L, Campilho A (2013) Automatic localization of the optic disc by combining vascular and intensity information. Comput Med Imaging Graph 37:409–417CrossRefPubMed Mendonca AM, Sousa A, Mendonca L, Campilho A (2013) Automatic localization of the optic disc by combining vascular and intensity information. Comput Med Imaging Graph 37:409–417CrossRefPubMed
40.
Zurück zum Zitat Semashko AS, Krylov AS, Rodin AS (2011) Using blood vessels location information in optic disk segmentation. In: Maino G, Foresti GL (eds) Image analysis and processing—ICIAP 2011. Springer, Berlin, pp 384–393CrossRef Semashko AS, Krylov AS, Rodin AS (2011) Using blood vessels location information in optic disk segmentation. In: Maino G, Foresti GL (eds) Image analysis and processing—ICIAP 2011. Springer, Berlin, pp 384–393CrossRef
41.
Zurück zum Zitat Rangayyan RM, Zhu X, Ayres FJ, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina with Gabor filters and phase portrait analysis. J Digit Imaging 23:438–453CrossRefPubMedPubMedCentral Rangayyan RM, Zhu X, Ayres FJ, Ells AL (2010) Detection of the optic nerve head in fundus images of the retina with Gabor filters and phase portrait analysis. J Digit Imaging 23:438–453CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509CrossRefPubMed Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509CrossRefPubMed
44.
Zurück zum Zitat Alshayeji M, Al-Roomi SA, Abed S (2017) Optic disc detection in retinal fundus images using gravitational law-based edge detection. Med Biol Eng Comput 55:935–948CrossRefPubMed Alshayeji M, Al-Roomi SA, Abed S (2017) Optic disc detection in retinal fundus images using gravitational law-based edge detection. Med Biol Eng Comput 55:935–948CrossRefPubMed
45.
Zurück zum Zitat Rahebi J, Hardalaç F (2016) A new approach to optic disc detection in human retinal images using the firefly algorithm. Med Biol Eng Comput 54:453–461CrossRefPubMed Rahebi J, Hardalaç F (2016) A new approach to optic disc detection in human retinal images using the firefly algorithm. Med Biol Eng Comput 54:453–461CrossRefPubMed
46.
Zurück zum Zitat Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci. doi:10.1016/j.jocs.2017.02.006 Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci. doi:10.​1016/​j.​jocs.​2017.​02.​006
47.
Zurück zum Zitat Harangi B, Hajdu A (2015) Detection of the optic disc in fundus images by combining probability models. Comput Biol Med 65:10–24CrossRefPubMed Harangi B, Hajdu A (2015) Detection of the optic disc in fundus images by combining probability models. Comput Biol Med 65:10–24CrossRefPubMed
48.
Zurück zum Zitat Maity M, Das DK, Dhane DM, Chakraborty C, Maiti A (2016) Fusion of entropy-based thresholding and active contour model for detection of exudate and optic disc in color fundus images. J Med Biol Eng 36:795–809CrossRef Maity M, Das DK, Dhane DM, Chakraborty C, Maiti A (2016) Fusion of entropy-based thresholding and active contour model for detection of exudate and optic disc in color fundus images. J Med Biol Eng 36:795–809CrossRef
49.
Zurück zum Zitat Mary MCVS, Rajsingh EB, Jacob JKK, Anandhi D, Amato U, Selvan SE (2015) An empirical study on optic disc segmentation using an active contour model. Biomed Signal Process Control 18:19–29CrossRef Mary MCVS, Rajsingh EB, Jacob JKK, Anandhi D, Amato U, Selvan SE (2015) An empirical study on optic disc segmentation using an active contour model. Biomed Signal Process Control 18:19–29CrossRef
50.
Zurück zum Zitat Wu X, Dai B, Bu W (2016) Optic disc localization using directional models. IEEE Trans Image Process 25:4433–4442CrossRef Wu X, Dai B, Bu W (2016) Optic disc localization using directional models. IEEE Trans Image Process 25:4433–4442CrossRef
51.
Zurück zum Zitat Xiong L, Li H (2016) An approach to locate optic disc in retinal images with pathological changes. Comput Med Imaging Graph 47:40–50CrossRefPubMed Xiong L, Li H (2016) An approach to locate optic disc in retinal images with pathological changes. Comput Med Imaging Graph 47:40–50CrossRefPubMed
52.
Zurück zum Zitat Díaz-Pernil D, Fondón I, Peña-Cantillana F, Gutiérrez-Naranjo MA (2016) Fully automatized parallel segmentation of the optic disc in retinal fundus images. Pattern Recogn Lett 83:99–107CrossRef Díaz-Pernil D, Fondón I, Peña-Cantillana F, Gutiérrez-Naranjo MA (2016) Fully automatized parallel segmentation of the optic disc in retinal fundus images. Pattern Recogn Lett 83:99–107CrossRef
53.
Zurück zum Zitat Rodrigues LC, Marengoni M (2017) Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 36:39–49CrossRef Rodrigues LC, Marengoni M (2017) Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 36:39–49CrossRef
54.
Zurück zum Zitat Bharkad S (2017) Automatic segmentation of optic disk in retinal images. Biomed Signal Process Control 31:483–498CrossRef Bharkad S (2017) Automatic segmentation of optic disk in retinal images. Biomed Signal Process Control 31:483–498CrossRef
55.
Zurück zum Zitat Panda R, Puhan NB, Panda G (2017) Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybern Biomed Eng 37:466–476CrossRef Panda R, Puhan NB, Panda G (2017) Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybern Biomed Eng 37:466–476CrossRef
56.
Zurück zum Zitat Muangnak N, Aimmanee P, Makhanov S, Uyyanonvara B (2015) Vessel transform for automatic optic disk detection in retinal images. IET Image Process 9:743–750CrossRef Muangnak N, Aimmanee P, Makhanov S, Uyyanonvara B (2015) Vessel transform for automatic optic disk detection in retinal images. IET Image Process 9:743–750CrossRef
57.
Zurück zum Zitat Duanggate C, Uyyanonvara B, Makhanov SS, Barman S, Williamson T (2011) Parameter-free optic disc detection. Comput Med Imaging Graph 35:51–63CrossRefPubMed Duanggate C, Uyyanonvara B, Makhanov SS, Barman S, Williamson T (2011) Parameter-free optic disc detection. Comput Med Imaging Graph 35:51–63CrossRefPubMed
58.
Zurück zum Zitat Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300CrossRef Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300CrossRef
60.
Zurück zum Zitat Witkin A (1984) Scale-space filtering: a new approach to multi-scale description. In: ICASSP ‘84. IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, pp 150–153 Witkin A (1984) Scale-space filtering: a new approach to multi-scale description. In: ICASSP ‘84. IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, pp 150–153
61.
Zurück zum Zitat Lindeberg T (1994) Scale-space theory in computer vision. Springer US, USCrossRef Lindeberg T (1994) Scale-space theory in computer vision. Springer US, USCrossRef
63.
Zurück zum Zitat Sekhar S, Al-Nuaimy W, Nandi AK (2008) Automated localisation of retinal optic disk using Hough transform. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, pp 1577–1580 Sekhar S, Al-Nuaimy W, Nandi AK (2008) Automated localisation of retinal optic disk using Hough transform. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, pp 1577–1580
64.
Zurück zum Zitat Ravishankar S, Jain A, Mittal A (2009) Automated feature extraction for early detection of diabetic retinopathy in fundus images. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, pp 210–217 Ravishankar S, Jain A, Mittal A (2009) Automated feature extraction for early detection of diabetic retinopathy in fundus images. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, pp 210–217
65.
Zurück zum Zitat Welfer D, Scharcanski J, Marinho DR (2013) A morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recogn Lett 34:476–485CrossRef Welfer D, Scharcanski J, Marinho DR (2013) A morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recogn Lett 34:476–485CrossRef
66.
Zurück zum Zitat Akram MU, Tariq A, Khan SA, Javed MY (2014) Automated detection of exudates and macula for grading of diabetic macular edema. Comput Methods Prog Biomed 114:141–152CrossRef Akram MU, Tariq A, Khan SA, Javed MY (2014) Automated detection of exudates and macula for grading of diabetic macular edema. Comput Methods Prog Biomed 114:141–152CrossRef
68.
Zurück zum Zitat Ibrahim S, Chowriappa P, Dua S, Acharya UR, Noronha K, Bhandary S, Mugasa H (2015) Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Med Biol Eng Comput 53:1345–1360CrossRefPubMed Ibrahim S, Chowriappa P, Dua S, Acharya UR, Noronha K, Bhandary S, Mugasa H (2015) Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Med Biol Eng Comput 53:1345–1360CrossRefPubMed
69.
Zurück zum Zitat Mookiah MR, Acharya UR, Chandran V, Martis RJ, Tan JH, Koh JE, Chua CK, Tong L, Laude A (2015) Application of higher-order spectra for automated grading of diabetic maculopathy. Med Biol Eng Comput 53:1319–1331CrossRefPubMed Mookiah MR, Acharya UR, Chandran V, Martis RJ, Tan JH, Koh JE, Chua CK, Tong L, Laude A (2015) Application of higher-order spectra for automated grading of diabetic maculopathy. Med Biol Eng Comput 53:1319–1331CrossRefPubMed
70.
Zurück zum Zitat ter Haar Romeny BM, Bekkers EJ, Zhang J, Abbasi-Sureshjani S, Huang F, Duits R, Dashtbozorg B, Berendschot TTJM, Smit-Ockeloen I, Eppenhof KAJ, Feng J, Hannink J, Schouten J, Tong M, Wu H, van Triest HW, Zhu S, Chen D, He W, Xu L, Han P, Kang Y (2016) Brain-inspired algorithms for retinal image analysis. Mach Vis Appl 27:1117–1135CrossRef ter Haar Romeny BM, Bekkers EJ, Zhang J, Abbasi-Sureshjani S, Huang F, Duits R, Dashtbozorg B, Berendschot TTJM, Smit-Ockeloen I, Eppenhof KAJ, Feng J, Hannink J, Schouten J, Tong M, Wu H, van Triest HW, Zhu S, Chen D, He W, Xu L, Han P, Kang Y (2016) Brain-inspired algorithms for retinal image analysis. Mach Vis Appl 27:1117–1135CrossRef
71.
Zurück zum Zitat Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput. doi:10.1007/s11517-017-1638-6 Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput. doi:10.​1007/​s11517-017-1638-6
72.
Zurück zum Zitat Prasanna P, Jain S, Bhagat N, Madabhushi A (2013) Decision support system for detection of diabetic retinopathy using smartphones. In: 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops. Venice 2013:176–179 Prasanna P, Jain S, Bhagat N, Madabhushi A (2013) Decision support system for detection of diabetic retinopathy using smartphones. In: 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops. Venice 2013:176–179
74.
Zurück zum Zitat Bastawrous A, Giardini ME, Bolster NM, Peto T, Shah N, Livingstone IA, Weiss HA, Hu S, Rono H, Kuper H, Burton M (2016) Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya. JAMA Ophthalmol 134:151–158CrossRefPubMedPubMedCentral Bastawrous A, Giardini ME, Bolster NM, Peto T, Shah N, Livingstone IA, Weiss HA, Hu S, Rono H, Kuper H, Burton M (2016) Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya. JAMA Ophthalmol 134:151–158CrossRefPubMedPubMedCentral
Metadaten
Titel
Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis
verfasst von
Nittaya Muangnak
Pakinee Aimmanee
Stanislav Makhanov
Publikationsdatum
24.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 4/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1705-z

Weitere Artikel der Ausgabe 4/2018

Medical & Biological Engineering & Computing 4/2018 Zur Ausgabe