Skip to main content
Erschienen in: Meccanica 4-5/2018

14.09.2017

Bending of circular nanoplates with consideration of surface effects

verfasst von: Ying Yang, Jiaqi Zou, Kang Yong Lee, Xian-Fang Li

Erschienen in: Meccanica | Ausgabe 4-5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface effects play a significant role in affecting mechanical properties of micro- and nanosized materials and structures. This paper studies the bending of nanoplates with consideration of surface effects. Surface effects including surface elasticity and surface residual stress are incorporated into the conventional Kirchhoff theory of thin plates. Two typical cases including a concentrated force at the plate center and uniformly distributed loading over a plate surface are analyzed. Explicit expressions for the deflection of simply supported and clamped circular nanoplates are obtained. Bending moments at the plate center exhibit logarithmic singularity for a concentrated force at the center. When ignoring the surface effects, the classical deflections of circular thin plates are recovered. A comparison of the deflections with and without the surface effects clarifies a significant influence of surface effects on the bending behaviors of nanoplates. Surface effects diminish the bending moments and enhance the load-carrying capacity of a nanoplate. Singularity of elastic fields at the plate center is discussed. The obtained results provide helpful guidelines for design and application of graphene and other microscopic structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Jiang JW, Wang BS, Wang JS et al (2015) A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance. J Phys Condens Matter 27:083001ADSCrossRef Jiang JW, Wang BS, Wang JS et al (2015) A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance. J Phys Condens Matter 27:083001ADSCrossRef
3.
Zurück zum Zitat Wang YF, Liao JH, McBride SP et al (2015) Strong resistance to bending observed for nanoparticle membranes. Nano Lett 15:6732–6737ADSCrossRef Wang YF, Liao JH, McBride SP et al (2015) Strong resistance to bending observed for nanoparticle membranes. Nano Lett 15:6732–6737ADSCrossRef
4.
Zurück zum Zitat Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388ADSCrossRef Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388ADSCrossRef
5.
Zurück zum Zitat Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRef Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRef
6.
Zurück zum Zitat Yoon HJ, Yang JH, Zhou Z et al (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B 157:310–313CrossRef Yoon HJ, Yang JH, Zhou Z et al (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B 157:310–313CrossRef
7.
Zurück zum Zitat Ahn JH, Hong BH (2014) Graphene for displays that bend. Nat Nanotechnol 9:737–738ADSCrossRef Ahn JH, Hong BH (2014) Graphene for displays that bend. Nat Nanotechnol 9:737–738ADSCrossRef
8.
Zurück zum Zitat Berinskii IE, Krivtsov AM, Kudarova AM (2014) Bending stiffness of a graphene sheet. Phys Mesomech 17:356–364CrossRef Berinskii IE, Krivtsov AM, Kudarova AM (2014) Bending stiffness of a graphene sheet. Phys Mesomech 17:356–364CrossRef
9.
Zurück zum Zitat Jomehzadeh E, Pugno NM (2015) Bending stiffening of graphene and other 2D materials via controlled rippling. Compos Part B 83:194–202CrossRef Jomehzadeh E, Pugno NM (2015) Bending stiffening of graphene and other 2D materials via controlled rippling. Compos Part B 83:194–202CrossRef
10.
Zurück zum Zitat Polyzos I, Bianchi M, Rizzi L et al (2015) Suspended monolayer graphene under true uniaxial deformation. Nanoscale 7:13033–13042ADSCrossRef Polyzos I, Bianchi M, Rizzi L et al (2015) Suspended monolayer graphene under true uniaxial deformation. Nanoscale 7:13033–13042ADSCrossRef
11.
Zurück zum Zitat Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82:535–537ADSCrossRef Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82:535–537ADSCrossRef
12.
Zurück zum Zitat Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46:1–38ADSCrossRef Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46:1–38ADSCrossRef
13.
Zurück zum Zitat Ibach H (1997) The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep 29:195–263ADSCrossRef Ibach H (1997) The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep 29:195–263ADSCrossRef
14.
Zurück zum Zitat Jing G, Duan H, Sun X et al (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73:235409ADSCrossRef Jing G, Duan H, Sun X et al (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73:235409ADSCrossRef
15.
Zurück zum Zitat Cuenot S, Fretigny C, Demoustier-Champagne S et al (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410ADSCrossRef Cuenot S, Fretigny C, Demoustier-Champagne S et al (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410ADSCrossRef
16.
Zurück zum Zitat Wang GF, Feng XQ (2007) Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl Phys Lett 90:231904ADSCrossRef Wang GF, Feng XQ (2007) Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl Phys Lett 90:231904ADSCrossRef
17.
Zurück zum Zitat He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802ADSCrossRef He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802ADSCrossRef
18.
Zurück zum Zitat Li XF, Zhang H, Lee KY (2014) Dependence of Young’s modulus of nanowires on surface effect. Int J Mech Sci 81:120–125CrossRef Li XF, Zhang H, Lee KY (2014) Dependence of Young’s modulus of nanowires on surface effect. Int J Mech Sci 81:120–125CrossRef
19.
Zurück zum Zitat Wang J, Huang Z, Duan H et al (2011) Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin 24:52–82CrossRef Wang J, Huang Z, Duan H et al (2011) Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin 24:52–82CrossRef
21.
Zurück zum Zitat Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440CrossRefMATH Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440CrossRefMATH
22.
Zurück zum Zitat Lu P, He LH, Lee HP et al (2006) Thin plate theory including surface effects. Int J Solids Struct 43:4631–4647CrossRefMATH Lu P, He LH, Lee HP et al (2006) Thin plate theory including surface effects. Int J Solids Struct 43:4631–4647CrossRefMATH
23.
Zurück zum Zitat Shaat M, Mahmoud FF, Alshorbagy AE et al (2013) Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects. Int J Mech Sci 75:223–232CrossRef Shaat M, Mahmoud FF, Alshorbagy AE et al (2013) Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects. Int J Mech Sci 75:223–232CrossRef
24.
Zurück zum Zitat Zhou LG, Huang H (2004) Are surfaces elastically softer or stiffer? Appl Phys Lett 84:1940–1942ADSCrossRef Zhou LG, Huang H (2004) Are surfaces elastically softer or stiffer? Appl Phys Lett 84:1940–1942ADSCrossRef
25.
Zurück zum Zitat Ru CQ (2010) Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci China A 53:536–544 Ru CQ (2010) Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci China A 53:536–544
27.
Zurück zum Zitat Watson GN (1995) A treatise on the theory of Bessel functions. Cambridge university press, CambridgeMATH Watson GN (1995) A treatise on the theory of Bessel functions. Cambridge university press, CambridgeMATH
28.
Zurück zum Zitat Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71:094104ADSCrossRef Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71:094104ADSCrossRef
29.
Zurück zum Zitat Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-hill, New YorkMATH Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-hill, New YorkMATH
30.
Zurück zum Zitat Lei XW, Natsuki T, Shi JX et al (2012) Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos Part B 43:64–69CrossRef Lei XW, Natsuki T, Shi JX et al (2012) Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos Part B 43:64–69CrossRef
31.
Zurück zum Zitat Son D, hyun Jeong J, Kwon D (2003) Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film. Thin Solid Films 437:182–187ADSCrossRef Son D, hyun Jeong J, Kwon D (2003) Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film. Thin Solid Films 437:182–187ADSCrossRef
32.
Zurück zum Zitat McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060CrossRef McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060CrossRef
33.
Zurück zum Zitat Grima JN, Szymon W, Luke M et al (2015) Tailoring graphene to achieve negative Poisson’s ratio properties. Adv Mater 27:1455–1459CrossRef Grima JN, Szymon W, Luke M et al (2015) Tailoring graphene to achieve negative Poisson’s ratio properties. Adv Mater 27:1455–1459CrossRef
34.
Zurück zum Zitat Hall LJ, Coluci VR, Galvao DS et al (2008) Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320:504–507ADSCrossRef Hall LJ, Coluci VR, Galvao DS et al (2008) Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320:504–507ADSCrossRef
35.
Zurück zum Zitat Wu Y, Yi N, Huang L et al (2015) Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat Commun 6:6141CrossRef Wu Y, Yi N, Huang L et al (2015) Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat Commun 6:6141CrossRef
36.
Zurück zum Zitat Kaminski M, Corigliano A (2015) Numerical solution of the Duffing equation with random coefficients. Meccanica 50:1841–1853MathSciNetCrossRefMATH Kaminski M, Corigliano A (2015) Numerical solution of the Duffing equation with random coefficients. Meccanica 50:1841–1853MathSciNetCrossRefMATH
37.
Zurück zum Zitat Li XF, Liu GL, Lee KY (2009) Magnetoelectroelastic field induced by a crack terminating at the interface of a bi-magnetoelectric material. Philos Mag 89:449–463ADSCrossRef Li XF, Liu GL, Lee KY (2009) Magnetoelectroelastic field induced by a crack terminating at the interface of a bi-magnetoelectric material. Philos Mag 89:449–463ADSCrossRef
Metadaten
Titel
Bending of circular nanoplates with consideration of surface effects
verfasst von
Ying Yang
Jiaqi Zou
Kang Yong Lee
Xian-Fang Li
Publikationsdatum
14.09.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4-5/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0760-8

Weitere Artikel der Ausgabe 4-5/2018

Meccanica 4-5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.