Skip to main content

2021 | OriginalPaper | Buchkapitel

Bio-Catalytic Itaconic Acid and Bio-Based Vinyl Monomer Production Processes

verfasst von : Kalpana Avasthi, Ashish Bohre, Basudeb Saha, Blaž Likozar

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The production of polymers in the present society has relied heavily on fossil resources. It is not impossible to imagine the world without plastic-based materials. The production of plastic globally has surpassed 8300 million metric tons that utilized around 7% of fossil fuels. The limited availability of fossil-based sources has driven the research and development to find out alternative sources for the synthesis of polymers. In this regard lignocellulosic biomass is an interesting feedstock for the synthesis of polymers. However, the overall production cost of the as-synthesized sustainable polymers is the major obstacle that needs to be addressed. This chapter described the sustainable bio-catalytic pathways for the production of four important sustainable vinyl monomers: itaconic acid, acrylic acid, methacrylic acid, and styrene. Annual production of these monomers exceeds 26 million tons, albeit from non-renewable feedstocks. They provide the backbone to produce polyesters, polyacrylates, polystyrene adhesives, protective coatings, paints, resins, rubbers, and other copolymers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Matar S, Hatch LF (2001) Chemistry of petrochemical processes. Elsevier, Amsterdam Matar S, Hatch LF (2001) Chemistry of petrochemical processes. Elsevier, Amsterdam
2.
Zurück zum Zitat Hillmyer MA (2017) The promise of plastics from plants. Science 358(6365):868–870CrossRef Hillmyer MA (2017) The promise of plastics from plants. Science 358(6365):868–870CrossRef
3.
Zurück zum Zitat Deneyer A, Peeters E, Renders T, Van den Bosch S, Van Oeckel N, Ennaert T, Szarvas T, Korányi TI, Dusselier M, Sels BF (2018) Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nat Energy 3(11):969CrossRef Deneyer A, Peeters E, Renders T, Van den Bosch S, Van Oeckel N, Ennaert T, Szarvas T, Korányi TI, Dusselier M, Sels BF (2018) Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nat Energy 3(11):969CrossRef
4.
Zurück zum Zitat Mika LT, Csefalvay E, Nemeth A (2017) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118(2):505–613CrossRef Mika LT, Csefalvay E, Nemeth A (2017) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118(2):505–613CrossRef
5.
Zurück zum Zitat Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energ Environ Sci 9(10):2939–2977CrossRef Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energ Environ Sci 9(10):2939–2977CrossRef
6.
Zurück zum Zitat Bohre A, Dutta S, Saha B, Abu-Omar MM (2015) Upgrading furfurals to drop-in biofuels: an overview. ACS Sustain Chem Eng 3(7):1263–1277CrossRef Bohre A, Dutta S, Saha B, Abu-Omar MM (2015) Upgrading furfurals to drop-in biofuels: an overview. ACS Sustain Chem Eng 3(7):1263–1277CrossRef
7.
Zurück zum Zitat Yu AZ, Serum EM, Renner AC, Sahouani JM, Sibi MP, Webster DC (2018) Renewable reactive diluents as practical styrene replacements in biobased vinyl Ester thermosets. ACS Sustain Chem Eng 6(10):12586–12592CrossRef Yu AZ, Serum EM, Renner AC, Sahouani JM, Sibi MP, Webster DC (2018) Renewable reactive diluents as practical styrene replacements in biobased vinyl Ester thermosets. ACS Sustain Chem Eng 6(10):12586–12592CrossRef
8.
Zurück zum Zitat Satoh K (2015) Controlled/living polymerization of renewable vinyl monomers into bio-based polymers. Polym J 47:527CrossRef Satoh K (2015) Controlled/living polymerization of renewable vinyl monomers into bio-based polymers. Polym J 47:527CrossRef
9.
Zurück zum Zitat Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2017) Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review. Polym Int 66(10):1349–1363CrossRef Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2017) Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review. Polym Int 66(10):1349–1363CrossRef
10.
Zurück zum Zitat Bafana R, Pandey RA (2018) New approaches for itaconic acid production: bottlenecks and possible remedies. Crit Rev Biotechnol 38(1):68–82CrossRef Bafana R, Pandey RA (2018) New approaches for itaconic acid production: bottlenecks and possible remedies. Crit Rev Biotechnol 38(1):68–82CrossRef
11.
Zurück zum Zitat Cunha da Cruz J, Machado de Castro A, Camporese Sérvulo EF (2018) World market and biotechnological production of itaconic acid. 3 Biotech 8(3):138CrossRef Cunha da Cruz J, Machado de Castro A, Camporese Sérvulo EF (2018) World market and biotechnological production of itaconic acid. 3 Biotech 8(3):138CrossRef
12.
Zurück zum Zitat Hajian H, Yusoff WMW (2015) Itaconic acid production by microorganisms: a review. Curr Res J Biol Sci 7(2):37–42CrossRef Hajian H, Yusoff WMW (2015) Itaconic acid production by microorganisms: a review. Curr Res J Biol Sci 7(2):37–42CrossRef
13.
Zurück zum Zitat Paolo CG (1962) Process for preparing itaconic acid, and 2, 3-butadienoic acid. US 3025320A Paolo CG (1962) Process for preparing itaconic acid, and 2, 3-butadienoic acid. US 3025320A
14.
Zurück zum Zitat Robert T, Friebel S (2016) Itaconic acid—a versatile building block for renewable polyesters with enhanced functionality. Green Chem 18(10):2922–2934CrossRef Robert T, Friebel S (2016) Itaconic acid—a versatile building block for renewable polyesters with enhanced functionality. Green Chem 18(10):2922–2934CrossRef
15.
Zurück zum Zitat Durant Y, Cao M, Chirat M (2011) Polycarboxylic acid polymers. Google Patents Durant Y, Cao M, Chirat M (2011) Polycarboxylic acid polymers. Google Patents
16.
Zurück zum Zitat Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96(5):1209–1216CrossRef Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96(5):1209–1216CrossRef
17.
Zurück zum Zitat Nuss P, Gardner KH (2013) Attributional life cycle assessment (ALCA) of polyitaconic acid production from northeast US softwood biomass. Int J Life Cycle Assess 18(3):603–612CrossRef Nuss P, Gardner KH (2013) Attributional life cycle assessment (ALCA) of polyitaconic acid production from northeast US softwood biomass. Int J Life Cycle Assess 18(3):603–612CrossRef
18.
Zurück zum Zitat El-Imam AA, Du C (2014) Fermentative itaconic acid production. J Biodivers Biopros Dev 1(1):1–8 El-Imam AA, Du C (2014) Fermentative itaconic acid production. J Biodivers Biopros Dev 1(1):1–8
19.
Zurück zum Zitat Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606CrossRef Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606CrossRef
20.
Zurück zum Zitat Saha BC (2017) Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biotechnol 44(2):303–315CrossRef Saha BC (2017) Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biotechnol 44(2):303–315CrossRef
21.
Zurück zum Zitat Kuenz A, Krull S (2018) Biotechnological production of itaconic acid—things you have to know. Appl Microbiol Biotechnol 102(9):3901–3914CrossRef Kuenz A, Krull S (2018) Biotechnological production of itaconic acid—things you have to know. Appl Microbiol Biotechnol 102(9):3901–3914CrossRef
22.
Zurück zum Zitat De Carvalho JC, Magalhaes A, Soccol CR (2018) Biobased itaconic acid market and research trends—is it really a promising chemical. Chim Oggi Chem Today 36:56–58 De Carvalho JC, Magalhaes A, Soccol CR (2018) Biobased itaconic acid market and research trends—is it really a promising chemical. Chim Oggi Chem Today 36:56–58
23.
Zurück zum Zitat Kubicek CP, Punt P, Visser J (2011) In: Hofrichter M (ed) Industrial applications. Springer, Berlin, Heidelberg, pp 215–234CrossRef Kubicek CP, Punt P, Visser J (2011) In: Hofrichter M (ed) Industrial applications. Springer, Berlin, Heidelberg, pp 215–234CrossRef
24.
Zurück zum Zitat O’Neill LAJ, Artyomov MN (2019) Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 19(5):273–281CrossRef O’Neill LAJ, Artyomov MN (2019) Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 19(5):273–281CrossRef
25.
Zurück zum Zitat Saha BC, Kennedy GJ (2019) Phosphate limitation alleviates the inhibitory effect of manganese on itaconic acid production by Aspergillus terreus. Biocatal Agric Biotechnol 18:101016CrossRef Saha BC, Kennedy GJ (2019) Phosphate limitation alleviates the inhibitory effect of manganese on itaconic acid production by Aspergillus terreus. Biocatal Agric Biotechnol 18:101016CrossRef
26.
Zurück zum Zitat Huang X, Chen M, Lu X, Li Y, Li X, Li J-J (2014) Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microb Cell Fact 13:108–108CrossRef Huang X, Chen M, Lu X, Li Y, Li X, Li J-J (2014) Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microb Cell Fact 13:108–108CrossRef
27.
Zurück zum Zitat Olicón-Hernández DR, Araiza-Villanueva MG, Pardo JP, Aranda E, Guerra-Sánchez G (2019) New insights of Ustilago maydis as yeast model for genetic and biotechnological research: a review. Curr Microbiol 76(8):917–926CrossRef Olicón-Hernández DR, Araiza-Villanueva MG, Pardo JP, Aranda E, Guerra-Sánchez G (2019) New insights of Ustilago maydis as yeast model for genetic and biotechnological research: a review. Curr Microbiol 76(8):917–926CrossRef
28.
Zurück zum Zitat Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M (2016a) Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. J Microbial Biotechnol 9(1):116–126CrossRef Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M (2016a) Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. J Microbial Biotechnol 9(1):116–126CrossRef
29.
Zurück zum Zitat Wierckx N, Agrimi G, Lübeck PS, Steiger MG, Mira NP, Punt PJ (2020) Metabolic specialization in itaconic acid production: a tale of two fungi. Curr Opin Biotechnol 62:153–159CrossRef Wierckx N, Agrimi G, Lübeck PS, Steiger MG, Mira NP, Punt PJ (2020) Metabolic specialization in itaconic acid production: a tale of two fungi. Curr Opin Biotechnol 62:153–159CrossRef
30.
Zurück zum Zitat Hosseinpour Tehrani H, Geiser E, Engel M, Hartmann SK, Hossain AH, Punt PJ, Blank LM, Wierckx N (2019a) The interplay between transport and metabolism in fungal itaconic acid production. Fungal Genet Biol 125:45–52CrossRef Hosseinpour Tehrani H, Geiser E, Engel M, Hartmann SK, Hossain AH, Punt PJ, Blank LM, Wierckx N (2019a) The interplay between transport and metabolism in fungal itaconic acid production. Fungal Genet Biol 125:45–52CrossRef
31.
Zurück zum Zitat Guevarra ED, Tabuchi T (1990a) Accumulation of Itaconic, 2-Hydroxyparaconic, Itatartaric, and malic acids by strains of the genus Ustilago. Agric Biol Chem 54(9):2353–2358 Guevarra ED, Tabuchi T (1990a) Accumulation of Itaconic, 2-Hydroxyparaconic, Itatartaric, and malic acids by strains of the genus Ustilago. Agric Biol Chem 54(9):2353–2358
32.
Zurück zum Zitat Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11(1):43CrossRef Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11(1):43CrossRef
33.
Zurück zum Zitat Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM (2014) Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 14(2):129–134CrossRef Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM (2014) Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 14(2):129–134CrossRef
34.
Zurück zum Zitat Geiser E, Przybilla SK, Engel M, Kleineberg W, Büttner L, Sarikaya E, Hartog Td, Klankermayer J, Leitner W, Bölker M, Blank LM, Wierckx N (2016b) Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab Eng 38:427–435CrossRef Geiser E, Przybilla SK, Engel M, Kleineberg W, Büttner L, Sarikaya E, Hartog Td, Klankermayer J, Leitner W, Bölker M, Blank LM, Wierckx N (2016b) Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab Eng 38:427–435CrossRef
35.
Zurück zum Zitat Hosseinpour Tehrani H, Becker J, Bator I, Saur K, Meyer S, Rodrigues Lóia AC, Blank LM, Wierckx N (2019b) Integrated strain- and process design enable production of 220 g L−1 itaconic acid with Ustilago maydis. Biotechnol Biofuels 12(1):263CrossRef Hosseinpour Tehrani H, Becker J, Bator I, Saur K, Meyer S, Rodrigues Lóia AC, Blank LM, Wierckx N (2019b) Integrated strain- and process design enable production of 220 g L−1 itaconic acid with Ustilago maydis. Biotechnol Biofuels 12(1):263CrossRef
36.
Zurück zum Zitat Geiser E, Wiebach V, Wierckx N, Blank LM (2014) Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol Biotechnol 1(1):2CrossRef Geiser E, Wiebach V, Wierckx N, Blank LM (2014) Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol Biotechnol 1(1):2CrossRef
37.
Zurück zum Zitat Guevarra ED, Tabuchi T (1990b) Production of 2-Hydroxyparaconic and Itatartaric acids by Ustilago cynodontis and simple recovery process of the acids. Agric Biol Chem 54(9):2359–2365 Guevarra ED, Tabuchi T (1990b) Production of 2-Hydroxyparaconic and Itatartaric acids by Ustilago cynodontis and simple recovery process of the acids. Agric Biol Chem 54(9):2359–2365
38.
Zurück zum Zitat Hosseinpour Tehrani H, Tharmasothirajan A, Track E, Blank LM, Wierckx N (2019c) Engineering the morphology and metabolism of pH tolerant Ustilago cynodontis for efficient itaconic acid production. Metab Eng 54:293–300CrossRef Hosseinpour Tehrani H, Tharmasothirajan A, Track E, Blank LM, Wierckx N (2019c) Engineering the morphology and metabolism of pH tolerant Ustilago cynodontis for efficient itaconic acid production. Metab Eng 54:293–300CrossRef
39.
Zurück zum Zitat van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus Niger. Microb Cell Fact 13(1):11CrossRef van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus Niger. Microb Cell Fact 13(1):11CrossRef
40.
Zurück zum Zitat Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48(6):602–611CrossRef Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48(6):602–611CrossRef
41.
Zurück zum Zitat Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80(2):223–229CrossRef Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80(2):223–229CrossRef
42.
Zurück zum Zitat Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P (2013) Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus Niger. Appl Microbiol Biotechnol 97(9):3901–3911CrossRef Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P (2013) Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus Niger. Appl Microbiol Biotechnol 97(9):3901–3911CrossRef
43.
Zurück zum Zitat Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013a) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus Niger. Metab Eng 19:26–32CrossRef Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013a) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus Niger. Metab Eng 19:26–32CrossRef
44.
Zurück zum Zitat Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ (2016) Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus Niger. Microb Cell Fact 15(1):130CrossRef Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ (2016) Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus Niger. Microb Cell Fact 15(1):130CrossRef
45.
Zurück zum Zitat Hossain AH, van Gerven R, Overkamp KM, Lübeck PS, Taşpınar H, Türker M, Punt PJ (2019) Metabolic engineering with ATP-citrate lyase and nitrogen source supplementation improves itaconic acid production in Aspergillus Niger. Biotechnol Biofuels 12(1):233CrossRef Hossain AH, van Gerven R, Overkamp KM, Lübeck PS, Taşpınar H, Türker M, Punt PJ (2019) Metabolic engineering with ATP-citrate lyase and nitrogen source supplementation improves itaconic acid production in Aspergillus Niger. Biotechnol Biofuels 12(1):233CrossRef
46.
Zurück zum Zitat Blumhoff M, Steiger MG, Marx H, Mattanovich D, Sauer M (2013b) Six novel constitutive promoters for metabolic engineering of Aspergillus Niger. Appl Microbiol Biotechnol 97(1):259–267CrossRef Blumhoff M, Steiger MG, Marx H, Mattanovich D, Sauer M (2013b) Six novel constitutive promoters for metabolic engineering of Aspergillus Niger. Appl Microbiol Biotechnol 97(1):259–267CrossRef
47.
Zurück zum Zitat Yin X, Shin H-D, Li J, Du G, Liu L, Chen J (2017) Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus Niger. Appl Environ Microbiol 83(6):e03222–e03216CrossRef Yin X, Shin H-D, Li J, Du G, Liu L, Chen J (2017) Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus Niger. Appl Environ Microbiol 83(6):e03222–e03216CrossRef
48.
Zurück zum Zitat Pontrelli S, Chiu T-Y, Lan EI, Chen FYH, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46CrossRef Pontrelli S, Chiu T-Y, Lan EI, Chen FYH, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46CrossRef
49.
Zurück zum Zitat Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JPM, Weusthuis RA (2015) Metabolic engineering of itaconate production in Escherichia coli. Appl Microbiol Biotechnol 99(1):221–228CrossRef Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JPM, Weusthuis RA (2015) Metabolic engineering of itaconate production in Escherichia coli. Appl Microbiol Biotechnol 99(1):221–228CrossRef
50.
Zurück zum Zitat Okamoto S, Chin T, Hiratsuka K, Aso Y, Tanaka Y, Takahashi T, Ohara H (2014) Production of itaconic acid using metabolically engineered Escherichia coli. J Gen Appl Microbiol 60(5):191–197CrossRef Okamoto S, Chin T, Hiratsuka K, Aso Y, Tanaka Y, Takahashi T, Ohara H (2014) Production of itaconic acid using metabolically engineered Escherichia coli. J Gen Appl Microbiol 60(5):191–197CrossRef
51.
Zurück zum Zitat Tran K-NT, Somasundaram S, Eom GT, Hong SH (2019) Efficient Itaconic acid production via protein–protein scaffold introduction between GltA, AcnA, and CadA in recombinant Escherichia coli. Biotechnol Prog 35(3):e2799CrossRef Tran K-NT, Somasundaram S, Eom GT, Hong SH (2019) Efficient Itaconic acid production via protein–protein scaffold introduction between GltA, AcnA, and CadA in recombinant Escherichia coli. Biotechnol Prog 35(3):e2799CrossRef
52.
Zurück zum Zitat Fatma Z, Hartman H, Poolman MG, Fell DA, Srivastava S, Shakeel T, Yazdani SS (2018) Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metab Eng 46:1–12CrossRef Fatma Z, Hartman H, Poolman MG, Fell DA, Srivastava S, Shakeel T, Yazdani SS (2018) Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metab Eng 46:1–12CrossRef
53.
Zurück zum Zitat Harder B-J, Bettenbrock K, Klamt S (2016) Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 38:29–37CrossRef Harder B-J, Bettenbrock K, Klamt S (2016) Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 38:29–37CrossRef
54.
Zurück zum Zitat Yang Z, Gao X, Xie H, Wang F, Ren Y, Wei D (2017) Enhanced itaconic acid production by self-assembly of two biosynthetic enzymes in Escherichia coli. Biotechnol Bioeng 114(2):457–462CrossRef Yang Z, Gao X, Xie H, Wang F, Ren Y, Wei D (2017) Enhanced itaconic acid production by self-assembly of two biosynthetic enzymes in Escherichia coli. Biotechnol Bioeng 114(2):457–462CrossRef
55.
Zurück zum Zitat Yang Z, Wang H, Wang Y, Ren Y, Wei D (2018) Manufacturing multienzymatic complex reactors in vivo by self-assembly to improve the biosynthesis of Itaconic acid in Escherichia coli. ACS Synth Biol 7(5):1244–1250CrossRef Yang Z, Wang H, Wang Y, Ren Y, Wei D (2018) Manufacturing multienzymatic complex reactors in vivo by self-assembly to improve the biosynthesis of Itaconic acid in Escherichia coli. ACS Synth Biol 7(5):1244–1250CrossRef
56.
Zurück zum Zitat Moon Y-M, Gurav R, Kim J, Hong Y-G, Bhatia SK, Jung H-R, Hong J-W, Choi TR, Yang SY, Park HY, Joo H-S, Yang Y-H (2018) Whole-cell immobilization of engineered Escherichia coli JY001 with barium-alginate for Itaconic acid production. Biotechnol Bioprocess Eng 23(4):442–447CrossRef Moon Y-M, Gurav R, Kim J, Hong Y-G, Bhatia SK, Jung H-R, Hong J-W, Choi TR, Yang SY, Park HY, Joo H-S, Yang Y-H (2018) Whole-cell immobilization of engineered Escherichia coli JY001 with barium-alginate for Itaconic acid production. Biotechnol Bioprocess Eng 23(4):442–447CrossRef
57.
Zurück zum Zitat Becker J, Rohles CM, Wittmann C (2018) Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 50:122–141CrossRef Becker J, Rohles CM, Wittmann C (2018) Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 50:122–141CrossRef
58.
Zurück zum Zitat Otten A, Brocker M, Bott M (2015) Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng 30:156–165CrossRef Otten A, Brocker M, Bott M (2015) Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng 30:156–165CrossRef
59.
Zurück zum Zitat Markham KA, Alper HS (2018) Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends Biotechnol 36(10):1085–1095CrossRef Markham KA, Alper HS (2018) Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends Biotechnol 36(10):1085–1095CrossRef
60.
Zurück zum Zitat Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73CrossRef Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73CrossRef
61.
Zurück zum Zitat Zhao C, Cui Z, Zhao X, Zhang J, Zhang L, Tian Y, Qi Q, Liu J (2019) Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT. Appl Microbiol Biotechnol 103(5):2181–2192CrossRef Zhao C, Cui Z, Zhao X, Zhang J, Zhang L, Tian Y, Qi Q, Liu J (2019) Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT. Appl Microbiol Biotechnol 103(5):2181–2192CrossRef
62.
Zurück zum Zitat Kwak S, Jin Y-S (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 16(1):82CrossRef Kwak S, Jin Y-S (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 16(1):82CrossRef
63.
Zurück zum Zitat Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98(19):8155–8164CrossRef Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98(19):8155–8164CrossRef
64.
Zurück zum Zitat Young EM, Zhao Z, Gielesen BEM, Wu L, Benjamin Gordon D, Roubos JA, Voigt CA (2018) Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metab Eng 48:33–43CrossRef Young EM, Zhao Z, Gielesen BEM, Wu L, Benjamin Gordon D, Roubos JA, Voigt CA (2018) Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metab Eng 48:33–43CrossRef
65.
Zurück zum Zitat Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma Antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb Technol 39(4):824–827CrossRef Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma Antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb Technol 39(4):824–827CrossRef
66.
Zurück zum Zitat Tabuchi T, Sugisawa T, Ishidori T, Nakahara T, Sugiyama J (1981) Itaconic acid fermentation by a yeast belonging to the genus Candida. Agric Biol Chem 45(2):475–479 Tabuchi T, Sugisawa T, Ishidori T, Nakahara T, Sugiyama J (1981) Itaconic acid fermentation by a yeast belonging to the genus Candida. Agric Biol Chem 45(2):475–479
67.
Zurück zum Zitat Petruccioli M, Pulci V, Federici F (1999) Itaconic acid production by Aspergillus terreus on raw starchy materials. Lett Appl Microbiol 28(4):309–312CrossRef Petruccioli M, Pulci V, Federici F (1999) Itaconic acid production by Aspergillus terreus on raw starchy materials. Lett Appl Microbiol 28(4):309–312CrossRef
68.
Zurück zum Zitat Mondala AH (2015) Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J Ind Microbiol Biotechnol 42(4):487–506CrossRef Mondala AH (2015) Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J Ind Microbiol Biotechnol 42(4):487–506CrossRef
69.
Zurück zum Zitat Yahiro K, Shibata S, Jia S-R, Park Y, Okabe M (1997) Efficient itaconic acid production from raw corn starch. J Ferment Bioeng 84(4):375–377CrossRef Yahiro K, Shibata S, Jia S-R, Park Y, Okabe M (1997) Efficient itaconic acid production from raw corn starch. J Ferment Bioeng 84(4):375–377CrossRef
70.
Zurück zum Zitat Reddy CSK, Singh RP (2002) Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol 85(1):69–71CrossRef Reddy CSK, Singh RP (2002) Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol 85(1):69–71CrossRef
71.
Zurück zum Zitat Bafana R, Sivanesan S, Pandey RA (2017) Itaconic acid production by filamentous Fungi in starch-rich industrial residues. Indian J Microbiol 57(3):322–328CrossRef Bafana R, Sivanesan S, Pandey RA (2017) Itaconic acid production by filamentous Fungi in starch-rich industrial residues. Indian J Microbiol 57(3):322–328CrossRef
72.
Zurück zum Zitat Bafana R, Sivanesan S, Pandey R (2019) Optimization and scale up of itaconic acid production from potato starch waste in stirred tank bioreactor. Biotechnol Prog 35 Bafana R, Sivanesan S, Pandey R (2019) Optimization and scale up of itaconic acid production from potato starch waste in stirred tank bioreactor. Biotechnol Prog 35
73.
Zurück zum Zitat Okamoto S, Chin T, Nagata K, Takahashi T, Ohara H, Aso Y (2015) Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate. J Biosci Bioeng 119(5):548–553CrossRef Okamoto S, Chin T, Nagata K, Takahashi T, Ohara H, Aso Y (2015) Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate. J Biosci Bioeng 119(5):548–553CrossRef
74.
Zurück zum Zitat Gnanasekaran R, Dhandapani B, Gopinath KP, Iyyappan J (2018a) Synthesis of itaconic acid from agricultural waste using novel Aspergillus niveus. Prep Biochem Biotechnol 48(7):605–609CrossRef Gnanasekaran R, Dhandapani B, Gopinath KP, Iyyappan J (2018a) Synthesis of itaconic acid from agricultural waste using novel Aspergillus niveus. Prep Biochem Biotechnol 48(7):605–609CrossRef
75.
Zurück zum Zitat Petridis L, Smith JC (2018) Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat Rev Chem 2(11):382–389CrossRef Petridis L, Smith JC (2018) Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat Rev Chem 2(11):382–389CrossRef
76.
Zurück zum Zitat Kautola H (1990) Itaconic acid production from xylose in repeated-batch and continuous bioreactors. Appl Microbiol Biotechnol 33(1):7–11CrossRef Kautola H (1990) Itaconic acid production from xylose in repeated-batch and continuous bioreactors. Appl Microbiol Biotechnol 33(1):7–11CrossRef
77.
Zurück zum Zitat Saha BC, Kennedy GJ (2017) Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus. Lett Appl Microbiol 65(6):527–533CrossRef Saha BC, Kennedy GJ (2017) Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus. Lett Appl Microbiol 65(6):527–533CrossRef
78.
Zurück zum Zitat Krull S, Eidt L, Hevekerl A, Kuenz A, Prüße U (2017) Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochem 63:169–176CrossRef Krull S, Eidt L, Hevekerl A, Kuenz A, Prüße U (2017) Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochem 63:169–176CrossRef
79.
Zurück zum Zitat Rao DM, Hussain SJ, Rangadu VP, Subramanyam K, Krishna GS, Swamy A (2007) Fermentatative production of itaconic acid by Aspergillus terreus using Jatropha seed cake. Afr J Biotechnol 6(18) Rao DM, Hussain SJ, Rangadu VP, Subramanyam K, Krishna GS, Swamy A (2007) Fermentatative production of itaconic acid by Aspergillus terreus using Jatropha seed cake. Afr J Biotechnol 6(18)
80.
Zurück zum Zitat El-Imam AMA, Kazeem MO, Odebisi MB, Abidoye AO (2013) Production of itaconic acid from Jatropha curcas seed cake by Aspergillus terreus. Not Sci Biol 5(1):57–61CrossRef El-Imam AMA, Kazeem MO, Odebisi MB, Abidoye AO (2013) Production of itaconic acid from Jatropha curcas seed cake by Aspergillus terreus. Not Sci Biol 5(1):57–61CrossRef
81.
Zurück zum Zitat Alfy H (2017) Control of soybean stem Fly Melanagromyza sojae (Diptera: Agromyzidae) by sticky color traps in soybean field. Egypt Acad J Bio Sci F Toxicol Pest Control 9(2):7–13CrossRef Alfy H (2017) Control of soybean stem Fly Melanagromyza sojae (Diptera: Agromyzidae) by sticky color traps in soybean field. Egypt Acad J Bio Sci F Toxicol Pest Control 9(2):7–13CrossRef
82.
Zurück zum Zitat Jeon H-G, Cheong D-E, Han Y, Song JJ, Choi JH (2016) Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5′-coding region variant of the cadA gene. Biotechnol Bioeng 113(7):1504–1510CrossRef Jeon H-G, Cheong D-E, Han Y, Song JJ, Choi JH (2016) Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5′-coding region variant of the cadA gene. Biotechnol Bioeng 113(7):1504–1510CrossRef
83.
Zurück zum Zitat Chang P, Chen GS, Chu H-Y, Lu KW, Shen CR (2017) Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol 249:73–81CrossRef Chang P, Chen GS, Chu H-Y, Lu KW, Shen CR (2017) Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol 249:73–81CrossRef
84.
Zurück zum Zitat Zambanini T, Hosseinpour Tehrani H, Geiser E, Merker D, Schleese S, Krabbe J, Buescher JM, Meurer G, Wierckx N, Blank LM (2017) Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnol Biofuels 10(1):131CrossRef Zambanini T, Hosseinpour Tehrani H, Geiser E, Merker D, Schleese S, Krabbe J, Buescher JM, Meurer G, Wierckx N, Blank LM (2017) Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnol Biofuels 10(1):131CrossRef
85.
Zurück zum Zitat Gnanasekaran R, Dhandapani B, Iyyappan J (2019) Improved itaconic acid production by Aspergillus niveus using blended algal biomass hydrolysate and glycerol as substrates. Bioresour Technol 283:297–302CrossRef Gnanasekaran R, Dhandapani B, Iyyappan J (2019) Improved itaconic acid production by Aspergillus niveus using blended algal biomass hydrolysate and glycerol as substrates. Bioresour Technol 283:297–302CrossRef
86.
Zurück zum Zitat Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products—an overview. Renew Energy 98:203–215CrossRef Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products—an overview. Renew Energy 98:203–215CrossRef
87.
Zurück zum Zitat Nieder-Heitmann M, Haigh KF, Görgens JF (2018) Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. Bioresour Technol 262:159–168CrossRef Nieder-Heitmann M, Haigh KF, Görgens JF (2018) Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. Bioresour Technol 262:159–168CrossRef
88.
Zurück zum Zitat Nieder-Heitmann M, Haigh KF, Görgens JF (2019) Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: finding a sustainable solution for the south African sugar industry. J Clean Prod 239:118039CrossRef Nieder-Heitmann M, Haigh KF, Görgens JF (2019) Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: finding a sustainable solution for the south African sugar industry. J Clean Prod 239:118039CrossRef
89.
Zurück zum Zitat Paranthaman R, Kumaravel S, Singaravadivel K (2014) Bioprocessing of sugarcane factory waste to production of Itaconic acid. Afr J Microbiol Res 8(16):1672–1675CrossRef Paranthaman R, Kumaravel S, Singaravadivel K (2014) Bioprocessing of sugarcane factory waste to production of Itaconic acid. Afr J Microbiol Res 8(16):1672–1675CrossRef
90.
Zurück zum Zitat Gnanasekaran R, Saranya P, Yuvashree S, Yuvaraj D, Saravanan A, Smila KH, Anli Dino A (2018b) Itaconic acid production by Novel Aspergillus Niveus in solid state fermentation using agrowastes. Int J Eng Technol 7(3.34):6CrossRef Gnanasekaran R, Saranya P, Yuvashree S, Yuvaraj D, Saravanan A, Smila KH, Anli Dino A (2018b) Itaconic acid production by Novel Aspergillus Niveus in solid state fermentation using agrowastes. Int J Eng Technol 7(3.34):6CrossRef
91.
Zurück zum Zitat Makshina EV, Canadell J, van Krieken J, Peeters E, Dusselier M, Sels BF (2019) Bio-acrylates production: recent catalytic advances and perspectives of the use of lactic acid and their derivates. ChemCatChem 11(1):180–201CrossRef Makshina EV, Canadell J, van Krieken J, Peeters E, Dusselier M, Sels BF (2019) Bio-acrylates production: recent catalytic advances and perspectives of the use of lactic acid and their derivates. ChemCatChem 11(1):180–201CrossRef
92.
Zurück zum Zitat Chu HS, Ahn J-H, Yun J, Choi IS, Nam T-W, Cho KM (2015) Direct fermentation route for the production of acrylic acid. Metab Eng 32:23–29CrossRef Chu HS, Ahn J-H, Yun J, Choi IS, Nam T-W, Cho KM (2015) Direct fermentation route for the production of acrylic acid. Metab Eng 32:23–29CrossRef
93.
Zurück zum Zitat Droesbeke MA, Du Prez FE (2019) Sustainable synthesis of renewable terpenoid-based (meth) acrylates using the CHEM21 green metrics toolkit. ACS Sustain Chem Eng 7:11633CrossRef Droesbeke MA, Du Prez FE (2019) Sustainable synthesis of renewable terpenoid-based (meth) acrylates using the CHEM21 green metrics toolkit. ACS Sustain Chem Eng 7:11633CrossRef
94.
Zurück zum Zitat Baskar G, Aiswarya R, Kalavathy G, Pandey A, Gnansounou E, Raman JK, Kumar RP (2020) Refining biomass residues for sustainable energy and bioproducts. Elsevier, Amsterdam, pp 135–147CrossRef Baskar G, Aiswarya R, Kalavathy G, Pandey A, Gnansounou E, Raman JK, Kumar RP (2020) Refining biomass residues for sustainable energy and bioproducts. Elsevier, Amsterdam, pp 135–147CrossRef
95.
Zurück zum Zitat Kadar J, Heene-Würl N, Hahn S, Nagengast J, Kehrer M, Taccardi N, Collias D, Dziezok P, Wasserscheid P, Albert J (2019) Acrylic acid synthesis from lactide in a continuous liquid-phase process. ACS Sustain Chem Eng 7(7):7140–7147CrossRef Kadar J, Heene-Würl N, Hahn S, Nagengast J, Kehrer M, Taccardi N, Collias D, Dziezok P, Wasserscheid P, Albert J (2019) Acrylic acid synthesis from lactide in a continuous liquid-phase process. ACS Sustain Chem Eng 7(7):7140–7147CrossRef
96.
Zurück zum Zitat Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, Marten K, Greim H (2000) Acrylic acid and derivatives. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, Marten K, Greim H (2000) Acrylic acid and derivatives. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
97.
Zurück zum Zitat Danner H, Ürmös M, Gartner M, Braun R (1998) Biotechnological production of acrylic acid from biomass. Appl Biochem Biotechnol 70(1):887–894CrossRef Danner H, Ürmös M, Gartner M, Braun R (1998) Biotechnological production of acrylic acid from biomass. Appl Biochem Biotechnol 70(1):887–894CrossRef
98.
Zurück zum Zitat Kirk T, Hollaender A (1981) In: Hollaender A (ed) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York, p 131CrossRef Kirk T, Hollaender A (1981) In: Hollaender A (ed) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York, p 131CrossRef
99.
Zurück zum Zitat O'Brien DJ, Panzer CC, Eisele WP (1990) Biological production of acrylic acid from cheese whey by resting cells of Clostridium propionicum. Biotechnol Prog 6(4):237–242CrossRef O'Brien DJ, Panzer CC, Eisele WP (1990) Biological production of acrylic acid from cheese whey by resting cells of Clostridium propionicum. Biotechnol Prog 6(4):237–242CrossRef
100.
Zurück zum Zitat Jyoti G, Bhoi S, Sahu DK (2019) Production and isolation of n-butyl acrylate using pervaporation-aided esterification reaction: kinetics and optimization. Chem Eng Technol 42(3):617–627CrossRef Jyoti G, Bhoi S, Sahu DK (2019) Production and isolation of n-butyl acrylate using pervaporation-aided esterification reaction: kinetics and optimization. Chem Eng Technol 42(3):617–627CrossRef
101.
Zurück zum Zitat Tong W, Xu Y, Xian M, Niu W, Guo J, Liu H, Zhao G (2016) Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli. Appl Microbiol Biotechnol 100(11):4901–4907CrossRef Tong W, Xu Y, Xian M, Niu W, Guo J, Liu H, Zhao G (2016) Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli. Appl Microbiol Biotechnol 100(11):4901–4907CrossRef
102.
Zurück zum Zitat Kamal A, Kumar MS, Kumar CG, Shaik TB (2011) Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 21(1):37–42CrossRef Kamal A, Kumar MS, Kumar CG, Shaik TB (2011) Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 21(1):37–42CrossRef
103.
Zurück zum Zitat Gnanadesikan V, Singh R, Dasari R, Alger M (2018) Process for manufacturing acrylic acid, acrylonitrile and 1, 4-butanediol from 1, 3-propanediol. Google Patents Gnanadesikan V, Singh R, Dasari R, Alger M (2018) Process for manufacturing acrylic acid, acrylonitrile and 1, 4-butanediol from 1, 3-propanediol. Google Patents
104.
Zurück zum Zitat Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate)(PMMA). Poly Rev 5(4):678–705CrossRef Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate)(PMMA). Poly Rev 5(4):678–705CrossRef
105.
Zurück zum Zitat Ouzas A, Niinivaara E, Cranston ED, Dubé MA (2018) In situ Semibatch emulsion polymerization of 2-ethyl hexyl acrylate/n-butyl acrylate/methyl methacrylate/cellulose nanocrystal nanocomposites for adhesive applications. Macromol React Eng 12(3):1700068CrossRef Ouzas A, Niinivaara E, Cranston ED, Dubé MA (2018) In situ Semibatch emulsion polymerization of 2-ethyl hexyl acrylate/n-butyl acrylate/methyl methacrylate/cellulose nanocrystal nanocomposites for adhesive applications. Macromol React Eng 12(3):1700068CrossRef
106.
Zurück zum Zitat Bohre A, Ali MA, Ocepek M, Grilc M, Zabret J, Likozar B (2019) Copolymerization of biomass-derived carboxylic acids for biobased acrylic emulsions. Ind Eng Chem Res 58(43):19825–19831CrossRef Bohre A, Ali MA, Ocepek M, Grilc M, Zabret J, Likozar B (2019) Copolymerization of biomass-derived carboxylic acids for biobased acrylic emulsions. Ind Eng Chem Res 58(43):19825–19831CrossRef
107.
Zurück zum Zitat Nagasawa T, Nakamura T, Yamada H (1990) Production of acrylic acid and methacrylic acid using Rhodococcus rhodochrous J1 nitrilase. Appl Microbiol Biotechnol 34(3):322–324CrossRef Nagasawa T, Nakamura T, Yamada H (1990) Production of acrylic acid and methacrylic acid using Rhodococcus rhodochrous J1 nitrilase. Appl Microbiol Biotechnol 34(3):322–324CrossRef
108.
Zurück zum Zitat Burk MJ, Burgard AP, Osterhout RE, Sun J, Pharkya P (2015) Microorganisms for producing methacrylic acid and methacrylate esters and methods related thereto. European Patent EP2694663A4 Burk MJ, Burgard AP, Osterhout RE, Sun J, Pharkya P (2015) Microorganisms for producing methacrylic acid and methacrylate esters and methods related thereto. European Patent EP2694663A4
109.
Zurück zum Zitat Pyo S-H, Dishisha T, Dayankac S, Gerelsaikhan J, Lundmark S, Rehnberg N, Hatti-Kaul R (2012) A new route for the synthesis of methacrylic acid from 2-methyl-1, 3-propanediol by integrating biotransformation and catalytic dehydration. Green Chem 14(7):1942–1948CrossRef Pyo S-H, Dishisha T, Dayankac S, Gerelsaikhan J, Lundmark S, Rehnberg N, Hatti-Kaul R (2012) A new route for the synthesis of methacrylic acid from 2-methyl-1, 3-propanediol by integrating biotransformation and catalytic dehydration. Green Chem 14(7):1942–1948CrossRef
110.
Zurück zum Zitat Jaymand M (2014) Recent progress in the chemical modification of syndiotactic polystyrene. Polym Chem 5(8):2663–2690CrossRef Jaymand M (2014) Recent progress in the chemical modification of syndiotactic polystyrene. Polym Chem 5(8):2663–2690CrossRef
111.
Zurück zum Zitat Chaukura N, Gwenzi W, Bunhu T, Ruziwa DT, Pumure I (2016) Potential uses and value-added products derived from waste polystyrene in developing countries: a review. Resour Conserv Recy 07:157–165CrossRef Chaukura N, Gwenzi W, Bunhu T, Ruziwa DT, Pumure I (2016) Potential uses and value-added products derived from waste polystyrene in developing countries: a review. Resour Conserv Recy 07:157–165CrossRef
112.
Zurück zum Zitat Ramli Sulong NH, Mustapa SAS, Abdul Rashid MK (2019) Application of expanded polystyrene (EPS) in buildings and constructions: a review. J Appl Polym 136(20):47529CrossRef Ramli Sulong NH, Mustapa SAS, Abdul Rashid MK (2019) Application of expanded polystyrene (EPS) in buildings and constructions: a review. J Appl Polym 136(20):47529CrossRef
113.
Zurück zum Zitat Oelschlägel M, Zimmerling J, Tischler D (2018) A review: the styrene metabolizing cascade of side-chain oxygenation as biotechnological basis to gain various valuable compounds. Front Microbiol 9:490CrossRef Oelschlägel M, Zimmerling J, Tischler D (2018) A review: the styrene metabolizing cascade of side-chain oxygenation as biotechnological basis to gain various valuable compounds. Front Microbiol 9:490CrossRef
114.
Zurück zum Zitat Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng 109(10):2437–2459CrossRef Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng 109(10):2437–2459CrossRef
115.
Zurück zum Zitat Hope C (1987) Cinnamic acid as the basis of a medium for the detection of wild yeasts. J Int Brewing 93(3):213–215CrossRef Hope C (1987) Cinnamic acid as the basis of a medium for the detection of wild yeasts. J Int Brewing 93(3):213–215CrossRef
116.
Zurück zum Zitat McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13(5):544–554CrossRef McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13(5):544–554CrossRef
117.
Zurück zum Zitat McKenna R, Pugh S, Thompson B, Nielsen DR (2013) Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1, 2-phenylethanediol from renewable resources. Biotechnol J 8(12):1465–1475CrossRef McKenna R, Pugh S, Thompson B, Nielsen DR (2013) Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1, 2-phenylethanediol from renewable resources. Biotechnol J 8(12):1465–1475CrossRef
118.
Zurück zum Zitat McKenna R, Thompson B, Pugh S, Nielsen DR (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 13(1):123CrossRef McKenna R, Thompson B, Pugh S, Nielsen DR (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 13(1):123CrossRef
119.
Zurück zum Zitat Liu C, Men X, Chen H, Li M, Ding Z, Chen G, Wang F, Liu H, Wang Q, Zhu Y (2018) A systematic optimization of styrene biosynthesis in Escherichia coli BL21 (DE3). Biotechnol Biofuels 11(1):14CrossRef Liu C, Men X, Chen H, Li M, Ding Z, Chen G, Wang F, Liu H, Wang Q, Zhu Y (2018) A systematic optimization of styrene biosynthesis in Escherichia coli BL21 (DE3). Biotechnol Biofuels 11(1):14CrossRef
120.
Zurück zum Zitat Claypool JT, Raman DR, Jarboe LR, Nielsen DR (2014) Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli. J Ind Microbiol Biotechnol 41(8):1211–1216CrossRef Claypool JT, Raman DR, Jarboe LR, Nielsen DR (2014) Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli. J Ind Microbiol Biotechnol 41(8):1211–1216CrossRef
121.
Zurück zum Zitat Middelhoven WJ, Gelpke MDS (1995) Partial conversion of cinnamic acid into styrene by growing cultures and cell-free extracts of the yeastCryptococcus elinovii. Antonie Van Leeuwenhoek 67(2):217–219CrossRef Middelhoven WJ, Gelpke MDS (1995) Partial conversion of cinnamic acid into styrene by growing cultures and cell-free extracts of the yeastCryptococcus elinovii. Antonie Van Leeuwenhoek 67(2):217–219CrossRef
122.
Zurück zum Zitat Takemoto M, Achiwa K (2001) Synthesis of styrenes through the biocatalytic decarboxylation of trans-cinnamic acids by plant cell cultures. Chem Pharm Bull 49(5):639–641CrossRef Takemoto M, Achiwa K (2001) Synthesis of styrenes through the biocatalytic decarboxylation of trans-cinnamic acids by plant cell cultures. Chem Pharm Bull 49(5):639–641CrossRef
123.
Zurück zum Zitat Azeem M, Borg-Karlson AK, Rajarao GK (2013) Sustainable bio-production of styrene from forest waste. Bioresour Technol 144:684–688CrossRef Azeem M, Borg-Karlson AK, Rajarao GK (2013) Sustainable bio-production of styrene from forest waste. Bioresour Technol 144:684–688CrossRef
124.
Zurück zum Zitat Lian J, McKenna R, Rover MR, Nielsen DR, Wen Z, Jarboe LR (2016) Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity. J Ind Microbiol Biotechnol 43(5):595–604CrossRef Lian J, McKenna R, Rover MR, Nielsen DR, Wen Z, Jarboe LR (2016) Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity. J Ind Microbiol Biotechnol 43(5):595–604CrossRef
125.
Zurück zum Zitat Fujiwara R, Noda S, Tanaka T, Kondo A (2016) Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. J Biosci Bioeng 122(6):730–735CrossRef Fujiwara R, Noda S, Tanaka T, Kondo A (2016) Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. J Biosci Bioeng 122(6):730–735CrossRef
Metadaten
Titel
Bio-Catalytic Itaconic Acid and Bio-Based Vinyl Monomer Production Processes
verfasst von
Kalpana Avasthi
Ashish Bohre
Basudeb Saha
Blaž Likozar
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_3