Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Advances in Manufacturing 3/2019

02.08.2019

Bio-inspired motion planning for reaching movement of a manipulator based on intrinsic tau jerk guidance

verfasst von: Zhen Zhang, Xu Yang

Erschienen in: Advances in Manufacturing | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This study proposed a bio-inspired motion planning approach for the reaching movement of a robot manipulator based on a novel intrinsic tau jerk guidance strategy, which was established by some cognitive science researchers when they studied motion patterns through biology. In accordance with the rules of human reaching movement, the intrinsic tau jerk guidance strategy ensures continuity of the acceleration; further, it also ensures that its value is zero at the start and end of the movement. The approach has been implemented on a three-degrees-of-freedom 3R planar manipulator. The results show that, within a defined time, both the position gap and attitude gap can be reposefully closed, and the curves of joint velocity, acceleration, and driving torque are continuous and smooth. According to the dynamic analysis, the proposed approach tends to consume less energy. The bio-inspired method has the potential to be applied in particular scenarios in the future, such as a mobile robot with a manipulator exploring an unknown environment.
Literatur
1.
Zurück zum Zitat Piazzi A, Visioli A (1997) An interval algorithm for minimum-jerk trajectory planning of robot manipulators. In: Proceedings of the 36th IEEE conference on decision and control. IEEE, San Diego, pp 1924–1927 Piazzi A, Visioli A (1997) An interval algorithm for minimum-jerk trajectory planning of robot manipulators. In: Proceedings of the 36th IEEE conference on decision and control. IEEE, San Diego, pp 1924–1927
2.
Zurück zum Zitat Lippiello V, Ruggiero F (2012) 3D monocular robotic ball catching with an iterative trajectory estimation refinement. In: International conference on robotics and automation. IEEE, Saint Paul, pp 3950–3955 Lippiello V, Ruggiero F (2012) 3D monocular robotic ball catching with an iterative trajectory estimation refinement. In: International conference on robotics and automation. IEEE, Saint Paul, pp 3950–3955
3.
Zurück zum Zitat Lampariello R, Nguyen-Tuong D, Castellini C et al (2011) Trajectory planning for optimal robot catching in real-time. In: International conference on robotics and automation. IEEE, Shanghai, pp 3719–3726 Lampariello R, Nguyen-Tuong D, Castellini C et al (2011) Trajectory planning for optimal robot catching in real-time. In: International conference on robotics and automation. IEEE, Shanghai, pp 3719–3726
4.
Zurück zum Zitat Riley M, Atkeson CG (2002) Robot catching: towards engaging human-humanoid interaction. Auton Robot 12(1):119–128 CrossRefMATH Riley M, Atkeson CG (2002) Robot catching: towards engaging human-humanoid interaction. Auton Robot 12(1):119–128 CrossRefMATH
8.
Zurück zum Zitat Li S, He J, Li Y et al (2017) Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 28(2):415–426 MathSciNetCrossRef Li S, He J, Li Y et al (2017) Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 28(2):415–426 MathSciNetCrossRef
9.
Zurück zum Zitat Li S, Wang H, Rafique MU (2018) A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans Neural Netw Learn Syst 29(5):1908–1918 MathSciNetCrossRef Li S, Wang H, Rafique MU (2018) A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans Neural Netw Learn Syst 29(5):1908–1918 MathSciNetCrossRef
10.
Zurück zum Zitat Regan D, Gray R (2001) Hitting what one wants to hit and missing what one wants to miss. Vis Res 41(25–26):3321–3329 CrossRef Regan D, Gray R (2001) Hitting what one wants to hit and missing what one wants to miss. Vis Res 41(25–26):3321–3329 CrossRef
11.
Zurück zum Zitat Schiff W, Caviness JA, Gibson JJ (1962) Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science 136(15):982–983 CrossRef Schiff W, Caviness JA, Gibson JJ (1962) Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science 136(15):982–983 CrossRef
12.
Zurück zum Zitat Yonas A, Bechtold AG, Frankel D et al (1977) Development of sensitivity to information for impending collision. Atten Percep Psychophys 21(2):97–104 CrossRef Yonas A, Bechtold AG, Frankel D et al (1977) Development of sensitivity to information for impending collision. Atten Percep Psychophys 21(2):97–104 CrossRef
13.
Zurück zum Zitat Lee DN (1976) Theory of visual control of braking based on information about time-to-collision. Perception 5(4):437–459 CrossRef Lee DN (1976) Theory of visual control of braking based on information about time-to-collision. Perception 5(4):437–459 CrossRef
14.
Zurück zum Zitat Lee DN, Reddish PE (1981) Plummeting gannets: a paradigm of ecological optics. Nature 293(5830):293–294 CrossRef Lee DN, Reddish PE (1981) Plummeting gannets: a paradigm of ecological optics. Nature 293(5830):293–294 CrossRef
15.
Zurück zum Zitat Lee DN (2009) General tau theory: evolution to date. Perception 38(6):837–850 CrossRef Lee DN (2009) General tau theory: evolution to date. Perception 38(6):837–850 CrossRef
16.
Zurück zum Zitat Lee DN (1998) Guiding movement by coupling Taus. Ecol Psychol 10(3–4):221–250 CrossRef Lee DN (1998) Guiding movement by coupling Taus. Ecol Psychol 10(3–4):221–250 CrossRef
17.
Zurück zum Zitat Wagner H (1982) Flow-field variables trigger landing in flies. Nature 297(5862):147–148 CrossRef Wagner H (1982) Flow-field variables trigger landing in flies. Nature 297(5862):147–148 CrossRef
18.
Zurück zum Zitat Hatsopoulos N, Gabbiani F, Laurent G (1995) Elementary computation of object approach by a wide-field visual neuron. Science 270(5238):1000–1003 CrossRef Hatsopoulos N, Gabbiani F, Laurent G (1995) Elementary computation of object approach by a wide-field visual neuron. Science 270(5238):1000–1003 CrossRef
19.
Zurück zum Zitat Sun H, Frost BJ (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1(4):296–303 CrossRef Sun H, Frost BJ (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1(4):296–303 CrossRef
20.
Zurück zum Zitat Rock P, Harris MG (2006) Tau as a potential control variable for visually guided braking. J Exp Psychol Hum Percept Perform 32(2):251–267 CrossRef Rock P, Harris MG (2006) Tau as a potential control variable for visually guided braking. J Exp Psychol Hum Percept Perform 32(2):251–267 CrossRef
21.
Zurück zum Zitat Lee DN, Craig CM, Grealy MA (1999) Sensory and intrinsic coordination of movement. Proc Biol Sci 266(1432):2029–2035 CrossRef Lee DN, Craig CM, Grealy MA (1999) Sensory and intrinsic coordination of movement. Proc Biol Sci 266(1432):2029–2035 CrossRef
22.
Zurück zum Zitat Morrone MC, Tosetti M, Montanaro D et al (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3(12):1322–1328 CrossRef Morrone MC, Tosetti M, Montanaro D et al (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3(12):1322–1328 CrossRef
23.
Zurück zum Zitat Field DT, Wann JP (2005) Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15(5):453–458 CrossRef Field DT, Wann JP (2005) Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15(5):453–458 CrossRef
24.
Zurück zum Zitat Farid K (2014) Four-dimensional guidance and control of movement using time-to-contact: application to automated docking and landing of unmanned rotorcraft systems. Int J Robot Res 33(2):237–267 CrossRef Farid K (2014) Four-dimensional guidance and control of movement using time-to-contact: application to automated docking and landing of unmanned rotorcraft systems. Int J Robot Res 33(2):237–267 CrossRef
25.
Zurück zum Zitat Mohamad TA, Victor MB, William H (2015) Bioinspired autonomous visual vertical control of a quadrotor unmanned aerial vehicle. J Guid Control Dyn 38(2):249–262 CrossRef Mohamad TA, Victor MB, William H (2015) Bioinspired autonomous visual vertical control of a quadrotor unmanned aerial vehicle. J Guid Control Dyn 38(2):249–262 CrossRef
26.
Zurück zum Zitat Zhang Z, Xie P, Ma O (2014) Bio-inspired trajectory generation for uav perching movement based on tau theory. Int J Adv Robot Syst 11:1–11 CrossRef Zhang Z, Xie P, Ma O (2014) Bio-inspired trajectory generation for uav perching movement based on tau theory. Int J Adv Robot Syst 11:1–11 CrossRef
27.
Zurück zum Zitat Yang Z, Fang Z, Li P (2016) Bio-inspired collision-free 4D trajectory generation for UAVs using tau strategy. J Bionic Eng 13(1):84–97 CrossRef Yang Z, Fang Z, Li P (2016) Bio-inspired collision-free 4D trajectory generation for UAVs using tau strategy. J Bionic Eng 13(1):84–97 CrossRef
28.
Zurück zum Zitat Zhang S, Zhang Z, Qian J (2014) Bio-inspired trajectory planning for robot catching movements based on tau theory. J Mech Eng 50(13):42–51 CrossRef Zhang S, Zhang Z, Qian J (2014) Bio-inspired trajectory planning for robot catching movements based on tau theory. J Mech Eng 50(13):42–51 CrossRef
29.
Zurück zum Zitat Zhang Z, Zhang S, Xie P et al (2014) Bioinspired 4D trajectory generation for a UAS rapid point-to-point movement. J Bionic Eng 11(1):72–81 CrossRef Zhang Z, Zhang S, Xie P et al (2014) Bioinspired 4D trajectory generation for a UAS rapid point-to-point movement. J Bionic Eng 11(1):72–81 CrossRef
30.
Zurück zum Zitat Zhang S, Qian J, Zhang Z et al (2016) Age- and Parkinson’s disease-related evaluation of gait by general tau theory. Exp Brain Res 234(10):2829–2840 CrossRef Zhang S, Qian J, Zhang Z et al (2016) Age- and Parkinson’s disease-related evaluation of gait by general tau theory. Exp Brain Res 234(10):2829–2840 CrossRef
32.
Zurück zum Zitat Zhang Z, Xie P, Ma O (2013) Bio-inspired trajectory generation for UAS perching. In: IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, Wollongong, pp 997–1002 Zhang Z, Xie P, Ma O (2013) Bio-inspired trajectory generation for UAS perching. In: IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, Wollongong, pp 997–1002
33.
Zurück zum Zitat Georgopoulos AP (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46(4):725–743 CrossRef Georgopoulos AP (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46(4):725–743 CrossRef
34.
Zurück zum Zitat Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42(2):223–227 CrossRef Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42(2):223–227 CrossRef
35.
Zurück zum Zitat Soechting JF, Lacquaniti F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1(7):710–720 CrossRef Soechting JF, Lacquaniti F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1(7):710–720 CrossRef
36.
Zurück zum Zitat Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105(2):331–348 CrossRef Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105(2):331–348 CrossRef
37.
Zurück zum Zitat Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5(9):2318–2330 CrossRef Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5(9):2318–2330 CrossRef
38.
Zurück zum Zitat Nagasaki H (1989) Asymmetric velocity and acceleration profiles of human arm movements. Exp Brain Res 74(2):319–326 CrossRef Nagasaki H (1989) Asymmetric velocity and acceleration profiles of human arm movements. Exp Brain Res 74(2):319–326 CrossRef
39.
Zurück zum Zitat Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multi-joint arm movement. Biol Cybern 61(2):89–101 CrossRef Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multi-joint arm movement. Biol Cybern 61(2):89–101 CrossRef
40.
Zurück zum Zitat Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703 CrossRef Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703 CrossRef
41.
Zurück zum Zitat Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915 CrossRef Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915 CrossRef
42.
Zurück zum Zitat Fligge N (2012) Minimum jerk for human catching movements in 3D. In: IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics. IEEE, Rome, pp 581–586 Fligge N (2012) Minimum jerk for human catching movements in 3D. In: IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics. IEEE, Rome, pp 581–586
43.
Zurück zum Zitat Corke PI (2017) Robotics, vision and control: fundamental algorithms in MATLAB. Springer, Berlin CrossRefMATH Corke PI (2017) Robotics, vision and control: fundamental algorithms in MATLAB. Springer, Berlin CrossRefMATH
Metadaten
Titel
Bio-inspired motion planning for reaching movement of a manipulator based on intrinsic tau jerk guidance
verfasst von
Zhen Zhang
Xu Yang
Publikationsdatum
02.08.2019
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 3/2019
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-019-00268-z

Weitere Artikel der Ausgabe 3/2019

Advances in Manufacturing 3/2019 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.