Skip to main content

2016 | OriginalPaper | Buchkapitel

5. Biocompatible Hydroxyapatite-Based Composite Coatings Obtained by Electrophoretic Deposition for Medical Applications as Hard Tissue Implants

verfasst von : Vesna B. Mišković-Stanković

Erschienen in: Biomedical and Pharmaceutical Applications of Electrochemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synthetic hydroxyapatite (HAP) as the most promising ceramic material used for biomedical applications has excellent bioactivity, biocompatibility, and the chemical composition similar to that of the bone. The development of synthetic materials with close resemblance to the biological and mechanical properties of natural bone tissue is required to overcome load-bearing problem. Titanium has found wide application as basic metal material due to its attributes of strength, stiffness, toughness, impact resistance, and corrosion resistance for manufacturing bioceramic coatings such as hydroxyapatite. However, HAP is very brittle, and for this reason, a great attention has been focused on the development of composite HAP coatings. Natural biodegradable polymer lignin (Lig) is considered as alternative for the development of the new biocomposite coating. On the other hand, the general idea of using graphene (Gr) as nanofiller is to minimize the brittleness of HAP and gain improved mechanical properties of biocomposite coating. However, in recent years problems regarding bacterial infection of bone implants have been resulting in body rejection. In order to stop bacterial infection, it is crucial to inhibit bacterial adhesion since biofilm can be very resistant to immune response and antibiotics. The antimicrobial activity of silver has been known for a very long time. Additionally, silver cation does not develop bacterial resistance and at the same time shows low toxicity to human cells. Hence, the possibility to prevent the implant infections using the antimicrobial properties of Ag has generated great interest in the development of silver-doped hydroxyapatite coatings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci 2:40–54CrossRef Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci 2:40–54CrossRef
2.
Zurück zum Zitat Eftekhari S, El Sawi I, Shaghayegh Bagheri Z, Turcotte G, Bougherara H (2014) Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Mater Sci Eng C 39:120–125CrossRef Eftekhari S, El Sawi I, Shaghayegh Bagheri Z, Turcotte G, Bougherara H (2014) Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Mater Sci Eng C 39:120–125CrossRef
3.
Zurück zum Zitat Fidancevska E, Ruseska G, Bossert J, Lin Y-M, Boccaccini AR (2007) Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater Chem Phys 103:95–100CrossRef Fidancevska E, Ruseska G, Bossert J, Lin Y-M, Boccaccini AR (2007) Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater Chem Phys 103:95–100CrossRef
4.
Zurück zum Zitat Djošić MS, Mišković-Stanković VB, Milonjić S, Kačarević-Popović ZM, Bibić N, Stojanović J (2008) Electrochemical synthesis and characterization of hydroxyapatite powders. Mater Chem Phys 111:137–142CrossRef Djošić MS, Mišković-Stanković VB, Milonjić S, Kačarević-Popović ZM, Bibić N, Stojanović J (2008) Electrochemical synthesis and characterization of hydroxyapatite powders. Mater Chem Phys 111:137–142CrossRef
5.
Zurück zum Zitat Mišković-Stanković VB (2014) Electrophoretic deposition of ceramic coatings on metal surfaces. In: Đokić S (ed) Electrodeposition and surface finishing, vol 57, Modern aspects of electrochemistry. Springer, New York, pp 133–216CrossRef Mišković-Stanković VB (2014) Electrophoretic deposition of ceramic coatings on metal surfaces. In: Đokić S (ed) Electrodeposition and surface finishing, vol 57, Modern aspects of electrochemistry. Springer, New York, pp 133–216CrossRef
6.
Zurück zum Zitat Rath PC, Besra L, Singh BP, Bhattacharjee S (2012) Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: characterization and corrosion studies. Ceram Int 38:3209–3216CrossRef Rath PC, Besra L, Singh BP, Bhattacharjee S (2012) Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: characterization and corrosion studies. Ceram Int 38:3209–3216CrossRef
7.
Zurück zum Zitat Geetha M, Singh AK, Asokamani R, Gogi AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRef Geetha M, Singh AK, Asokamani R, Gogi AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRef
8.
Zurück zum Zitat Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4CrossRef Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4CrossRef
9.
Zurück zum Zitat Wang CX, Wang M, Zhou X (2002) Electrochemical impedance spectroscopy study of the nucleation and growth of apatite on chemically treated titanium. Langmuir 18:7641–7647CrossRef Wang CX, Wang M, Zhou X (2002) Electrochemical impedance spectroscopy study of the nucleation and growth of apatite on chemically treated titanium. Langmuir 18:7641–7647CrossRef
10.
Zurück zum Zitat García C, Ceré S, Durán A (2006) Bioactive coatings deposited on titanium alloys. J Non Cryst Solids 352:3488–3495CrossRef García C, Ceré S, Durán A (2006) Bioactive coatings deposited on titanium alloys. J Non Cryst Solids 352:3488–3495CrossRef
11.
Zurück zum Zitat Kung K-C, Lee T-M, Lui T-S (2010) Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation. J Alloys Compd 508:384–390CrossRef Kung K-C, Lee T-M, Lui T-S (2010) Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation. J Alloys Compd 508:384–390CrossRef
12.
Zurück zum Zitat Moseke C, Gbureck U, Elter P, Drechsler P, Zoll A, Thull R, Ewald A (2011) Hard implant coatings with antimicrobial properties. J Mater Sci Mater Med 22:2711–2720CrossRef Moseke C, Gbureck U, Elter P, Drechsler P, Zoll A, Thull R, Ewald A (2011) Hard implant coatings with antimicrobial properties. J Mater Sci Mater Med 22:2711–2720CrossRef
13.
Zurück zum Zitat Stoch A, Brozek A, Kmita G, Stoch J, Jastrzebski W, Rakowska A (2001) Electrophoretic coating of hydroxyapatite on titanium implants. J Mol Struct 596:191–200CrossRef Stoch A, Brozek A, Kmita G, Stoch J, Jastrzebski W, Rakowska A (2001) Electrophoretic coating of hydroxyapatite on titanium implants. J Mol Struct 596:191–200CrossRef
14.
Zurück zum Zitat Mourino V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9:401–419CrossRef Mourino V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9:401–419CrossRef
15.
Zurück zum Zitat Rameshbabu N, Sampath Kumat TS, Prabhakar TG, Sastry VS, Murty KVGK, Prasad Rao K (2007) Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res A 80A:581–591CrossRef Rameshbabu N, Sampath Kumat TS, Prabhakar TG, Sastry VS, Murty KVGK, Prasad Rao K (2007) Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res A 80A:581–591CrossRef
16.
Zurück zum Zitat Lee I-S, Whang C-N, Oh K-S, Park J-C, Lee K-Y, Lee G-H, Chung S-M, Sun X-D (2006) Formation of silver incorporated calcium phosphate film for medical applications. Nucl Instrum Methods B 242:45–47CrossRef Lee I-S, Whang C-N, Oh K-S, Park J-C, Lee K-Y, Lee G-H, Chung S-M, Sun X-D (2006) Formation of silver incorporated calcium phosphate film for medical applications. Nucl Instrum Methods B 242:45–47CrossRef
17.
Zurück zum Zitat Pang X, Zhitomirsky I (2008) Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol 202:3815–3821CrossRef Pang X, Zhitomirsky I (2008) Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol 202:3815–3821CrossRef
18.
Zurück zum Zitat Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol 7:22–39CrossRef Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol 7:22–39CrossRef
19.
Zurück zum Zitat Song YW, Shan DY, Han EH (2008) Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett 62:3276–3279CrossRef Song YW, Shan DY, Han EH (2008) Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett 62:3276–3279CrossRef
20.
Zurück zum Zitat Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7:S581–S613CrossRef Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7:S581–S613CrossRef
21.
Zurück zum Zitat Corni I, Ryan MP, Boccaccini AR (2008) Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc 28:1353–1367CrossRef Corni I, Ryan MP, Boccaccini AR (2008) Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc 28:1353–1367CrossRef
22.
Zurück zum Zitat Boccaccini AR, Cho J, Subhani T, Kaya C, Kaya F (2010) Electrophoretic deposition of carbon nanotube–ceramic nanocomposites. J Eur Ceram Soc 30:1115–1129CrossRef Boccaccini AR, Cho J, Subhani T, Kaya C, Kaya F (2010) Electrophoretic deposition of carbon nanotube–ceramic nanocomposites. J Eur Ceram Soc 30:1115–1129CrossRef
23.
Zurück zum Zitat Kaya C, Singh I, Boccaccini AR (2008) Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD). Adv Eng Mater 10:131–138CrossRef Kaya C, Singh I, Boccaccini AR (2008) Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD). Adv Eng Mater 10:131–138CrossRef
24.
Zurück zum Zitat Van der Biest OO, Vandeperre LJ (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 9:327–352CrossRef Van der Biest OO, Vandeperre LJ (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 9:327–352CrossRef
25.
Zurück zum Zitat Sun L, Berndt CC, Gross KA (2002) Hydroxyapatite/polymer composite flame-sprayed coatings for orthopedic applications. J Biomat Sci Polym Ed 13:977–990CrossRef Sun L, Berndt CC, Gross KA (2002) Hydroxyapatite/polymer composite flame-sprayed coatings for orthopedic applications. J Biomat Sci Polym Ed 13:977–990CrossRef
26.
Zurück zum Zitat Shuai C, Nie Y, Gao C, Lu H, Hu H, Wen X, Peng S (2012) Poly(l-lactide acid) improves complete nano-hydroxyapatite bone scaffolds through the microstructure rearrangement. Electron J Biotechnol 15:1–13 Shuai C, Nie Y, Gao C, Lu H, Hu H, Wen X, Peng S (2012) Poly(l-lactide acid) improves complete nano-hydroxyapatite bone scaffolds through the microstructure rearrangement. Electron J Biotechnol 15:1–13
27.
Zurück zum Zitat Alves Cardoso D, Jansen JA, Leeuwenburgh SCG (2012) Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res Part B 100B:2316–2326CrossRef Alves Cardoso D, Jansen JA, Leeuwenburgh SCG (2012) Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res Part B 100B:2316–2326CrossRef
28.
Zurück zum Zitat Wang J, de Boer J, de Groot K (2004) Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. J Dent Res 83:296–301CrossRef Wang J, de Boer J, de Groot K (2004) Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. J Dent Res 83:296–301CrossRef
29.
Zurück zum Zitat Martin H, Schulz KH, Bumgardner JD, Schneider JA (2008) Enhanced bonding of chitosan to implant quality titanium via four treatment combinations. Thin Solid Films 516:6277–6286CrossRef Martin H, Schulz KH, Bumgardner JD, Schneider JA (2008) Enhanced bonding of chitosan to implant quality titanium via four treatment combinations. Thin Solid Films 516:6277–6286CrossRef
30.
Zurück zum Zitat Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W (2009) Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C 29:29–35CrossRef Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W (2009) Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C 29:29–35CrossRef
31.
Zurück zum Zitat Gebhardt F, Seuss S, Turhan MC, Hornberger H, Virtanen S, Boccaccini AR (2012) Characterization of electrophoretic chitosan coatings on stainless steel. Mater Lett 66:302–304CrossRef Gebhardt F, Seuss S, Turhan MC, Hornberger H, Virtanen S, Boccaccini AR (2012) Characterization of electrophoretic chitosan coatings on stainless steel. Mater Lett 66:302–304CrossRef
32.
Zurück zum Zitat Mahmoodi S, Sorkhi L, Farrokhi-Rad M, Shahrabi T (2013) Electrophoretic deposition of hydroxyapatite–chitosan nanocomposite coatings in different alcohols. Surf Coat Technol 216:106–114CrossRef Mahmoodi S, Sorkhi L, Farrokhi-Rad M, Shahrabi T (2013) Electrophoretic deposition of hydroxyapatite–chitosan nanocomposite coatings in different alcohols. Surf Coat Technol 216:106–114CrossRef
33.
Zurück zum Zitat Batmanghelich F, Ghorbani M (2013) Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan–hydroxyapatite–carbon nanotube composite coatings. Ceram Int 39:5393–5402CrossRef Batmanghelich F, Ghorbani M (2013) Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan–hydroxyapatite–carbon nanotube composite coatings. Ceram Int 39:5393–5402CrossRef
34.
Zurück zum Zitat Deen I, Zhitomirsky I (2013) Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films. J Alloys Compd 586:S531–S534CrossRef Deen I, Zhitomirsky I (2013) Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films. J Alloys Compd 586:S531–S534CrossRef
35.
Zurück zum Zitat Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloids Surf A 328:73–78CrossRef Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloids Surf A 328:73–78CrossRef
36.
Zurück zum Zitat Zhitomirsky D, Roether JA, Boccaccini AR, Zhitomirsky I (2009) Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. J Mater Process Technol 209:1853–1860CrossRef Zhitomirsky D, Roether JA, Boccaccini AR, Zhitomirsky I (2009) Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. J Mater Process Technol 209:1853–1860CrossRef
37.
Zurück zum Zitat Li P, Huang Z, Liu R, Xiao X (2009) Preparation of porous hydroxyapatite coating with glucose as pore producer. J Chin Ceram Soc 37:1864–1868 Li P, Huang Z, Liu R, Xiao X (2009) Preparation of porous hydroxyapatite coating with glucose as pore producer. J Chin Ceram Soc 37:1864–1868
38.
Zurück zum Zitat Parente P, Sanchez-Herencia AJ, Mesa-Galan MJ, Ferrari B (2013) Functionalizing Ti-surfaces through the EPD of hydroxyapatite/nanoY2O3. J Phys Chem B 117:1600–1607CrossRef Parente P, Sanchez-Herencia AJ, Mesa-Galan MJ, Ferrari B (2013) Functionalizing Ti-surfaces through the EPD of hydroxyapatite/nanoY2O3. J Phys Chem B 117:1600–1607CrossRef
39.
Zurück zum Zitat Raschip IE, Vasile C, Ciolacu D, Cazacu G (2007) Semi-interpenetrating polymer networks containing polysaccharides. I Xanthan/Lignin networks. High Perform Polym 19:603–620CrossRef Raschip IE, Vasile C, Ciolacu D, Cazacu G (2007) Semi-interpenetrating polymer networks containing polysaccharides. I Xanthan/Lignin networks. High Perform Polym 19:603–620CrossRef
40.
Zurück zum Zitat Park Y, Doherty WOS, Halley PJ (2008) Developing lignin-based resin coatings and composites. Ind Crop Prod 27:163–167CrossRef Park Y, Doherty WOS, Halley PJ (2008) Developing lignin-based resin coatings and composites. Ind Crop Prod 27:163–167CrossRef
41.
Zurück zum Zitat Mansur HS, Mansur AAP, Bicallho SMCM (2005) Lignin-hydroxyapatite/tricalcium phosphate biocomposites: SEM/EDX and FTIR characterization. Key Eng Mater 284–286:745–748CrossRef Mansur HS, Mansur AAP, Bicallho SMCM (2005) Lignin-hydroxyapatite/tricalcium phosphate biocomposites: SEM/EDX and FTIR characterization. Key Eng Mater 284–286:745–748CrossRef
42.
Zurück zum Zitat Martinez MM, Pacheco A, Vargas VM (2009) Histological evaluation of the biocompatibility and bioconduction of a hydroxyapatite-lignin compound inserted in rabbits shinbones. Rev MVZ Córdoba 14:1624–1632 Martinez MM, Pacheco A, Vargas VM (2009) Histological evaluation of the biocompatibility and bioconduction of a hydroxyapatite-lignin compound inserted in rabbits shinbones. Rev MVZ Córdoba 14:1624–1632
43.
Zurück zum Zitat Erakovic S, Veljovic DJ, Diouf PN, Stevanovic T, Mitric M, Milonjic S, Miskovic-Stankovic VB (2009) Electrophoretic deposition of biocomposite lignin/hydroxyapatite coatings on titanium. Int J Chem React Eng 7:A62 Erakovic S, Veljovic DJ, Diouf PN, Stevanovic T, Mitric M, Milonjic S, Miskovic-Stankovic VB (2009) Electrophoretic deposition of biocomposite lignin/hydroxyapatite coatings on titanium. Int J Chem React Eng 7:A62
44.
Zurück zum Zitat Eraković S, Veljović DJ, Diouf PN, Stevanović T, Mitrić M, Janaćković DJ, Matić IZ, Juranić ZD, Mišković-Stanković VB (2012) The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog Org Coat 75:275–283CrossRef Eraković S, Veljović DJ, Diouf PN, Stevanović T, Mitrić M, Janaćković DJ, Matić IZ, Juranić ZD, Mišković-Stanković VB (2012) The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog Org Coat 75:275–283CrossRef
45.
Zurück zum Zitat Eraković S, Janković A, Veljović DJ, Palcevskis E, Mitrić M, Stevanović T, Janaćković DJ, Mišković-Stanković V (2013) Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. J Phys Chem B 117:1633–1643CrossRef Eraković S, Janković A, Veljović DJ, Palcevskis E, Mitrić M, Stevanović T, Janaćković DJ, Mišković-Stanković V (2013) Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. J Phys Chem B 117:1633–1643CrossRef
46.
Zurück zum Zitat Eraković S, Janković A, Matić IZ, Juranić ZD, Vukašinoć-Sekulić M, Stevanović T, Mišković-Stanković VB (2013) Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium. Mater Chem Phys 142:521–530CrossRef Eraković S, Janković A, Matić IZ, Juranić ZD, Vukašinoć-Sekulić M, Stevanović T, Mišković-Stanković VB (2013) Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium. Mater Chem Phys 142:521–530CrossRef
47.
Zurück zum Zitat Erakovic S, Jankovic A, Tsui GCP, Tang CY, Miskovic-Stankovic V, Stevanovic T (2014) Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic depostion. Int J Mol Sci 15:12294–12322CrossRef Erakovic S, Jankovic A, Tsui GCP, Tang CY, Miskovic-Stankovic V, Stevanovic T (2014) Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic depostion. Int J Mol Sci 15:12294–12322CrossRef
48.
Zurück zum Zitat Janković A, Eraković S, Mitrić M, Matić IZ, Juranić ZD, Tsui GCP, Tang CY, Mišković-Stanković V, Rhee KY, Park SJ (2015) Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J Alloys Compd 624:148–157CrossRef Janković A, Eraković S, Mitrić M, Matić IZ, Juranić ZD, Tsui GCP, Tang CY, Mišković-Stanković V, Rhee KY, Park SJ (2015) Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J Alloys Compd 624:148–157CrossRef
49.
Zurück zum Zitat Janković A, Eraković S, Vukašinović-Sekulić M, Mišković-Stanković V, Park SJ, Rhee KY (2015) Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Prog Org Coat 83:1–10CrossRef Janković A, Eraković S, Vukašinović-Sekulić M, Mišković-Stanković V, Park SJ, Rhee KY (2015) Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Prog Org Coat 83:1–10CrossRef
50.
Zurück zum Zitat Baurhoo B, Ruiz-Feria CA, Zhao X (2008) Purified lignin: nutritional and health impacts on farm animals—a review. Anim Feed Sci Technol 144:175–184CrossRef Baurhoo B, Ruiz-Feria CA, Zhao X (2008) Purified lignin: nutritional and health impacts on farm animals—a review. Anim Feed Sci Technol 144:175–184CrossRef
51.
Zurück zum Zitat Gosselink RJA, Abächerli A, Semke H, Malherbe R, Käuper P, Nadif A, van Dam JEG (2004) Analytical protocols for characterisation of sulphur-free lignin. Ind Crop Prod 19:271–281CrossRef Gosselink RJA, Abächerli A, Semke H, Malherbe R, Käuper P, Nadif A, van Dam JEG (2004) Analytical protocols for characterisation of sulphur-free lignin. Ind Crop Prod 19:271–281CrossRef
52.
Zurück zum Zitat Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813CrossRef Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813CrossRef
53.
Zurück zum Zitat Palcevskis E, Dindune A, Kuznecova L, Lipe A, Kanepe Z (2005) Granulated composite powders on basis of hydroxyapatite and plasma-processed zirconia and alumina nanopowders. Latv J Chem 2:128–138 Palcevskis E, Dindune A, Kuznecova L, Lipe A, Kanepe Z (2005) Granulated composite powders on basis of hydroxyapatite and plasma-processed zirconia and alumina nanopowders. Latv J Chem 2:128–138
54.
Zurück zum Zitat Veljovic DJ, Jokic B, Petrovic R, Palcevskis E, Dindune A, Mihailescu IN, Janackovic DJ (2009) Processing of dense nanostructured HAP ceramics by sintering and hot pressing. Ceram Int 35:1407–1413CrossRef Veljovic DJ, Jokic B, Petrovic R, Palcevskis E, Dindune A, Mihailescu IN, Janackovic DJ (2009) Processing of dense nanostructured HAP ceramics by sintering and hot pressing. Ceram Int 35:1407–1413CrossRef
55.
Zurück zum Zitat Kwok CT, Wong PK, Cheng FT, Man HC (2009) Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci 255:6736–6744CrossRef Kwok CT, Wong PK, Cheng FT, Man HC (2009) Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci 255:6736–6744CrossRef
56.
Zurück zum Zitat Landi E, Tampieri A, Celotti G, Sprio S (2000) Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc 20:2377–2387CrossRef Landi E, Tampieri A, Celotti G, Sprio S (2000) Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc 20:2377–2387CrossRef
57.
Zurück zum Zitat Mostafa NY (2005) Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys 94:333–341CrossRef Mostafa NY (2005) Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys 94:333–341CrossRef
58.
Zurück zum Zitat Ma J, Liang CH, Kong LB, Wang C (2003) Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate. J Mater Sci Mater Med 14:797–801CrossRef Ma J, Liang CH, Kong LB, Wang C (2003) Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate. J Mater Sci Mater Med 14:797–801CrossRef
59.
Zurück zum Zitat Ye HZ, Liu XY, Hong HP (2009) Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy. J Mater Sci Mater Med 20:843–850CrossRef Ye HZ, Liu XY, Hong HP (2009) Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy. J Mater Sci Mater Med 20:843–850CrossRef
60.
Zurück zum Zitat Filiaggi MJ, Pilliar RM, Coombs NA (1993) Post-plasma-spraying heat treatment of the HA coating/Ti-6A1-4V implant system. J Biomed Mater Res 27:191–198CrossRef Filiaggi MJ, Pilliar RM, Coombs NA (1993) Post-plasma-spraying heat treatment of the HA coating/Ti-6A1-4V implant system. J Biomed Mater Res 27:191–198CrossRef
61.
Zurück zum Zitat Caroline Victoria E, Gnanam FD (2002) Synthesis and characterisation of biphasic calcium phosphate. Trends Biomater Artif Organs 16:12–14 Caroline Victoria E, Gnanam FD (2002) Synthesis and characterisation of biphasic calcium phosphate. Trends Biomater Artif Organs 16:12–14
62.
Zurück zum Zitat Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J Anal Appl Pyrolysis 60:41–54CrossRef Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J Anal Appl Pyrolysis 60:41–54CrossRef
63.
Zurück zum Zitat Rodrigues PC, Cantao MP, Janissek P, Scarpa PCN, Mathias AL, Ramos LP, Gomes MAB (2002) Polyaniline/lignin blends: FTIR, MEV and electrochemical characterization. J Eur Polym 38:2213–2217CrossRef Rodrigues PC, Cantao MP, Janissek P, Scarpa PCN, Mathias AL, Ramos LP, Gomes MAB (2002) Polyaniline/lignin blends: FTIR, MEV and electrochemical characterization. J Eur Polym 38:2213–2217CrossRef
64.
Zurück zum Zitat El-Hendawy A-NA (2006) Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J Anal Appl Pyrolysis 75:159–166CrossRef El-Hendawy A-NA (2006) Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J Anal Appl Pyrolysis 75:159–166CrossRef
65.
Zurück zum Zitat Roop Kumar R, Wang M (2002) Modulus and hardness evaluations of sintered bioceramic powders and functionally graded bioactive composites by nano-indentation technique. Mater Sci Eng A 338:230–236CrossRef Roop Kumar R, Wang M (2002) Modulus and hardness evaluations of sintered bioceramic powders and functionally graded bioactive composites by nano-indentation technique. Mater Sci Eng A 338:230–236CrossRef
66.
Zurück zum Zitat Hahn B-D, Lee J-M, Park D-S, Choi J-J, Ryu J, Yoon W-H, Lee B-K, Shin D-S, Kim H-E (2009) Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater 5:3205–3214CrossRef Hahn B-D, Lee J-M, Park D-S, Choi J-J, Ryu J, Yoon W-H, Lee B-K, Shin D-S, Kim H-E (2009) Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater 5:3205–3214CrossRef
67.
Zurück zum Zitat Kaya C (2008) Electrophoretic deposition of carbon nanotube-reinforced hydroxyapatite bioactive layers on Ti–6Al–4V alloys for biomedical applications. Ceram Int 34:1843–1847CrossRef Kaya C (2008) Electrophoretic deposition of carbon nanotube-reinforced hydroxyapatite bioactive layers on Ti–6Al–4V alloys for biomedical applications. Ceram Int 34:1843–1847CrossRef
68.
Zurück zum Zitat Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRef Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRef
69.
Zurück zum Zitat Ohno M, Abe T (1991) Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J Immunol Methods 145:199–203CrossRef Ohno M, Abe T (1991) Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J Immunol Methods 145:199–203CrossRef
70.
Zurück zum Zitat Sjogren G, Sletten G, Dahl JE (2000) Cytotoxicity of dental alloys, metals, and ceramics assessed by Millipore filter, agar overlay, and MTT tests. J Prosthet Dent 84:229–236CrossRef Sjogren G, Sletten G, Dahl JE (2000) Cytotoxicity of dental alloys, metals, and ceramics assessed by Millipore filter, agar overlay, and MTT tests. J Prosthet Dent 84:229–236CrossRef
71.
Zurück zum Zitat Ugartondo V, Mitjans M, Pilar Vinardell M (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99:6683–6687CrossRef Ugartondo V, Mitjans M, Pilar Vinardell M (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99:6683–6687CrossRef
72.
Zurück zum Zitat Sun R, Li M, Lu Y, Wang A (2006) Immersion behavior of hydroxyapatite (HA) powders before and after sintering. Mater Charact 56:250–254CrossRef Sun R, Li M, Lu Y, Wang A (2006) Immersion behavior of hydroxyapatite (HA) powders before and after sintering. Mater Charact 56:250–254CrossRef
73.
Zurück zum Zitat Kim H-M, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373CrossRef Kim H-M, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373CrossRef
74.
Zurück zum Zitat Ye H, Liu XY, Hong H (2009) Cladding of titanium/hydroxyapatite composites onto Ti6Al4V for load-bearing implant applications. Mater Sci Eng C 29:2036–2044CrossRef Ye H, Liu XY, Hong H (2009) Cladding of titanium/hydroxyapatite composites onto Ti6Al4V for load-bearing implant applications. Mater Sci Eng C 29:2036–2044CrossRef
75.
Zurück zum Zitat Gu YW, Khor KA, Cheang P (2004) Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials 25:4127–4134CrossRef Gu YW, Khor KA, Cheang P (2004) Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials 25:4127–4134CrossRef
76.
Zurück zum Zitat Pecheva EV, Pramatarova LD, Maitz MF, Pham MT, Kondyuirin AV (2004) Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions: part I. FTIR and Raman spectroscopy study. Appl Surf Sci 235:176–181CrossRef Pecheva EV, Pramatarova LD, Maitz MF, Pham MT, Kondyuirin AV (2004) Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions: part I. FTIR and Raman spectroscopy study. Appl Surf Sci 235:176–181CrossRef
77.
Zurück zum Zitat Mavropoulos E, Costa AM, Costa LT, Achete CA, Mello A, Granjeiro JM, Rossi AM (2011) Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf B 83:1–9CrossRef Mavropoulos E, Costa AM, Costa LT, Achete CA, Mello A, Granjeiro JM, Rossi AM (2011) Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf B 83:1–9CrossRef
78.
Zurück zum Zitat Liu H, Xi P, Xie G, Shi Y, Hou F, Huang L, Chen F, Zeng Z, Shao C, Wang J (2012) Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116:3334–3341CrossRef Liu H, Xi P, Xie G, Shi Y, Hou F, Huang L, Chen F, Zeng Z, Shao C, Wang J (2012) Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116:3334–3341CrossRef
79.
Zurück zum Zitat Stoch A, Jastrzebski W, Brozek A, Trybalska B, Cichocinska M, Szarawara E (1999) FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids. J Mol Struct 511–512:287–294CrossRef Stoch A, Jastrzebski W, Brozek A, Trybalska B, Cichocinska M, Szarawara E (1999) FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids. J Mol Struct 511–512:287–294CrossRef
80.
Zurück zum Zitat Wang L-N, Luo J-L (2011) Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method. Mater Sci Eng C 31:748–754CrossRef Wang L-N, Luo J-L (2011) Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method. Mater Sci Eng C 31:748–754CrossRef
81.
Zurück zum Zitat Dong Z, Li Y, Zou Q (2009) Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl Surf Sci 255:6087–6091CrossRef Dong Z, Li Y, Zou Q (2009) Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl Surf Sci 255:6087–6091CrossRef
82.
Zurück zum Zitat Bai X, Sandukas S, Appleford MR, Ong JL, Rabiei A (2009) Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater 5:3563–3572CrossRef Bai X, Sandukas S, Appleford MR, Ong JL, Rabiei A (2009) Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater 5:3563–3572CrossRef
83.
Zurück zum Zitat Popović MM, Grgur BN, Mišković-Stanković VB (2005) Corrosion studies on electrochemically deposited PANI and PANI/epoxy coatings on mild steel in acid sulfate solution. Prog Org Coat 52:359–365CrossRef Popović MM, Grgur BN, Mišković-Stanković VB (2005) Corrosion studies on electrochemically deposited PANI and PANI/epoxy coatings on mild steel in acid sulfate solution. Prog Org Coat 52:359–365CrossRef
84.
Zurück zum Zitat Sluyters-Rehbach M (1994) Impedances of electrochemical systems: terminology, nomenclature and representation—part I: cells with metal electrodes and liquid solutions. Pure Appl Chem 66:1831–1891CrossRef Sluyters-Rehbach M (1994) Impedances of electrochemical systems: terminology, nomenclature and representation—part I: cells with metal electrodes and liquid solutions. Pure Appl Chem 66:1831–1891CrossRef
85.
Zurück zum Zitat Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, HobokenCrossRef Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, HobokenCrossRef
86.
Zurück zum Zitat Park J-H, Lee D-Y, Oh K-T, Lee Y-K, Kim K-M, Kim K-N (2006) Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid. Mater Lett 60:2573–2577CrossRef Park J-H, Lee D-Y, Oh K-T, Lee Y-K, Kim K-M, Kim K-N (2006) Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid. Mater Lett 60:2573–2577CrossRef
87.
Zurück zum Zitat Afzal MAF, Kalmodia S, Kesarwani P, Basu B, Balani K (2012) Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. J Biomater Appl 27:967–978CrossRef Afzal MAF, Kalmodia S, Kesarwani P, Basu B, Balani K (2012) Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. J Biomater Appl 27:967–978CrossRef
88.
Zurück zum Zitat Stanic V, Janackovic DJ, Dimitrijevic S, Tanaskovic SB, Mitric M, Pavlovic MS, Krstic A, Jovanovic D, Raicevic S (2011) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci 257:4510–4518CrossRef Stanic V, Janackovic DJ, Dimitrijevic S, Tanaskovic SB, Mitric M, Pavlovic MS, Krstic A, Jovanovic D, Raicevic S (2011) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci 257:4510–4518CrossRef
89.
Zurück zum Zitat Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241CrossRef Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241CrossRef
90.
Zurück zum Zitat Mendes LC, Rodrigues RC, Silva EP (2010) Thermal, structural and morphological assessment of PVP/HA composites. J Therm Anal Calorim 101:899–905CrossRef Mendes LC, Rodrigues RC, Silva EP (2010) Thermal, structural and morphological assessment of PVP/HA composites. J Therm Anal Calorim 101:899–905CrossRef
91.
Zurück zum Zitat Yao ZQ, Ivanisenko YU, Diemant T, Caron A, Chuvilin A, Jiang JZ, Valie RZ, Qi M, Fecht H-J (2010) Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomater 6:2816–2825CrossRef Yao ZQ, Ivanisenko YU, Diemant T, Caron A, Chuvilin A, Jiang JZ, Valie RZ, Qi M, Fecht H-J (2010) Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomater 6:2816–2825CrossRef
92.
Zurück zum Zitat Roguska A, Pisarek M, Andrzejczuk M, Dolata M, Lewandowska M, Janik-Czachor M (2011) Characterization of a calcium phosphate–TiO2 nanotube composite layer for biomedical applications. Mater Sci Eng C 31:906–914CrossRef Roguska A, Pisarek M, Andrzejczuk M, Dolata M, Lewandowska M, Janik-Czachor M (2011) Characterization of a calcium phosphate–TiO2 nanotube composite layer for biomedical applications. Mater Sci Eng C 31:906–914CrossRef
93.
Zurück zum Zitat Battistoni C, Casaletto MP, Ingo GM, Kaciulis S, Mattogno G, Pandolfi L (2000) Surface characterization of biocompatible hydroxyapatite coatings. Surf Interface Anal 29:773–781CrossRef Battistoni C, Casaletto MP, Ingo GM, Kaciulis S, Mattogno G, Pandolfi L (2000) Surface characterization of biocompatible hydroxyapatite coatings. Surf Interface Anal 29:773–781CrossRef
94.
Zurück zum Zitat Dupraz A, Nguyen TP, Richard M, Daculsi G, Passuti N (1999) Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material. Biomaterials 20:663–673CrossRef Dupraz A, Nguyen TP, Richard M, Daculsi G, Passuti N (1999) Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material. Biomaterials 20:663–673CrossRef
95.
Zurück zum Zitat Viornery C, Chevolot Y, Leonard D, Aronsson B-O, Pechy P, Mathieu HJ, Descouts P, Gratzel M (2002) Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir 18:2582–2589CrossRef Viornery C, Chevolot Y, Leonard D, Aronsson B-O, Pechy P, Mathieu HJ, Descouts P, Gratzel M (2002) Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir 18:2582–2589CrossRef
96.
Zurück zum Zitat Neelgund GM, Oki A, Luo Z (2013) In situ deposition of hydroxyapatite on graphene nanosheets. Mater Res Bull 48:175–179CrossRef Neelgund GM, Oki A, Luo Z (2013) In situ deposition of hydroxyapatite on graphene nanosheets. Mater Res Bull 48:175–179CrossRef
97.
Zurück zum Zitat Biris AR, Ardelean S, Lazar MD, Dervishi E, Watanabe F, Ghosh A, Biswas A, Biris AS (2012) Synthesis of few-layer graphene over gold nanoclusters supported on MgO. Carbon 50:2252–2263CrossRef Biris AR, Ardelean S, Lazar MD, Dervishi E, Watanabe F, Ghosh A, Biswas A, Biris AS (2012) Synthesis of few-layer graphene over gold nanoclusters supported on MgO. Carbon 50:2252–2263CrossRef
98.
Zurück zum Zitat Zhang L, Liu W, Yue C, Zhang T, Li P, Xing Z, Chen Y (2013) A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 61:105–115CrossRef Zhang L, Liu W, Yue C, Zhang T, Li P, Xing Z, Chen Y (2013) A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 61:105–115CrossRef
99.
Zurück zum Zitat Liu J, Yan H, Reece MJ, Jiang K (2012) Toughening of zirconia/alumina composites by the addition of graphene platelets. J Eur Ceram Soc 32:4185–4193CrossRef Liu J, Yan H, Reece MJ, Jiang K (2012) Toughening of zirconia/alumina composites by the addition of graphene platelets. J Eur Ceram Soc 32:4185–4193CrossRef
100.
Zurück zum Zitat Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef
101.
Zurück zum Zitat Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937CrossRef Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937CrossRef
102.
Zurück zum Zitat Belmonte M, Ramírez C, González-Julián J, Schneider J, Miranzo P, Osendi MI (2013) The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 61:431–435CrossRef Belmonte M, Ramírez C, González-Julián J, Schneider J, Miranzo P, Osendi MI (2013) The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 61:431–435CrossRef
103.
Zurück zum Zitat Liu Y, Dang Z, Wang Y, Huang J, Li H (2014) Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon 67:250–259CrossRef Liu Y, Dang Z, Wang Y, Huang J, Li H (2014) Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon 67:250–259CrossRef
104.
Zurück zum Zitat Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692CrossRef Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692CrossRef
105.
Zurück zum Zitat Baradaran S, Moghaddam E, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, Nakhaei Moghaddam MR, Alias Y (2014) Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 69:32–45CrossRef Baradaran S, Moghaddam E, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, Nakhaei Moghaddam MR, Alias Y (2014) Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 69:32–45CrossRef
106.
Zurück zum Zitat Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Xi T, Wei S (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1:475–484CrossRef Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Xi T, Wei S (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1:475–484CrossRef
107.
Zurück zum Zitat Rodriguez-Lorenzo LM, Benito-Garzón L, Barroso-Bujans F, Fernández M (2008) Synthesis and biocompatibility of hydroxyapatite in a graphite oxide matrix. Key Eng Mater 396–398:477–480 Rodriguez-Lorenzo LM, Benito-Garzón L, Barroso-Bujans F, Fernández M (2008) Synthesis and biocompatibility of hydroxyapatite in a graphite oxide matrix. Key Eng Mater 396–398:477–480
108.
Zurück zum Zitat Zhu J, Wong HM, Yeung KWK, Tjong SC (2011) Spark plasma sintered hydroxyapatite/graphite nanosheet and hydroxyapatite/multiwalled carbon nanotube composites: mechanical and in vitro cellular croperties. Adv Eng Mater 13:336–341CrossRef Zhu J, Wong HM, Yeung KWK, Tjong SC (2011) Spark plasma sintered hydroxyapatite/graphite nanosheet and hydroxyapatite/multiwalled carbon nanotube composites: mechanical and in vitro cellular croperties. Adv Eng Mater 13:336–341CrossRef
109.
Zurück zum Zitat Kim S, Ku SH, Lim SY, Kim JH, Park CB (2011) Graphene–biomineral hybrid materials. Adv Mater 23:2009–2014CrossRef Kim S, Ku SH, Lim SY, Kim JH, Park CB (2011) Graphene–biomineral hybrid materials. Adv Mater 23:2009–2014CrossRef
110.
Zurück zum Zitat Bressan E, Ferroni L, Gardin C, Sbricoli C, Gobbato L, Ludovichetti FS, Tocco I, Carraro A, Piattelli A, Zavan B (2014) Graphene based scaffolds effects on stem cells commitment. J Transl Med 12:296 (p 1–15)CrossRef Bressan E, Ferroni L, Gardin C, Sbricoli C, Gobbato L, Ludovichetti FS, Tocco I, Carraro A, Piattelli A, Zavan B (2014) Graphene based scaffolds effects on stem cells commitment. J Transl Med 12:296 (p 1–15)CrossRef
111.
Zurück zum Zitat Biris AR, Mahmood M, Lazar M, Dervishi E, Watanabe F, Mustafa T, Baciut G, Baciut M, Bran S, Ali S, Biris AS (2011) Novel multicomponent and biocompatible nanocomposite materials based on few-layer graphenes synthesized on a gold/hydroxyapatite catalytic system with applications in bone regeneration. J Phys Chem C 115:18967–18976CrossRef Biris AR, Mahmood M, Lazar M, Dervishi E, Watanabe F, Mustafa T, Baciut G, Baciut M, Bran S, Ali S, Biris AS (2011) Novel multicomponent and biocompatible nanocomposite materials based on few-layer graphenes synthesized on a gold/hydroxyapatite catalytic system with applications in bone regeneration. J Phys Chem C 115:18967–18976CrossRef
112.
Zurück zum Zitat Ma HB, Su WX, Tai ZX, Sun DF, Yan XB, Liu B, Xue QJ (2012) Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chin Sci Bull 57:3051–3058CrossRef Ma HB, Su WX, Tai ZX, Sun DF, Yan XB, Liu B, Xue QJ (2012) Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chin Sci Bull 57:3051–3058CrossRef
113.
Zurück zum Zitat Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song HH, Yu ZZ et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183CrossRef Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song HH, Yu ZZ et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183CrossRef
114.
Zurück zum Zitat Lahiri D, Ghosh S, Agarwal A (2012) Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Mater Sci Eng C 32(7):1727–1758CrossRef Lahiri D, Ghosh S, Agarwal A (2012) Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Mater Sci Eng C 32(7):1727–1758CrossRef
115.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef
116.
Zurück zum Zitat Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15):4323–4329CrossRef Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15):4323–4329CrossRef
117.
Zurück zum Zitat Hu WB, Peng C, Luo WJ, Lv M, Li XM, Li D et al (2010) Graphene based antibacterial paper. ACS Nano 4(7):4317–4323CrossRef Hu WB, Peng C, Luo WJ, Lv M, Li XM, Li D et al (2010) Graphene based antibacterial paper. ACS Nano 4(7):4317–4323CrossRef
118.
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRef Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRef
119.
Zurück zum Zitat Eraković S, Janković A, Ristoscu C, Duta L, Serban N, Visan A, Mihailescu IN et al (2014) Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates. Appl Surf Sci 293:37–45CrossRef Eraković S, Janković A, Ristoscu C, Duta L, Serban N, Visan A, Mihailescu IN et al (2014) Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates. Appl Surf Sci 293:37–45CrossRef
120.
Zurück zum Zitat Wu C-C, Huang S-T, Tseng T-W, Rao Q-L, Lin H-C (2010) FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. J Mol Struct 979:72–76CrossRef Wu C-C, Huang S-T, Tseng T-W, Rao Q-L, Lin H-C (2010) FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. J Mol Struct 979:72–76CrossRef
121.
Zurück zum Zitat Fan Z, Wang J, Wang Z, Ran H, Li Y, Niu L et al (2014) One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon 66:407–416CrossRef Fan Z, Wang J, Wang Z, Ran H, Li Y, Niu L et al (2014) One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon 66:407–416CrossRef
122.
Zurück zum Zitat Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55(12):3909–3914CrossRef Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55(12):3909–3914CrossRef
123.
Zurück zum Zitat Xie X, Hu K, Fang D, Shang L, Tran SD, Cerruti M (2015) Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7:7992–8002CrossRef Xie X, Hu K, Fang D, Shang L, Tran SD, Cerruti M (2015) Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7:7992–8002CrossRef
124.
Zurück zum Zitat Watling KM, Parr JF, Rintoul L, Brown CL, Sullivan LA (2011) Raman, infrared and XPS study of bamboo phytoliths after chemical digestion. Spectrochim Acta A 80(1):106–111CrossRef Watling KM, Parr JF, Rintoul L, Brown CL, Sullivan LA (2011) Raman, infrared and XPS study of bamboo phytoliths after chemical digestion. Spectrochim Acta A 80(1):106–111CrossRef
125.
Zurück zum Zitat Li M, Liu Q, Jia Z, Xu X, Shi Y, Cheng Y et al (2013) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197CrossRef Li M, Liu Q, Jia Z, Xu X, Shi Y, Cheng Y et al (2013) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197CrossRef
126.
Zurück zum Zitat Nguyen VH, Kim BK, Jo Y-L, Shim J-J (2012) Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J Supercrit Fluids 72:28–35CrossRef Nguyen VH, Kim BK, Jo Y-L, Shim J-J (2012) Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J Supercrit Fluids 72:28–35CrossRef
127.
Zurück zum Zitat Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013) Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng 2013:Article ID 923403 (5 pages). doi:10.1155/2013/923403 Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013) Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng 2013:Article ID 923403 (5 pages). doi:10.​1155/​2013/​923403
128.
Zurück zum Zitat Liang BJ, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19(14):2297–2302CrossRef Liang BJ, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19(14):2297–2302CrossRef
129.
Zurück zum Zitat Liu Y, Huang J, Li H (2013) Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B 1:1826–1834CrossRef Liu Y, Huang J, Li H (2013) Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B 1:1826–1834CrossRef
130.
Zurück zum Zitat Niinomi M, Nakai M (2011) Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomaterials 2011:Article ID 836587 (10 pages). doi:10.1155/2011/836587 Niinomi M, Nakai M (2011) Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomaterials 2011:Article ID 836587 (10 pages). doi:10.​1155/​2011/​836587
131.
Zurück zum Zitat Niinomi М (2011) Low modulus titanium alloys for inhibiting bone atrophy. In: Pignatello R (ed) Biomaterials science and engineering. InTech, Shanghai, pp 249–268 Niinomi М (2011) Low modulus titanium alloys for inhibiting bone atrophy. In: Pignatello R (ed) Biomaterials science and engineering. InTech, Shanghai, pp 249–268
132.
Zurück zum Zitat Huang L-Y, Xu K-W, Lu J, Guelorget B, Chen H (2001) Nano-scratch and fretting wear study of DLC coatings for biomedical application. Diam Relat Mater 10:1448–1456CrossRef Huang L-Y, Xu K-W, Lu J, Guelorget B, Chen H (2001) Nano-scratch and fretting wear study of DLC coatings for biomedical application. Diam Relat Mater 10:1448–1456CrossRef
133.
Zurück zum Zitat Sharma G, Gosavi SW (2014) Thermoluminescence properties of graphene–nano ZnS composite. J Lumin 145:557–562CrossRef Sharma G, Gosavi SW (2014) Thermoluminescence properties of graphene–nano ZnS composite. J Lumin 145:557–562CrossRef
134.
Zurück zum Zitat Cheary RW, Coelho AA (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25(2):109–121CrossRef Cheary RW, Coelho AA (1992) A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr 25(2):109–121CrossRef
135.
Zurück zum Zitat Janković A, Eraković S, Dindune A, Veljović DJ, Stevanović T, Janaćković DJ, Mišković-Stanković V (2012) Electrochemical impedance spectroscopy of a silver-doped hydroxyapatite coating in simulated body fluid used as a corrosive agent. J Serb Chem Soc 77:1609–1623CrossRef Janković A, Eraković S, Dindune A, Veljović DJ, Stevanović T, Janaćković DJ, Mišković-Stanković V (2012) Electrochemical impedance spectroscopy of a silver-doped hydroxyapatite coating in simulated body fluid used as a corrosive agent. J Serb Chem Soc 77:1609–1623CrossRef
136.
Zurück zum Zitat Ciobanu CS, Iconaru SL, Pasuk I, Vasile BS, Lupu AR, Hermenean A, Dinischiotu A, Predoi D (2013) Structural properties of silver doped hydroxyapatite and their biocompatibility. Mater Sci Eng C 33:1395–1402CrossRef Ciobanu CS, Iconaru SL, Pasuk I, Vasile BS, Lupu AR, Hermenean A, Dinischiotu A, Predoi D (2013) Structural properties of silver doped hydroxyapatite and their biocompatibility. Mater Sci Eng C 33:1395–1402CrossRef
137.
Zurück zum Zitat Hu Y, Darcos V, Monge S, Li S, Zhou Y, Su F (2014) Tunable thermo-responsive P(NIPAAm-coDMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymer micelles as drug carriers. J Mater Chem B 2:2738–2748CrossRef Hu Y, Darcos V, Monge S, Li S, Zhou Y, Su F (2014) Tunable thermo-responsive P(NIPAAm-coDMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymer micelles as drug carriers. J Mater Chem B 2:2738–2748CrossRef
Metadaten
Titel
Biocompatible Hydroxyapatite-Based Composite Coatings Obtained by Electrophoretic Deposition for Medical Applications as Hard Tissue Implants
verfasst von
Vesna B. Mišković-Stanković
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31849-3_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.