Skip to main content

2021 | OriginalPaper | Buchkapitel

Biochemical Conversion of Residual Biomass: An Approach to Fuel Gas and Green Fertilizers

verfasst von : Carmen Mateescu, Andreea-Daniela Dima

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy demand growth along with intensified global efforts to promote circular economy for solving environmental problems while obtaining high value-added products has increased the interest for valorization of the residual biomass that is abundantly generated in agriculture and various industries. This chapter is an overall contribution aiming to emphasize and clarify some theoretical and practical aspects on the biochemical conversion of biomass into fuel gases (biomethane and biohydrogen) and other valuable by-products. The residual biomass is very diverse, but the quality of the substrate and the biochemical technology, as well as the processing parameters, determine the type and composition of the conversion products. Hence, particular attention is given to substrate evaluation and pretreatment techniques for increasing the conversion yields and the process economic viability. The metabolic pathways of microbial processes and the technological parameters are analysed and discussed for both biomethane and biohydrogen. Some current and innovative methods of biogas upgrading with a focus on the market applications of the biochemical conversion to fuel gases are comprehensively approached. Also, the chapter presents an overview on the technological possibilities and economic benefits of using by-products as green fertilizers for agriculture, briefly mentioning some other ways for waste recovery to value-added products. In addition to analysing current achievements in this field of research, the chapter aims to identify gaps and bring to light some issues that need to be studied in greater depth so as to make the biochemical conversion processes of biomass feasible and widely applicable in industry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kapoor R, Ghosh P, Kumar M, Kumar Vijay V (2019) Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res 26:11631–11661CrossRef Kapoor R, Ghosh P, Kumar M, Kumar Vijay V (2019) Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res 26:11631–11661CrossRef
3.
Zurück zum Zitat Casoni AI, Gutierrez VS, Volpe MA, Hoch PM (2018) Synthesis of value added product processes from residual biomass. Comput Aided Chem En 44:397–402CrossRef Casoni AI, Gutierrez VS, Volpe MA, Hoch PM (2018) Synthesis of value added product processes from residual biomass. Comput Aided Chem En 44:397–402CrossRef
4.
Zurück zum Zitat Pfau S (2015) Residual biomass: a silver bullet to ensure a sustainable bioeconomy? In: The European Conference on Sustainability, Energy & the Environment, Conference Proceedings. The International Academic Forum, Nagoya, pp 295–312 Pfau S (2015) Residual biomass: a silver bullet to ensure a sustainable bioeconomy? In: The European Conference on Sustainability, Energy & the Environment, Conference Proceedings. The International Academic Forum, Nagoya, pp 295–312
5.
Zurück zum Zitat Krishnan S, Din MF, Mat Taib S, Ling YE, Aminuddin E, Chelliapan S, Mishra P, Rana S, Nasrullah M, Sakinah M, Wahid ZA, Singh L (2018) Utilization of micro–algal biomass residues (MABRS) for bio–hythane production—a perspective. J Appl Biotechnol Bioeng 5(3):162–165 Krishnan S, Din MF, Mat Taib S, Ling YE, Aminuddin E, Chelliapan S, Mishra P, Rana S, Nasrullah M, Sakinah M, Wahid ZA, Singh L (2018) Utilization of micro–algal biomass residues (MABRS) for bio–hythane production—a perspective. J Appl Biotechnol Bioeng 5(3):162–165
6.
Zurück zum Zitat Pal P, Chew KW, Yen HW, Lim JW, Lam MK, Show PL (2019) Cultivation of oily microalgae for the production of third-generation biofuels. Sustainability 11:5424–5440CrossRef Pal P, Chew KW, Yen HW, Lim JW, Lam MK, Show PL (2019) Cultivation of oily microalgae for the production of third-generation biofuels. Sustainability 11:5424–5440CrossRef
9.
Zurück zum Zitat Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727CrossRef Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727CrossRef
12.
Zurück zum Zitat Li R, Liu D, Zhang Y, Zhoua J, Tsang YF, Liu Z, Duan N, Zhang Y (2019) Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Sci Total Environ 651(1):61–69 Li R, Liu D, Zhang Y, Zhoua J, Tsang YF, Liu Z, Duan N, Zhang Y (2019) Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Sci Total Environ 651(1):61–69
20.
Zurück zum Zitat Pires A, Martinho G (2019) Waste hierarchy index for circular economy in waste management. Waste Manag 95:298–305CrossRef Pires A, Martinho G (2019) Waste hierarchy index for circular economy in waste management. Waste Manag 95:298–305CrossRef
21.
Zurück zum Zitat Woiciechowski AL, Pedroni Medeiros AB, Rodrigues C, de Souza Vandenberghe LP, de Andrade Tanobe VO, Dall’Agnol A, Gazzoni DL, Soccol CR (2016) Feedstocks for biofuels. In: Soccol CR et al (eds) Green Fuels Technology, Green Energy and Technology. Springer International, Cham. https://doi.org/10.1007/978-3-319-30205-8_2CrossRef Woiciechowski AL, Pedroni Medeiros AB, Rodrigues C, de Souza Vandenberghe LP, de Andrade Tanobe VO, Dall’Agnol A, Gazzoni DL, Soccol CR (2016) Feedstocks for biofuels. In: Soccol CR et al (eds) Green Fuels Technology, Green Energy and Technology. Springer International, Cham. https://​doi.​org/​10.​1007/​978-3-319-30205-8_​2CrossRef
24.
Zurück zum Zitat Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95CrossRef Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95CrossRef
25.
Zurück zum Zitat Lin L, Xu F, Ge X, Li Y (2019) Biological treatment of organic materials for energy and nutrients production—anaerobic digestion and composting. Adv Bioenerg 4:121–181CrossRef Lin L, Xu F, Ge X, Li Y (2019) Biological treatment of organic materials for energy and nutrients production—anaerobic digestion and composting. Adv Bioenerg 4:121–181CrossRef
27.
Zurück zum Zitat Córdoba V, Colavolpe MB, Fernández M, Santalla E, Albertó E (2016) Potential methane production of spent sawdust used in the cultivation of Gymnopilus pampeanus. J Environ Chem Eng 4:4418–4425CrossRef Córdoba V, Colavolpe MB, Fernández M, Santalla E, Albertó E (2016) Potential methane production of spent sawdust used in the cultivation of Gymnopilus pampeanus. J Environ Chem Eng 4:4418–4425CrossRef
32.
Zurück zum Zitat Viesturs D, Melece L (2014) Advantages and disadvantages of biofuels: observations in Latvia. In: Engineering for rural development. Proceedings, Jelgava, May 2014, vol 13, pp 210–215 Viesturs D, Melece L (2014) Advantages and disadvantages of biofuels: observations in Latvia. In: Engineering for rural development. Proceedings, Jelgava, May 2014, vol 13, pp 210–215
33.
Zurück zum Zitat Tirpan Cioroiu DR, Parvulescu OC, Dobre T, Raducanu C, Koncsag C, Mocanu A, Duteanu N (2018) Slow pyrolysis of cystoseira barbata brown macroalgae. Rev Chim (Bucharest) 69(3):553–556CrossRef Tirpan Cioroiu DR, Parvulescu OC, Dobre T, Raducanu C, Koncsag C, Mocanu A, Duteanu N (2018) Slow pyrolysis of cystoseira barbata brown macroalgae. Rev Chim (Bucharest) 69(3):553–556CrossRef
34.
Zurück zum Zitat Bharathiraja B, Sudharsanaa T, Bharghavi A, Jayamuthunagai J, Praveenkumar R (2016) Biohydrogen and biogas—an overview on feedstocks and enhancement process. Fuel 185:810–828CrossRef Bharathiraja B, Sudharsanaa T, Bharghavi A, Jayamuthunagai J, Praveenkumar R (2016) Biohydrogen and biogas—an overview on feedstocks and enhancement process. Fuel 185:810–828CrossRef
35.
Zurück zum Zitat Lee JP, Lee JS, Park SC (1999) Two-phase methanization of food wastes in pilot scale. Appl Biochem Biotech 77–79:585–593CrossRef Lee JP, Lee JS, Park SC (1999) Two-phase methanization of food wastes in pilot scale. Appl Biochem Biotech 77–79:585–593CrossRef
36.
Zurück zum Zitat Nielfa A, Cano R, Fdz-Polanco M (2014) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotech Rep 5:14–21CrossRef Nielfa A, Cano R, Fdz-Polanco M (2014) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotech Rep 5:14–21CrossRef
37.
Zurück zum Zitat Raposo F, Borja R, Rincon B, Jimenez AM (2008) Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass Bioenergy 32:1235–1244CrossRef Raposo F, Borja R, Rincon B, Jimenez AM (2008) Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass Bioenergy 32:1235–1244CrossRef
38.
Zurück zum Zitat Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge. Effect of phosphate supplementation. Bioresour Technol 101:4343–4348CrossRef Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge. Effect of phosphate supplementation. Bioresour Technol 101:4343–4348CrossRef
39.
Zurück zum Zitat Zhang R, Zhang Z (1999) Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresour Technol 68:235–245CrossRef Zhang R, Zhang Z (1999) Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresour Technol 68:235–245CrossRef
41.
Zurück zum Zitat Dima AD, Mateescu C, Parvulescu OC, Lungulescu EM, Nicula NO (2019) Theoretical and experimental results on the recovery of potato processing residuals by anaerobic digestion. Rev Chim (Bucharest) 70(7):2524–2529CrossRef Dima AD, Mateescu C, Parvulescu OC, Lungulescu EM, Nicula NO (2019) Theoretical and experimental results on the recovery of potato processing residuals by anaerobic digestion. Rev Chim (Bucharest) 70(7):2524–2529CrossRef
42.
Zurück zum Zitat Sawasdee V, Haosagul S, Pisutpaisal N (2019) Co-digestion of waste glycerol and glucose to enhance biogas production. Int J Hydrogen Energy 44:29575–29582CrossRef Sawasdee V, Haosagul S, Pisutpaisal N (2019) Co-digestion of waste glycerol and glucose to enhance biogas production. Int J Hydrogen Energy 44:29575–29582CrossRef
43.
Zurück zum Zitat Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRef Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRef
44.
Zurück zum Zitat Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor 1:21–39CrossRef Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor 1:21–39CrossRef
45.
Zurück zum Zitat Riazi MR, Chiaramonti D (2017) Biofuels production and processing technology—technology & engineering. CRC, Boca Raton, FLCrossRef Riazi MR, Chiaramonti D (2017) Biofuels production and processing technology—technology & engineering. CRC, Boca Raton, FLCrossRef
46.
Zurück zum Zitat Dellosso Penteado E, Zampol Lazaro C, Kimiko Sakamoto I, Zaiat M (2013) Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrogen Energy 38:6137–6145CrossRef Dellosso Penteado E, Zampol Lazaro C, Kimiko Sakamoto I, Zaiat M (2013) Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrogen Energy 38:6137–6145CrossRef
48.
Zurück zum Zitat Alibardi L, Cossu R (2015) Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag 36:147–155CrossRef Alibardi L, Cossu R (2015) Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag 36:147–155CrossRef
49.
Zurück zum Zitat De Gioannis G, Muntoni A, Polettini A, Pomi R, Spiga D (2017) Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Manag 68:595–602CrossRef De Gioannis G, Muntoni A, Polettini A, Pomi R, Spiga D (2017) Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Manag 68:595–602CrossRef
50.
Zurück zum Zitat Alibardi L, Cossu R (2016) Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag 47:69–77CrossRef Alibardi L, Cossu R (2016) Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag 47:69–77CrossRef
51.
Zurück zum Zitat Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31(4):250–254CrossRef Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31(4):250–254CrossRef
52.
Zurück zum Zitat Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97(3):500–505CrossRef Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97(3):500–505CrossRef
53.
Zurück zum Zitat Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic waste waters. Int J Hydrogen Energy 30:1535–1542. Biofuels Production and Processing Technology editat de M.R. Riazi, David Chiaramonti, 2017—Technology & EngineeringCrossRef Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic waste waters. Int J Hydrogen Energy 30:1535–1542. Biofuels Production and Processing Technology editat de M.R. Riazi, David Chiaramonti, 2017—Technology & EngineeringCrossRef
55.
Zurück zum Zitat Ma J, Frear C, Wang Z, Yu L, Zhao Q, Li X, Chen S (2013) A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 134:391–395CrossRef Ma J, Frear C, Wang Z, Yu L, Zhao Q, Li X, Chen S (2013) A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 134:391–395CrossRef
57.
Zurück zum Zitat Yang L, Xu F, Ge X, Li Y (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energy Rev 44:824–834CrossRef Yang L, Xu F, Ge X, Li Y (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energy Rev 44:824–834CrossRef
59.
Zurück zum Zitat Hernández-Beltrán JU, Hernández-De Lira IO, Cruz-Santos MM, Saucedo-Luevanos A, Hernández-Terán F, Balagurusamy N (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9:3721. https://doi.org/10.3390/app9183721CrossRef Hernández-Beltrán JU, Hernández-De Lira IO, Cruz-Santos MM, Saucedo-Luevanos A, Hernández-Terán F, Balagurusamy N (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9:3721. https://​doi.​org/​10.​3390/​app9183721CrossRef
60.
Zurück zum Zitat Mateescu C, Dima AD (2019) Enzymatic pretreatment of algal biomass for enhanced conversion to biogas. J Eng Sci Innov 4(4):361–370 Mateescu C, Dima AD (2019) Enzymatic pretreatment of algal biomass for enhanced conversion to biogas. J Eng Sci Innov 4(4):361–370
61.
Zurück zum Zitat Kim HT, Yun EJ, Wang D, Chung JH, Choi IG, Kim KH (2013) A high temperature and low acid pretreatment and agarose treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour Technol 136:582–587CrossRef Kim HT, Yun EJ, Wang D, Chung JH, Choi IG, Kim KH (2013) A high temperature and low acid pretreatment and agarose treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour Technol 136:582–587CrossRef
62.
Zurück zum Zitat Hom-Diaz A, Passos F, Ferrer I, Vicent T, Blanquez P (2016) Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal Res 19:184–188CrossRef Hom-Diaz A, Passos F, Ferrer I, Vicent T, Blanquez P (2016) Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal Res 19:184–188CrossRef
63.
Zurück zum Zitat Tamilarasan K, Kavitha S, Rajesh Banu J, Arulazhagan P, Tae Yeom I (2017) Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction. Bioresour Technol 228:156–163CrossRef Tamilarasan K, Kavitha S, Rajesh Banu J, Arulazhagan P, Tae Yeom I (2017) Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction. Bioresour Technol 228:156–163CrossRef
65.
Zurück zum Zitat Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef
66.
Zurück zum Zitat Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745CrossRef Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745CrossRef
67.
Zurück zum Zitat Shah FA, Mahmood Q, Rashid N, Pervez A, Raja IA, Shah MM (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sustain Energy Rev 42:627–642CrossRef Shah FA, Mahmood Q, Rashid N, Pervez A, Raja IA, Shah MM (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sustain Energy Rev 42:627–642CrossRef
68.
Zurück zum Zitat Patinvoh RJ, Osadolor OA, Chandolias K, Horváth IS, Taherzadeh MJ (2016) Innovative pretreatment strategies for biogas production. Bioresour Technol 224:13–24CrossRef Patinvoh RJ, Osadolor OA, Chandolias K, Horváth IS, Taherzadeh MJ (2016) Innovative pretreatment strategies for biogas production. Bioresour Technol 224:13–24CrossRef
69.
Zurück zum Zitat Moset V, Xavier CDAN, Feng L, Wahid R, Møller HB (2018) Combined low thermal alkali addition and mechanical pre-treatment to improve biogas yield from wheat straw. J Clean Prod 172:1391–1398CrossRef Moset V, Xavier CDAN, Feng L, Wahid R, Møller HB (2018) Combined low thermal alkali addition and mechanical pre-treatment to improve biogas yield from wheat straw. J Clean Prod 172:1391–1398CrossRef
70.
Zurück zum Zitat Dahadha S, Amin Z, Lakeh AAB, Elbeshbishy E (2017) Evaluation of different pretreatment processes of lignocellulosic biomass for enhanced biomethane production. Energy Fuel Energy Fuels 31(10):10335–10347CrossRef Dahadha S, Amin Z, Lakeh AAB, Elbeshbishy E (2017) Evaluation of different pretreatment processes of lignocellulosic biomass for enhanced biomethane production. Energy Fuel Energy Fuels 31(10):10335–10347CrossRef
72.
Zurück zum Zitat Córdova O, Santis J, Ruiz-Fillipi G, Zuñiga ME, Fermoso FG, Chamy R (2018) Microalgae digestive pretreatment for increasing biogas production. Renew Sustain Energy Rev 82:2806–2813CrossRef Córdova O, Santis J, Ruiz-Fillipi G, Zuñiga ME, Fermoso FG, Chamy R (2018) Microalgae digestive pretreatment for increasing biogas production. Renew Sustain Energy Rev 82:2806–2813CrossRef
74.
Zurück zum Zitat Passos F, Hom-Diaz A, Blanquez P, Vicent T, Ferrer I (2016) Improving biogas production from microalgae by enzymatic pretreatment. Bioresour Technol 199:347–351CrossRef Passos F, Hom-Diaz A, Blanquez P, Vicent T, Ferrer I (2016) Improving biogas production from microalgae by enzymatic pretreatment. Bioresour Technol 199:347–351CrossRef
75.
Zurück zum Zitat Wagner AO, Lackner N, Mutschlechner M, Prem EV, Markt R, Illmer P (2018) Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 11:1797CrossRef Wagner AO, Lackner N, Mutschlechner M, Prem EV, Markt R, Illmer P (2018) Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 11:1797CrossRef
76.
Zurück zum Zitat Parthiba Karthikeyan O, Trably E, Mehariya S, Bernet N, Wong JWC, Carrere H (2018) Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresour Technol 249:1025–1039CrossRef Parthiba Karthikeyan O, Trably E, Mehariya S, Bernet N, Wong JWC, Carrere H (2018) Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresour Technol 249:1025–1039CrossRef
77.
Zurück zum Zitat Premier GC, Kim JR, Massanet-Nicolau J, Kyazze G, Esteves S, Penumathsa B, Rodríguez R, Maddy J, Dinsdale J, Guwy AJ (2013) Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew Energy 49:188–192CrossRef Premier GC, Kim JR, Massanet-Nicolau J, Kyazze G, Esteves S, Penumathsa B, Rodríguez R, Maddy J, Dinsdale J, Guwy AJ (2013) Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew Energy 49:188–192CrossRef
78.
Zurück zum Zitat Martinez-Perez N, Cherryman SJ, Premier GC, Dinsdale RM, Hawkes DL, Hawkes FR, Kyazze G, Guwy AJ (2007) The potential for hydrogen-enriched biogas production from crops: scenarios in the UK. Biomass Bioenergy 31:95–104CrossRef Martinez-Perez N, Cherryman SJ, Premier GC, Dinsdale RM, Hawkes DL, Hawkes FR, Kyazze G, Guwy AJ (2007) The potential for hydrogen-enriched biogas production from crops: scenarios in the UK. Biomass Bioenergy 31:95–104CrossRef
79.
Zurück zum Zitat Show KY, Lee DJ, Zhang ZP (2011) Production of biohydrogen: current perspectives and future prospects. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansoinou E (eds) Biofuels alternative feedstocks and conversion processes. Academic Press, Amsterdam, pp 467–479 Show KY, Lee DJ, Zhang ZP (2011) Production of biohydrogen: current perspectives and future prospects. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansoinou E (eds) Biofuels alternative feedstocks and conversion processes. Academic Press, Amsterdam, pp 467–479
80.
Zurück zum Zitat Cysneiros D, Banks CJ, Heaven S, Karatzas KAG (2012) The effect of pH control and ‘hydraulic flush’ on hydrolysis and volatile fatty acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour Technol 123:263–271CrossRef Cysneiros D, Banks CJ, Heaven S, Karatzas KAG (2012) The effect of pH control and ‘hydraulic flush’ on hydrolysis and volatile fatty acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour Technol 123:263–271CrossRef
81.
Zurück zum Zitat Bharathiraja B, Sudharsanaa T, Jayamuthunagaib J, Praveenkumarc R, Chozhavendhand S, Iyyappan J (2018) Biogas production—a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev 90:570–582CrossRef Bharathiraja B, Sudharsanaa T, Jayamuthunagaib J, Praveenkumarc R, Chozhavendhand S, Iyyappan J (2018) Biogas production—a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev 90:570–582CrossRef
82.
Zurück zum Zitat Dobre T, Pârvulescu OC, Răducanu C, Trică B, Jinescu G (2018) Stochastic modelling of poly-saccharide hydrolysis. J Eng Sci Innov 3(1):25–38 Dobre T, Pârvulescu OC, Răducanu C, Trică B, Jinescu G (2018) Stochastic modelling of poly-saccharide hydrolysis. J Eng Sci Innov 3(1):25–38
83.
Zurück zum Zitat Van DP, Fujiwara T, Tho BL, Toan PS, Minh GH (2020) A review of anaerobic digestion systems for biodegradable waste: configurations, operating parameters, and current trends. Environ Eng Res 25(1):1–17CrossRef Van DP, Fujiwara T, Tho BL, Toan PS, Minh GH (2020) A review of anaerobic digestion systems for biodegradable waste: configurations, operating parameters, and current trends. Environ Eng Res 25(1):1–17CrossRef
84.
Zurück zum Zitat Cirne DG, Paloumet X, Björnsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy 32:965–975CrossRef Cirne DG, Paloumet X, Björnsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy 32:965–975CrossRef
85.
Zurück zum Zitat Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577CrossRef Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577CrossRef
86.
Zurück zum Zitat Lovley DR, Klug MJ (1983) Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl Environ Microbiol 45:1310–1315CrossRef Lovley DR, Klug MJ (1983) Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl Environ Microbiol 45:1310–1315CrossRef
87.
Zurück zum Zitat Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley, Hoboken, NJ. ISBN 978-3-527-31841-4CrossRef Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley, Hoboken, NJ. ISBN 978-3-527-31841-4CrossRef
88.
Zurück zum Zitat Abbasi T, Tauseef SM, Abbasi SA (2012) Anaerobic digestion for global warming control and energy generation—an overview. Renew Sustain Energy Rev 16:3228–3242CrossRef Abbasi T, Tauseef SM, Abbasi SA (2012) Anaerobic digestion for global warming control and energy generation—an overview. Renew Sustain Energy Rev 16:3228–3242CrossRef
89.
Zurück zum Zitat Deepanraj B, Sivasubramanian V, Jayaraj S (2014) Biogas generation through anaerobic digestion process—an overview. Res J Chem Environ 18(5):80–93 Deepanraj B, Sivasubramanian V, Jayaraj S (2014) Biogas generation through anaerobic digestion process—an overview. Res J Chem Environ 18(5):80–93
90.
Zurück zum Zitat Sikora A, Detman A, Mielecki D, Chojnacka A, Błaszczyk M (2019) Searching for metabolic pathways of anaerobic digestion: a useful list of the key enzymes. In: Banu R (ed) Anaerobic digestion. IntechOpen, London, pp 485–544. ISBN: 978-1-83881-850-0 Sikora A, Detman A, Mielecki D, Chojnacka A, Błaszczyk M (2019) Searching for metabolic pathways of anaerobic digestion: a useful list of the key enzymes. In: Banu R (ed) Anaerobic digestion. IntechOpen, London, pp 485–544. ISBN: 978-1-83881-850-0
91.
Zurück zum Zitat Mateescu C (2016) Influence of the hydrostatic pressure on biogas production in anaerobic digesters. Rom Biotechnol Lett 21(5):11941–11948 Mateescu C (2016) Influence of the hydrostatic pressure on biogas production in anaerobic digesters. Rom Biotechnol Lett 21(5):11941–11948
92.
Zurück zum Zitat Das D, Veziroglu N (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energy 33(21):6046–6057CrossRef Das D, Veziroglu N (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energy 33(21):6046–6057CrossRef
93.
Zurück zum Zitat Antonopoulou G, Ntaikou I, Stamatelatou K, Lyberatos G (2011) Biofuels chemical and biolochemical conversion processes and technologies: Biological and fermentative production of hydrogen. In: Luque R, Campelo J, Clark J (eds) Handbook of biofuels production. Woodhead Publishing, Cambridge, pp 305–346. https://doi.org/10.1533/9780857090492.2.305CrossRef Antonopoulou G, Ntaikou I, Stamatelatou K, Lyberatos G (2011) Biofuels chemical and biolochemical conversion processes and technologies: Biological and fermentative production of hydrogen. In: Luque R, Campelo J, Clark J (eds) Handbook of biofuels production. Woodhead Publishing, Cambridge, pp 305–346. https://​doi.​org/​10.​1533/​9780857090492.​2.​305CrossRef
95.
Zurück zum Zitat Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation processes. Int J Hydrogen Energ 27:1339–1347CrossRef Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation processes. Int J Hydrogen Energ 27:1339–1347CrossRef
96.
Zurück zum Zitat Tapia-Venegas E, Ramirez-Morales JE, Silva-Illanes F, Toledo-Alarcon J, Paillet F, Escudie R, Lay CH, Chu CY, Leu HJ, Marone A, Lin CY, Kim DH, Trably E, Ruiz-Filippi G (2015) Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev Environ Sci Biotechnol 14(4):761–785CrossRef Tapia-Venegas E, Ramirez-Morales JE, Silva-Illanes F, Toledo-Alarcon J, Paillet F, Escudie R, Lay CH, Chu CY, Leu HJ, Marone A, Lin CY, Kim DH, Trably E, Ruiz-Filippi G (2015) Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev Environ Sci Biotechnol 14(4):761–785CrossRef
97.
Zurück zum Zitat Sharma S, Singh RN, Tripathi S (2013) Biohydrogen from algae: fuel of the future. Int. Res J Environ Sci 2(4):44–47 Sharma S, Singh RN, Tripathi S (2013) Biohydrogen from algae: fuel of the future. Int. Res J Environ Sci 2(4):44–47
98.
Zurück zum Zitat Liu H, Got S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRef Liu H, Got S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRef
100.
Zurück zum Zitat Ghimire A, Luongo V, Frunzo L, Pirozzi F, Lens PNL, Esposito G (2017) Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: use of buffalo manure as buffering agent. Int J Hydrogen Energy 42(8):4861–4869CrossRef Ghimire A, Luongo V, Frunzo L, Pirozzi F, Lens PNL, Esposito G (2017) Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: use of buffalo manure as buffering agent. Int J Hydrogen Energy 42(8):4861–4869CrossRef
102.
Zurück zum Zitat Cardoso V, Romao BB, Silva FTM, Santos JG, Batista FRX, Ferreira JS (2014) Hydrogen production by dark fermentation. Chem Eng Trans 38:481–486 Cardoso V, Romao BB, Silva FTM, Santos JG, Batista FRX, Ferreira JS (2014) Hydrogen production by dark fermentation. Chem Eng Trans 38:481–486
103.
Zurück zum Zitat Florio C, Micoli L, Ausiello A, Pasquale V, Turco M, Pirozzi D, Toscano G, Dumontet S (2018) Mesophilic dark fermentation of food waste for biohydrogen production in a mixed batch reactor. Chem Eng Trans 67:67–72 Florio C, Micoli L, Ausiello A, Pasquale V, Turco M, Pirozzi D, Toscano G, Dumontet S (2018) Mesophilic dark fermentation of food waste for biohydrogen production in a mixed batch reactor. Chem Eng Trans 67:67–72
104.
Zurück zum Zitat Venkata Mohan S, Bhaskar YV, Krishna TM, Chandrasekhara Rao N, Lalit Babu V, Sarma PN (2007) Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. Int J Hydrogen Energy 32:2286–2295CrossRef Venkata Mohan S, Bhaskar YV, Krishna TM, Chandrasekhara Rao N, Lalit Babu V, Sarma PN (2007) Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. Int J Hydrogen Energy 32:2286–2295CrossRef
105.
Zurück zum Zitat Vijaya Bhaskar Y, Venkata Mohan S, Sarma PN (2008) Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor. Bioresour Technol 99:6941–6948CrossRef Vijaya Bhaskar Y, Venkata Mohan S, Sarma PN (2008) Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor. Bioresour Technol 99:6941–6948CrossRef
107.
Zurück zum Zitat Han SK, Shin HS (2004) Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manag Assoc 54:242–249CrossRef Han SK, Shin HS (2004) Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manag Assoc 54:242–249CrossRef
108.
Zurück zum Zitat Trad Z, Fontaine JP, Larroche C, Vial C (2016) Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation. Renew Energy 98:264–282CrossRef Trad Z, Fontaine JP, Larroche C, Vial C (2016) Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation. Renew Energy 98:264–282CrossRef
110.
Zurück zum Zitat Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36(2):452–466CrossRef Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36(2):452–466CrossRef
111.
Zurück zum Zitat Bassani I (2017) Hydrogen assisted biological biogas upgrading. PhD Thesis, Kgs. Technical University of Denmark, DTU Environment, Lyngby Bassani I (2017) Hydrogen assisted biological biogas upgrading. PhD Thesis, Kgs. Technical University of Denmark, DTU Environment, Lyngby
112.
Zurück zum Zitat Bailon Allegue L, Hinge J (2012) Report biogas and bio-syngas upgrading. Danish Technological Institute, Taastrup Bailon Allegue L, Hinge J (2012) Report biogas and bio-syngas upgrading. Danish Technological Institute, Taastrup
113.
Zurück zum Zitat Kougias PG, Treu L, Benavente DP, Boe K, Campanaro S, Angelidaki I (2017b) Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresour Technol 225:429–437CrossRef Kougias PG, Treu L, Benavente DP, Boe K, Campanaro S, Angelidaki I (2017b) Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresour Technol 225:429–437CrossRef
115.
Zurück zum Zitat Bassani I, Kougias PG, Treu L, Angelidaki I (2015) Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Environ Sci Technol 49:12585–12593CrossRef Bassani I, Kougias PG, Treu L, Angelidaki I (2015) Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Environ Sci Technol 49:12585–12593CrossRef
116.
Zurück zum Zitat Bauer F, Hulteberg C, Persson T, Tamm D, Granskning B (2013) Biogas upgrading—review of commercial technologies. SGS Rapport 270. Swedish Gas Technology Centre, Malmö Bauer F, Hulteberg C, Persson T, Tamm D, Granskning B (2013) Biogas upgrading—review of commercial technologies. SGS Rapport 270. Swedish Gas Technology Centre, Malmö
117.
Zurück zum Zitat Munoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol 14:727–759CrossRef Munoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol 14:727–759CrossRef
118.
Zurück zum Zitat An H, Feng B, Su S (2011) CO2 capture by electrothermal swing adsorption with activated carbon fibre materials. Int J Greenh Gas Con 5:16–25CrossRef An H, Feng B, Su S (2011) CO2 capture by electrothermal swing adsorption with activated carbon fibre materials. Int J Greenh Gas Con 5:16–25CrossRef
119.
Zurück zum Zitat Augelletti R, Conti M, Annesini MC (2017) Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J Clean Prod 140:1390–1398CrossRef Augelletti R, Conti M, Annesini MC (2017) Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J Clean Prod 140:1390–1398CrossRef
120.
Zurück zum Zitat Harasimowicz M, Orluk P, Zakrzewska-Trznadel G, Chmielewski AG (2007) Application of polyimide membranes for biogas purification and enrichment. J Hazard Mater 144:698–702CrossRef Harasimowicz M, Orluk P, Zakrzewska-Trznadel G, Chmielewski AG (2007) Application of polyimide membranes for biogas purification and enrichment. J Hazard Mater 144:698–702CrossRef
121.
Zurück zum Zitat Khan IU, Dzarfan Othman HM, Hashim H, Matsuura T, Ismail AF, Arzhandi RDM, Azelee WI (2017) Biogas as a renewable energy fuel—a review of biogas upgrading, utilization and storage. Energ Conver Manage 150:277–294CrossRef Khan IU, Dzarfan Othman HM, Hashim H, Matsuura T, Ismail AF, Arzhandi RDM, Azelee WI (2017) Biogas as a renewable energy fuel—a review of biogas upgrading, utilization and storage. Energ Conver Manage 150:277–294CrossRef
122.
Zurück zum Zitat Andriani D, Wresta A, Atmaja T, Saepudin A (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928CrossRef Andriani D, Wresta A, Atmaja T, Saepudin A (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928CrossRef
123.
Zurück zum Zitat Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Ed 55:7296–7343CrossRef Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Ed 55:7296–7343CrossRef
124.
Zurück zum Zitat Sun X, Kang X, Zhu Q, Ma J, Yang G, Liu Z, Han B (2016) Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem Sci 7:2883–2887CrossRef Sun X, Kang X, Zhu Q, Ma J, Yang G, Liu Z, Han B (2016) Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem Sci 7:2883–2887CrossRef
125.
Zurück zum Zitat Kougias PG, Campanaro S, Treu L, Zhu X, Angelidaki I (2017a) A novel archaeal species belonging to methanoculleus genus identified via de-novo assembly and metagenomic binning process in biogas reactors. Anaerobe 46:23–32CrossRef Kougias PG, Campanaro S, Treu L, Zhu X, Angelidaki I (2017a) A novel archaeal species belonging to methanoculleus genus identified via de-novo assembly and metagenomic binning process in biogas reactors. Anaerobe 46:23–32CrossRef
126.
Zurück zum Zitat Agneessens LM, Ottosen LDM, Voigt NV, Nielsen JL, de Jonge N, Fischer CH, Kofoed MVW (2017) In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level. Bioresour Technol 233:256–263CrossRef Agneessens LM, Ottosen LDM, Voigt NV, Nielsen JL, de Jonge N, Fischer CH, Kofoed MVW (2017) In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level. Bioresour Technol 233:256–263CrossRef
127.
Zurück zum Zitat Mulat DG, Mosbæk F, Ward AJ, Polag D, Greule M, Keppler F, Nielsen JL, Feilberg A (2017) Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. Waste Manag 68:146–156CrossRef Mulat DG, Mosbæk F, Ward AJ, Polag D, Greule M, Keppler F, Nielsen JL, Feilberg A (2017) Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. Waste Manag 68:146–156CrossRef
128.
Zurück zum Zitat Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology—a review of biogas cleaning, upgrading and utilization. Renew Sustain Energy Rev 51:521–532CrossRef Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology—a review of biogas cleaning, upgrading and utilization. Renew Sustain Energy Rev 51:521–532CrossRef
129.
Zurück zum Zitat Bailon Allegue L, Hinge J (2014) Biogas upgrading. Evaluation of methods for H2S removal. Danish Technological Institute, Taastrup Bailon Allegue L, Hinge J (2014) Biogas upgrading. Evaluation of methods for H2S removal. Danish Technological Institute, Taastrup
130.
Zurück zum Zitat Kajolina T, Aakko-Saksa P, Roine J, Kall L (2015) Efficiency testing of three biogas siloxane removal systems in the presence of D5, D6, limonene and toluene. Fuel Process Technol 139:242–247CrossRef Kajolina T, Aakko-Saksa P, Roine J, Kall L (2015) Efficiency testing of three biogas siloxane removal systems in the presence of D5, D6, limonene and toluene. Fuel Process Technol 139:242–247CrossRef
131.
Zurück zum Zitat Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645CrossRef Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645CrossRef
132.
Zurück zum Zitat Kapoor R, Subbarao PM, Vijay VK, Shah G, Sahota S, Singh D, Verma M (2017) Factors affecting methane loss from a water scrubbing based biogas upgrading system. Appl Energy 208:1379–1388CrossRef Kapoor R, Subbarao PM, Vijay VK, Shah G, Sahota S, Singh D, Verma M (2017) Factors affecting methane loss from a water scrubbing based biogas upgrading system. Appl Energy 208:1379–1388CrossRef
133.
Zurück zum Zitat Al Seadi T, Rutz D, Heinz P, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. University of Southern Denmark, Esbjerg. ISBN 978-87-992962-0-0 Al Seadi T, Rutz D, Heinz P, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. University of Southern Denmark, Esbjerg. ISBN 978-87-992962-0-0
134.
Zurück zum Zitat Risberg K, Cederlund H, Pell M, Arthurson V, Schnürer A (2017) Comparative characterization of digestate versus pig slurry and cow manure e chemical composition and effects on soil microbial activity. Waste Manag 61:529–538CrossRef Risberg K, Cederlund H, Pell M, Arthurson V, Schnürer A (2017) Comparative characterization of digestate versus pig slurry and cow manure e chemical composition and effects on soil microbial activity. Waste Manag 61:529–538CrossRef
135.
Zurück zum Zitat Vilanova Plana P, Noche B (2016) A review of the current digestate distribution models: storage and transport. WIT Trans Ecol Environ 202:345–357CrossRef Vilanova Plana P, Noche B (2016) A review of the current digestate distribution models: storage and transport. WIT Trans Ecol Environ 202:345–357CrossRef
136.
Zurück zum Zitat Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12(3):242–257CrossRef Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12(3):242–257CrossRef
137.
Zurück zum Zitat Logan M, Visvanathan C (2019) Management strategies for anaerobic digestate of organic fraction of municipal solid waste: current status and future prospects. Waste Manag Res 37(1):27–39CrossRef Logan M, Visvanathan C (2019) Management strategies for anaerobic digestate of organic fraction of municipal solid waste: current status and future prospects. Waste Manag Res 37(1):27–39CrossRef
138.
Zurück zum Zitat Fuchs W, Drosg B (2013) Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci Technol 67(9):1984–1993CrossRef Fuchs W, Drosg B (2013) Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci Technol 67(9):1984–1993CrossRef
139.
Zurück zum Zitat Monlau F, Sambusiti C, Ficara E, Aboulias A, Barakata A, Carrère H (2015a) New opportunities for agricultural digestate valorization: current situation and perspectives. Energ Environ Sci 8:2600–2621CrossRef Monlau F, Sambusiti C, Ficara E, Aboulias A, Barakata A, Carrère H (2015a) New opportunities for agricultural digestate valorization: current situation and perspectives. Energ Environ Sci 8:2600–2621CrossRef
140.
Zurück zum Zitat Monlau F, Sambusiti C, Antoniou N, Barakat A, Zabaniotou A (2015b) A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl Energy 148:32–38CrossRef Monlau F, Sambusiti C, Antoniou N, Barakat A, Zabaniotou A (2015b) A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl Energy 148:32–38CrossRef
141.
Zurück zum Zitat Monfet E, Aubry G, Avalos Ramirez A (2018) Nutrient removal and recovery from digestate: a review of the technology. Biofuels 9(2):247–262CrossRef Monfet E, Aubry G, Avalos Ramirez A (2018) Nutrient removal and recovery from digestate: a review of the technology. Biofuels 9(2):247–262CrossRef
142.
Zurück zum Zitat Bustamante MA, Restrepo AP, Alburquerque JA, Pérez-Murcia MD, Paredes C, Moral R, Bernal MP (2013) Recycling of anaerobic digestates by composting: effect of the bulking agent used. J Clean Prod 47:61–69CrossRef Bustamante MA, Restrepo AP, Alburquerque JA, Pérez-Murcia MD, Paredes C, Moral R, Bernal MP (2013) Recycling of anaerobic digestates by composting: effect of the bulking agent used. J Clean Prod 47:61–69CrossRef
143.
Zurück zum Zitat Torres-Climent A, Martin-Mata J, Marhuenda-Egea F, Moral R, Barber X, Perez-Murcia MD, Paredes C (2015) Composting of the solid phase of digestate from biogas production: optimization of the moisture, C/N ratio, and pH conditions. Commun Soil Sci Plan 46:197–207CrossRef Torres-Climent A, Martin-Mata J, Marhuenda-Egea F, Moral R, Barber X, Perez-Murcia MD, Paredes C (2015) Composting of the solid phase of digestate from biogas production: optimization of the moisture, C/N ratio, and pH conditions. Commun Soil Sci Plan 46:197–207CrossRef
144.
Zurück zum Zitat Hanc A, Vasak F (2015) Processing separated digestate by vermicomposting technology using earthworms of the genus Eisenia. Int J Environ Sci Technol 12:1183–1190CrossRef Hanc A, Vasak F (2015) Processing separated digestate by vermicomposting technology using earthworms of the genus Eisenia. Int J Environ Sci Technol 12:1183–1190CrossRef
146.
Zurück zum Zitat Peng W, Pivato A (2017) Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valor 10(2):465–481CrossRef Peng W, Pivato A (2017) Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valor 10(2):465–481CrossRef
147.
Zurück zum Zitat Fabbri D, Torri C (2016) Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr Opin Chem Biol 38:167–173 Fabbri D, Torri C (2016) Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr Opin Chem Biol 38:167–173
148.
Zurück zum Zitat Hossain AK, Serrano C, Brammer JB, Omran A, Ahmed F, Smith DI, Davies PA (2016) Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel 171:18–28CrossRef Hossain AK, Serrano C, Brammer JB, Omran A, Ahmed F, Smith DI, Davies PA (2016) Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel 171:18–28CrossRef
149.
Zurück zum Zitat Opatokun SA, Strezov V, Kan T (2015) Product based evaluation of pyrolysis of food waste and its digestate. Energy 92:349–354CrossRef Opatokun SA, Strezov V, Kan T (2015) Product based evaluation of pyrolysis of food waste and its digestate. Energy 92:349–354CrossRef
150.
Zurück zum Zitat Zhu L (2015) Microalgal culture strategies for biofuel production: a review. Biofuels Bioprod Biorefin 9:801–814CrossRef Zhu L (2015) Microalgal culture strategies for biofuel production: a review. Biofuels Bioprod Biorefin 9:801–814CrossRef
152.
Zurück zum Zitat Wu S, Lv T, Lua Q, Ajmala Z, Dong R (2017) Treatment of anaerobic digestate supernatant in microbial fuel cellcoupled constructed wetlands: evaluation of nitrogen removal, electricity generation, and bacterial community response. Sci Total Environ 580:339–346CrossRef Wu S, Lv T, Lua Q, Ajmala Z, Dong R (2017) Treatment of anaerobic digestate supernatant in microbial fuel cellcoupled constructed wetlands: evaluation of nitrogen removal, electricity generation, and bacterial community response. Sci Total Environ 580:339–346CrossRef
153.
Zurück zum Zitat Güngören Madenoğlu T (2018) Evaluation of anaerobically digested biomass in catalytic supercritical water gasification for biofuel production. Anadolu Uni J Sci Techn A App Sci Eng 19(2):407–421 Güngören Madenoğlu T (2018) Evaluation of anaerobically digested biomass in catalytic supercritical water gasification for biofuel production. Anadolu Uni J Sci Techn A App Sci Eng 19(2):407–421
154.
Zurück zum Zitat Ning D, Ramin A, Ajay KD, Janusz AK (2014) Catalytic gasification of cellulose and pinewood to H2 in supercritical water. Fuel 118:416–425CrossRef Ning D, Ramin A, Ajay KD, Janusz AK (2014) Catalytic gasification of cellulose and pinewood to H2 in supercritical water. Fuel 118:416–425CrossRef
155.
Zurück zum Zitat Pooya A, Sami K, Friederike S, Faraz A, Ramin F (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B Environ 117–118:330–338 Pooya A, Sami K, Friederike S, Faraz A, Ramin F (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B Environ 117–118:330–338
156.
Zurück zum Zitat Basu P (2010) Biomass gasification and pyrolysis practical design. Elsevier, Oxford Basu P (2010) Biomass gasification and pyrolysis practical design. Elsevier, Oxford
157.
Zurück zum Zitat Sen B (2015) Recent advances in hydrogen production by dark fermentation technology. In: Sivakumar S, Sharma UC, Prasad R (eds) Energy science and technology: hydrogen and other technologies, vol 11. Studium Press LLC, Houston, TX, pp 159–181 Sen B (2015) Recent advances in hydrogen production by dark fermentation technology. In: Sivakumar S, Sharma UC, Prasad R (eds) Energy science and technology: hydrogen and other technologies, vol 11. Studium Press LLC, Houston, TX, pp 159–181
160.
Zurück zum Zitat Prasad S, Rathore D, Singh A (2017) Recent advances in biogas production. Chem Eng Process Tech 3(2):1038 Prasad S, Rathore D, Singh A (2017) Recent advances in biogas production. Chem Eng Process Tech 3(2):1038
161.
Zurück zum Zitat Scheper TH, Lammers F (1994) Fermentation monitoring and process control. Curr Opin Biotechnol 5(2):187–191CrossRef Scheper TH, Lammers F (1994) Fermentation monitoring and process control. Curr Opin Biotechnol 5(2):187–191CrossRef
162.
Zurück zum Zitat Nardin F, Mancini M, Unterhofer T, Mazzetto F (2014) New solutions for digestate solid/liquid separation to apply on small alpine farm biogas plants. In: Proceedings International Conference of Agricultural Engineering, Zurich, July 2014 Nardin F, Mancini M, Unterhofer T, Mazzetto F (2014) New solutions for digestate solid/liquid separation to apply on small alpine farm biogas plants. In: Proceedings International Conference of Agricultural Engineering, Zurich, July 2014
163.
Metadaten
Titel
Biochemical Conversion of Residual Biomass: An Approach to Fuel Gas and Green Fertilizers
verfasst von
Carmen Mateescu
Andreea-Daniela Dima
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_2