Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2014

01.09.2014

Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel: A Computational Investigation

verfasst von: M. Grujicic, J. S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, B. A. Cheeseman

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Grujicic, S. Ramaswami, J.S. Snipes, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Multi-physics Modeling and Simulations of MIL A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process, J. Mater. Eng. Perform., 2013, 22, p 2950–2969CrossRef M. Grujicic, S. Ramaswami, J.S. Snipes, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Multi-physics Modeling and Simulations of MIL A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process, J. Mater. Eng. Perform., 2013, 22, p 2950–2969CrossRef
2.
Zurück zum Zitat M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI, 1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform., 2012, 22, p 1209–1222CrossRef M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI, 1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform., 2012, 22, p 1209–1222CrossRef
3.
Zurück zum Zitat M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C.F. Yen, B.A. Cheeseman, and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22, p 1541–1557CrossRef M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C.F. Yen, B.A. Cheeseman, and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22, p 1541–1557CrossRef
4.
Zurück zum Zitat M.G.H. Wells, R.K. Weiss, and J.S. Montgomery, “LAV Armor Plate Study”, MTL TR 92-26, U.S. Army Materials Technology Laboratory, Watertown, MA, 1992 M.G.H. Wells, R.K. Weiss, and J.S. Montgomery, “LAV Armor Plate Study”, MTL TR 92-26, U.S. Army Materials Technology Laboratory, Watertown, MA, 1992
5.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224, p 1–16CrossRef M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224, p 1–16CrossRef
6.
Zurück zum Zitat M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224, p 609–625CrossRef M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224, p 609–625CrossRef
7.
Zurück zum Zitat M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19, p 672–684CrossRef M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19, p 672–684CrossRef
8.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20, p 11–23CrossRef M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20, p 11–23CrossRef
9.
Zurück zum Zitat M. Grujicic, G. Arakere, C.F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20, p 1097–1108CrossRef M. Grujicic, G. Arakere, C.F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20, p 1097–1108CrossRef
10.
Zurück zum Zitat M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRef M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRef
11.
Zurück zum Zitat M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796CrossRef M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796CrossRef
12.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRef M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRef
13.
Zurück zum Zitat M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRef M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRef
14.
Zurück zum Zitat M. Gore, M. Grujicic, and G.B. Olson, Thermally Activated Grain Boundary Motion Through a Dispersion of Particles, Acta Metall., 1989, 37, p 2849–2854CrossRef M. Gore, M. Grujicic, and G.B. Olson, Thermally Activated Grain Boundary Motion Through a Dispersion of Particles, Acta Metall., 1989, 37, p 2849–2854CrossRef
15.
Zurück zum Zitat W.S. Owen and M. Grujicic, Encyclopedia of Materials Science and Engineering, Section—“Plastic Deformation: Thermally Activated Glide of Dislocations”, Pergamon Press, Oxford, UK, 1986, p 3540–3543 W.S. Owen and M. Grujicic, Encyclopedia of Materials Science and Engineering, Section—“Plastic Deformation: Thermally Activated Glide of Dislocations”, Pergamon Press, Oxford, UK, 1986, p 3540–3543
16.
Zurück zum Zitat R.L. Fleischer, Substitutional Solution Hardening, Acta Metall. Mater., 1963, 11, p 203–209CrossRef R.L. Fleischer, Substitutional Solution Hardening, Acta Metall. Mater., 1963, 11, p 203–209CrossRef
17.
Zurück zum Zitat R. Labusch, A Statistical Theory of Solid Solution Hardening, Phys. Status Solidi, 1970, 41, p 659–669CrossRef R. Labusch, A Statistical Theory of Solid Solution Hardening, Phys. Status Solidi, 1970, 41, p 659–669CrossRef
18.
Zurück zum Zitat M.F. Ashby, On the Orowan Stress, M.F. Ashby, Ed., The M.I.T. Press, Cambridge, MA, 1969, p 113–131 M.F. Ashby, On the Orowan Stress, M.F. Ashby, Ed., The M.I.T. Press, Cambridge, MA, 1969, p 113–131
19.
Zurück zum Zitat M. Takahashi and H.K.D.H. Bhadeshia, Model for Transition from Upper Bainite to Lower Bainite, Mater. Sci. Technol., 1990, 6, p 592–603CrossRef M. Takahashi and H.K.D.H. Bhadeshia, Model for Transition from Upper Bainite to Lower Bainite, Mater. Sci. Technol., 1990, 6, p 592–603CrossRef
20.
Zurück zum Zitat A.S. Keh and S. Weissman, Deformation Structure in Body-Centered Cubic Metals, A.S. Keh and S. Weissman, Ed., Interscience, New York, 1963, p 231–300 A.S. Keh and S. Weissman, Deformation Structure in Body-Centered Cubic Metals, A.S. Keh and S. Weissman, Ed., Interscience, New York, 1963, p 231–300
21.
Zurück zum Zitat W.C. Leslie, J.T. Michalak, and F.W. Aul, The Annealing of Cold-Worked Iron, W.C. Leslie, J.T. Michalak, and F.W. Aul, Ed., Interscience, Detroit, 1961, p 119–212 W.C. Leslie, J.T. Michalak, and F.W. Aul, The Annealing of Cold-Worked Iron, W.C. Leslie, J.T. Michalak, and F.W. Aul, Ed., Interscience, Detroit, 1961, p 119–212
22.
Zurück zum Zitat R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing Co., Boston, MA, 1992 R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing Co., Boston, MA, 1992
23.
Zurück zum Zitat M.F. Ashby and D.R.H. Jones, Engineering Materials: An Introduction to Their Properties and Application, Pergamon Press, New York, 1980 M.F. Ashby and D.R.H. Jones, Engineering Materials: An Introduction to Their Properties and Application, Pergamon Press, New York, 1980
24.
Zurück zum Zitat J.S. Unfried, C.M. Garzón, and J.E. Giraldo, Numerical and Experimental Analysis of Microstructure Evolution During Arc Welding in Armor Plate Steels, J. Mater. Process. Technol., 2009, 209, p 1688–1700CrossRef J.S. Unfried, C.M. Garzón, and J.E. Giraldo, Numerical and Experimental Analysis of Microstructure Evolution During Arc Welding in Armor Plate Steels, J. Mater. Process. Technol., 2009, 209, p 1688–1700CrossRef
26.
Zurück zum Zitat A.M. Sarosiek, M. Grujicic, and W.S. Owen, The Importance of the Heterogeneity of the Deformation in the Ferrite Phase of a Dual-Phase Steel, Scripta Metall., 1984, 8, p 353–356CrossRef A.M. Sarosiek, M. Grujicic, and W.S. Owen, The Importance of the Heterogeneity of the Deformation in the Ferrite Phase of a Dual-Phase Steel, Scripta Metall., 1984, 8, p 353–356CrossRef
27.
Zurück zum Zitat G.G. Corbett, S.R. Reid, and W. Johnson, Impact Loading of Plates and Shells by Free-Flying Projectiles: A Review, Int. J. Impact Eng., 1996, 18, p 141–230CrossRef G.G. Corbett, S.R. Reid, and W. Johnson, Impact Loading of Plates and Shells by Free-Flying Projectiles: A Review, Int. J. Impact Eng., 1996, 18, p 141–230CrossRef
28.
Zurück zum Zitat K.S. Kumar, D. Singh, and T. Bhat, Studies on Aluminum Armour Plates Impacted by Deformable and Non-deformable Projectiles, Mater. Sci. Forum, 2004, 465–466, p 79–84CrossRef K.S. Kumar, D. Singh, and T. Bhat, Studies on Aluminum Armour Plates Impacted by Deformable and Non-deformable Projectiles, Mater. Sci. Forum, 2004, 465–466, p 79–84CrossRef
29.
Zurück zum Zitat T. Børvik, O.S. Hopperstad, and K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions, Int. J. Impact Eng., 2010, 37, p 537–551CrossRef T. Børvik, O.S. Hopperstad, and K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions, Int. J. Impact Eng., 2010, 37, p 537–551CrossRef
30.
Zurück zum Zitat T. Børvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, and M. Langseth, Perforation of AA5083-H116 Aluminium Plates with Conical-Nose Steel Projectiles—Calculations, Int. J. Impact Eng., 2009, 36, p 426–437CrossRef T. Børvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, and M. Langseth, Perforation of AA5083-H116 Aluminium Plates with Conical-Nose Steel Projectiles—Calculations, Int. J. Impact Eng., 2009, 36, p 426–437CrossRef
31.
Zurück zum Zitat M.R. Edwards and A. Mathewson, The Ballistic Properties of Tool Steel as a Potential Improvised Armor Plate, Int. J. Impact Eng., 1997, 19, p 297–309CrossRef M.R. Edwards and A. Mathewson, The Ballistic Properties of Tool Steel as a Potential Improvised Armor Plate, Int. J. Impact Eng., 1997, 19, p 297–309CrossRef
32.
Zurück zum Zitat M.J. Forrestal, V.K. Luk, and N.S. Brar, Penetration of Aluminum Armor Plates with Conical-Nose Projectiles, Mechanics, 1990, 10, p 97–105 M.J. Forrestal, V.K. Luk, and N.S. Brar, Penetration of Aluminum Armor Plates with Conical-Nose Projectiles, Mechanics, 1990, 10, p 97–105
33.
Zurück zum Zitat A.J. Piekutowski, M.J. Forrestal, K.L. Poormon, and T.L. Warren, Ogive-Nose Steel Rods at Normal, Int. J. Impact Eng., 1996, 18, p 877–887CrossRef A.J. Piekutowski, M.J. Forrestal, K.L. Poormon, and T.L. Warren, Ogive-Nose Steel Rods at Normal, Int. J. Impact Eng., 1996, 18, p 877–887CrossRef
34.
Zurück zum Zitat T. Børvik, A.H. Clausen, O.S. Hopperstad, and M. Langseth, Perforation of AA5083-H116 Aluminium Plates with Conical-Nose Steel Projectiles—Experimental Study, Int. J. Impact Eng., 2004, 30, p 367–384CrossRef T. Børvik, A.H. Clausen, O.S. Hopperstad, and M. Langseth, Perforation of AA5083-H116 Aluminium Plates with Conical-Nose Steel Projectiles—Experimental Study, Int. J. Impact Eng., 2004, 30, p 367–384CrossRef
35.
Zurück zum Zitat A.H. Chausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Tore Flow and Fracture Characteristics of Aluminium Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng., 2004, A364, p 260–272 A.H. Chausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Tore Flow and Fracture Characteristics of Aluminium Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng., 2004, A364, p 260–272
36.
Zurück zum Zitat T. Børvik, J.R. Leinum, J.K. Solberg, O.S. Hopperstad, and M. Langseth, Observations on Shear Plug Formation in Weldox 460 E Steel Plates Impacted by Blunt-Nosed Projectiles, Int. J. Impact Eng., 2001, 25, p 553–572CrossRef T. Børvik, J.R. Leinum, J.K. Solberg, O.S. Hopperstad, and M. Langseth, Observations on Shear Plug Formation in Weldox 460 E Steel Plates Impacted by Blunt-Nosed Projectiles, Int. J. Impact Eng., 2001, 25, p 553–572CrossRef
37.
Zurück zum Zitat A.P. Rybakov, Spall in Non-one-dimensional Shock Waves, Int. J. Impact Eng., 2000, 24, p 1041–1082CrossRef A.P. Rybakov, Spall in Non-one-dimensional Shock Waves, Int. J. Impact Eng., 2000, 24, p 1041–1082CrossRef
38.
Zurück zum Zitat M. Grujicic, G.B. Olson, and W.S. Owen, Kinetics of Martensitic Interface Motion, Proc. ICOMAT-82, Leuven, Belgium, J. Physique, 1982, 43(Suppl. 12), pp. C4-173–179 M. Grujicic, G.B. Olson, and W.S. Owen, Kinetics of Martensitic Interface Motion, Proc. ICOMAT-82, Leuven, Belgium, J. Physique, 1982, 43(Suppl. 12), pp. C4-173–179
39.
Zurück zum Zitat M. Grujicic and G. Haidemenopoulos, Treatment of Paraequilibrium Thermodynamics in an AF1410 Steel Using the Thermo-Calc Software and Database, Calphad, 1988, 12(3), pp. 219–224 M. Grujicic and G. Haidemenopoulos, Treatment of Paraequilibrium Thermodynamics in an AF1410 Steel Using the Thermo-Calc Software and Database, Calphad, 1988, 12(3), pp. 219–224
40.
Zurück zum Zitat M. Grujicic, I.J. Wang, and W.S. Owen, On the Formation of Duplex Precipitate Phases in an Ultra-low Carbon Micro-alloyed Steel, Calphad, 1988, 12(3), pp. 261–275 M. Grujicic, I.J. Wang, and W.S. Owen, On the Formation of Duplex Precipitate Phases in an Ultra-low Carbon Micro-alloyed Steel, Calphad, 1988, 12(3), pp. 261–275
41.
Zurück zum Zitat M. Grujicic, G. Cao, and G.M. Fadel, “Effective Materials Properties: Determination and Application in Mechanical Design and Optimization,” J. Mater.: Des. Appl., 2002, 215, pp. 225–234 M. Grujicic, G. Cao, and G.M. Fadel, “Effective Materials Properties: Determination and Application in Mechanical Design and Optimization,” J. Mater.: Des. Appl., 2002, 215, pp. 225–234
Metadaten
Titel
Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel: A Computational Investigation
verfasst von
M. Grujicic
J. S. Snipes
R. Galgalikar
S. Ramaswami
R. Yavari
C.-F. Yen
B. A. Cheeseman
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1090-9

Weitere Artikel der Ausgabe 9/2014

Journal of Materials Engineering and Performance 9/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.