Skip to main content
Erschienen in: Wireless Networks 7/2022

01.07.2022 | Original Paper

B-GWO based multi-UAV deployment and power allocation in NOMA assisted wireless networks

verfasst von: Aishwarya Gupta, Aditya Trivedi, Binod Prasad

Erschienen in: Wireless Networks | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unmanned Aerial Vehicles (UAVs) deployed as flying base stations is a promising technology for enhancing the quality of service (QoS) and quick recovery from unexpected damages that may occur to the terrestrial networks. Considering UAVs as aerial base stations for downlink communication, we focus on the joint optimization of the UAVs deployment and power allocation of users with the aim of maximizing the sum-rate of the network, subject to the QoS requirement of users. Initially, the ground users are divided into clusters by K-means clustering, where each cluster is served by a single UAV. Then, the clusters are divided into multiple sub-clusters, each having a pair of near and far users. Orthogonal Multiple Access (OMA) is applied among sub-clusters, and NOMA is applied to intra sub-cluster users. Lastly, we solve the non-convex optimization problem using the proposed Balanced-Grey Wolf Optimization (B-GWO) algorithm. Numerical results prove that the performance obtained by B-GWO-NOMA is significantly better than GWO-NOMA, PSO-NOMA, B-GWO-OMA, GWO-OMA, and PSO-OMA methods. Moreover, the accuracy of the proposed B-GWO-NOMA is verified by comparing it with the exhaustive search.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The application of B-GWO in other fields of UAV-enabled wireless networks will be explored in future work.
 
Literatur
1.
Zurück zum Zitat Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2019). A tutorial on uavs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & Tutorials, 21(3), 2334–2360.CrossRef Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2019). A tutorial on uavs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & Tutorials, 21(3), 2334–2360.CrossRef
2.
Zurück zum Zitat Fu, S., Tang, Y., Zhang, N., Zhao, L., Wu, S., & Jian, X. (2020). Joint unmanned aerial vehicle (uav) deployment and power control for internet of things networks. IEEE Transactions on Vehicular Technology, 69(4), 4367–4378.CrossRef Fu, S., Tang, Y., Zhang, N., Zhao, L., Wu, S., & Jian, X. (2020). Joint unmanned aerial vehicle (uav) deployment and power control for internet of things networks. IEEE Transactions on Vehicular Technology, 69(4), 4367–4378.CrossRef
3.
Zurück zum Zitat Zhang, C., Zhang, L., Zhu, L., Zhangb, T., Xiao, Z., & Xia, X. G. (2021). 3d deployment of multiple uav-mounted base stations for uav communications. IEEE Transactions on Communications, 69, 2473–2488.CrossRef Zhang, C., Zhang, L., Zhu, L., Zhangb, T., Xiao, Z., & Xia, X. G. (2021). 3d deployment of multiple uav-mounted base stations for uav communications. IEEE Transactions on Communications, 69, 2473–2488.CrossRef
4.
Zurück zum Zitat Bai, T., Pan, C., Wang, J., Deng, Y., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2020). Dynamic aerial base station placement for minimum-delay communications. IEEE Internet of Things Journal, 8, 1623–1635.CrossRef Bai, T., Pan, C., Wang, J., Deng, Y., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2020). Dynamic aerial base station placement for minimum-delay communications. IEEE Internet of Things Journal, 8, 1623–1635.CrossRef
5.
Zurück zum Zitat Li, X., Yao, H., Wang, J., Xu, X., Jiang, C., & Hanzo, L. (2019). A near-optimal uav-aided radio coverage strategy for dense urban areas. IEEE Transactions on Vehicular Technology, 68(9), 9098–9109.CrossRef Li, X., Yao, H., Wang, J., Xu, X., Jiang, C., & Hanzo, L. (2019). A near-optimal uav-aided radio coverage strategy for dense urban areas. IEEE Transactions on Vehicular Technology, 68(9), 9098–9109.CrossRef
6.
Zurück zum Zitat Liaqat, M., Noordin, K. A., Latef, T. A., & Dimyati, K. (2020). Power-domain non orthogonal multiple access (pd-noma) in cooperative networks: an overview. Wireless Networks, 26(1), 181–203.CrossRef Liaqat, M., Noordin, K. A., Latef, T. A., & Dimyati, K. (2020). Power-domain non orthogonal multiple access (pd-noma) in cooperative networks: an overview. Wireless Networks, 26(1), 181–203.CrossRef
7.
Zurück zum Zitat Nasir, A. A., Tuan, H. D., Duong, T. Q., & Poor, H. V. (2019). Uav-enabled communication using noma. IEEE Transactions on Communications, 67(7), 5126–5138.CrossRef Nasir, A. A., Tuan, H. D., Duong, T. Q., & Poor, H. V. (2019). Uav-enabled communication using noma. IEEE Transactions on Communications, 67(7), 5126–5138.CrossRef
9.
Zurück zum Zitat Zhang, X., Zhang, J., Xiong, J., Zhou, L., & Wei, J. (2020). Energy-efficient multi-uav-enabled multiaccess edge computing incorporating noma. IEEE Internet of Things Journal, 7(6), 5613–5627.CrossRef Zhang, X., Zhang, J., Xiong, J., Zhou, L., & Wei, J. (2020). Energy-efficient multi-uav-enabled multiaccess edge computing incorporating noma. IEEE Internet of Things Journal, 7(6), 5613–5627.CrossRef
10.
Zurück zum Zitat Glover, F. W., & Kochenberger, G. A. (2006). Handbook of metaheuristics (Vol. 57). Springer Science & Business Media. Glover, F. W., & Kochenberger, G. A. (2006). Handbook of metaheuristics (Vol. 57). Springer Science & Business Media.
11.
Zurück zum Zitat Salgotra, R., Singh, U., Singh, S., & Mittal, N. (2021). A hybridized multi-algorithm strategy for engineering optimization problems. Knowledge-Based Systems, 217, 106790.CrossRef Salgotra, R., Singh, U., Singh, S., & Mittal, N. (2021). A hybridized multi-algorithm strategy for engineering optimization problems. Knowledge-Based Systems, 217, 106790.CrossRef
12.
Zurück zum Zitat Alzenad, M., El-Keyi, A., Lagum, F., & Yanikomeroglu, H. (2017). 3-d placement of an unmanned aerial vehicle base station (uav-bs) for energy-efficient maximal coverage. IEEE Wireless Communications Letters, 6(4), 434–437.CrossRef Alzenad, M., El-Keyi, A., Lagum, F., & Yanikomeroglu, H. (2017). 3-d placement of an unmanned aerial vehicle base station (uav-bs) for energy-efficient maximal coverage. IEEE Wireless Communications Letters, 6(4), 434–437.CrossRef
13.
Zurück zum Zitat Sohail, M. F., Leow, C. Y., & Won, S. (2022). A cat swarm optimization based transmission power minimization for an aerial noma communication system. Vehicular Communications, 33, 100426.CrossRef Sohail, M. F., Leow, C. Y., & Won, S. (2022). A cat swarm optimization based transmission power minimization for an aerial noma communication system. Vehicular Communications, 33, 100426.CrossRef
14.
Zurück zum Zitat Nguyen, MT., & Le, LB. (2019). Noma user pairing and UAV placement in UAV-based wireless networks. In ICC 2019-2019 IEEE international conference on communications (ICC) (pp 1–6), IEEE Nguyen, MT., & Le, LB. (2019). Noma user pairing and UAV placement in UAV-based wireless networks. In ICC 2019-2019 IEEE international conference on communications (ICC) (pp 1–6), IEEE
15.
Zurück zum Zitat Kalantari, E., Yanikomeroglu, H., Yongacoglu, A. (2016). On the number and 3d placement of drone base stations in wireless cellular networks. In 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp 1–6), IEEE Kalantari, E., Yanikomeroglu, H., Yongacoglu, A. (2016). On the number and 3d placement of drone base stations in wireless cellular networks. In 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp 1–6), IEEE
16.
Zurück zum Zitat Zhong, X., Huo, Y., Dong, X., & Liang, Z. (2020). Qos-compliant 3-d deployment optimization strategy for UAV base stations. IEEE Systems Journal, 15, 1795–1803.CrossRef Zhong, X., Huo, Y., Dong, X., & Liang, Z. (2020). Qos-compliant 3-d deployment optimization strategy for UAV base stations. IEEE Systems Journal, 15, 1795–1803.CrossRef
17.
Zurück zum Zitat Liu, X., Liu, Y., & Chen, Y. (2019). Reinforcement learning in multiple-UAV networks: Deployment and movement design. IEEE Transactions on Vehicular Technology, 68(8), 8036–8049.CrossRef Liu, X., Liu, Y., & Chen, Y. (2019). Reinforcement learning in multiple-UAV networks: Deployment and movement design. IEEE Transactions on Vehicular Technology, 68(8), 8036–8049.CrossRef
18.
Zurück zum Zitat Liu, X., Liu, Y., Chen, Y., & Hanzo, L. (2019). Trajectory design and power control for multi-UAV assisted wireless networks: A machine learning approach. IEEE Transactions on Vehicular Technology, 68(8), 7957–7969.CrossRef Liu, X., Liu, Y., Chen, Y., & Hanzo, L. (2019). Trajectory design and power control for multi-UAV assisted wireless networks: A machine learning approach. IEEE Transactions on Vehicular Technology, 68(8), 7957–7969.CrossRef
20.
Zurück zum Zitat Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef
21.
Zurück zum Zitat Yu, X. W., Huang, L. P., Liu, Y., Zhang, K., Li, P., & Li, Y. (2022) Wsn node location based on beetle antennae search to improve the gray wolf algorithm. Wireless Networks, 28(2), 1–11. Yu, X. W., Huang, L. P., Liu, Y., Zhang, K., Li, P., & Li, Y. (2022) Wsn node location based on beetle antennae search to improve the gray wolf algorithm. Wireless Networks, 28(2), 1–11.
22.
Zurück zum Zitat Otair, M., Ibrahim, O. T., Abualigah, L., Altalhi, M., & Sumari, P. (2022). An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks. Wireless Networks, 28, 721–744.CrossRef Otair, M., Ibrahim, O. T., Abualigah, L., Altalhi, M., & Sumari, P. (2022). An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks. Wireless Networks, 28, 721–744.CrossRef
23.
Zurück zum Zitat Aziz, A., Osamy, W., Khedr, A. M., El-Sawy, A. A., & Singh, K. (2020). Grey wolf based compressive sensing scheme for data gathering in iot based heterogeneous WSNs. Wireless Networks, 26(5), 1–24. Aziz, A., Osamy, W., Khedr, A. M., El-Sawy, A. A., & Singh, K. (2020). Grey wolf based compressive sensing scheme for data gathering in iot based heterogeneous WSNs. Wireless Networks, 26(5), 1–24.
24.
Zurück zum Zitat Zhang, X., & Duan, L. (2017). Optimization of emergency uav deployment for providing wireless coverage. In GLOBECOM 2017-2017 IEEE Global Communications Conference (pp 1–6), IEEE. Zhang, X., & Duan, L. (2017). Optimization of emergency uav deployment for providing wireless coverage. In GLOBECOM 2017-2017 IEEE Global Communications Conference (pp 1–6), IEEE.
25.
Zurück zum Zitat Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal lap altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572.CrossRef Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal lap altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572.CrossRef
26.
Zurück zum Zitat Zhang, H., Zhang, D. K., Meng, W. X., & Li, C. (2016). User pairing algorithm with sic in non-orthogonal multiple access system. In 2016 IEEE international conference on communications (ICC), (pp 1–6), IEEE. Zhang, H., Zhang, D. K., Meng, W. X., & Li, C. (2016). User pairing algorithm with sic in non-orthogonal multiple access system. In 2016 IEEE international conference on communications (ICC), (pp 1–6), IEEE.
27.
Zurück zum Zitat Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013). Concept and practical considerations of non-orthogonal multiple access (noma) for future radio access. In 2013 International Symposium on Intelligent Signal Processing and Communication Systems (pp 770–774), IEEE. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013). Concept and practical considerations of non-orthogonal multiple access (noma) for future radio access. In 2013 International Symposium on Intelligent Signal Processing and Communication Systems (pp 770–774), IEEE.
28.
Zurück zum Zitat He, X., Yu, W., Xu, H., Lin, J., Yang, X., Lu, C., & Fu, X. (2018). Towards 3d deployment of uav base stations in uneven terrain. In 2018 27th international conference on computer communication and networks (ICCCN) (pp 1–9), IEEE. He, X., Yu, W., Xu, H., Lin, J., Yang, X., Lu, C., & Fu, X. (2018). Towards 3d deployment of uav base stations in uneven terrain. In 2018 27th international conference on computer communication and networks (ICCCN) (pp 1–9), IEEE.
29.
Zurück zum Zitat Long, N. Q., Dang, V. H., So-In, C., Nguyen, A. N., & Tran, H., et al. (2021). Physical layer security in cognitive radio networks for iot using uav with reconfigurable intelligent surfaces. In 2021 18th international joint conference on computer science and software engineering (JCSSE) (pp 1–5), IEEE. Long, N. Q., Dang, V. H., So-In, C., Nguyen, A. N., & Tran, H., et al. (2021). Physical layer security in cognitive radio networks for iot using uav with reconfigurable intelligent surfaces. In 2021 18th international joint conference on computer science and software engineering (JCSSE) (pp 1–5), IEEE.
Metadaten
Titel
B-GWO based multi-UAV deployment and power allocation in NOMA assisted wireless networks
verfasst von
Aishwarya Gupta
Aditya Trivedi
Binod Prasad
Publikationsdatum
01.07.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-03045-2

Weitere Artikel der Ausgabe 7/2022

Wireless Networks 7/2022 Zur Ausgabe

Neuer Inhalt