Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Electrochemical Production of Polymer Hydrogels with Silver Nanoparticles for Medical Applications as Wound Dressings and Soft Tissue Implants

verfasst von : Vesna B. Mišković-Stanković

Erschienen in: Biomedical and Pharmaceutical Applications of Electrochemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter explored the novel nanostructured biomaterials suitable for medical applications as wound dressings, soft tissue implants (maxillofacial implants, nucleus pulposus replacements in intervertebral discs), drug delivery devices, and carriers for cell cultivation. The Ag/alginate, Ag/poly(N-vinyl-2-pyrrolidone) (Ag/PVP), Ag/polyvinyl alcohol (Ag/PVA), and Ag/polyvinyl alcohol/graphene (Ag/PVA/Gr) nanocomposites synthesized according to original electrochemical procedures will be discussed in the chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306CrossRef Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306CrossRef
2.
Zurück zum Zitat Seo SY, Lee GH, Lee SG, Jung SY, Lim JO, Choi JH (2012) Alginate-based composite sponge containing silver nanoparticles synthesized in situ. Carbohydr Polym 90:109–115CrossRef Seo SY, Lee GH, Lee SG, Jung SY, Lim JO, Choi JH (2012) Alginate-based composite sponge containing silver nanoparticles synthesized in situ. Carbohydr Polym 90:109–115CrossRef
3.
Zurück zum Zitat Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRef Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRef
4.
Zurück zum Zitat Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRef Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRef
5.
Zurück zum Zitat Obradovic B, Miskovic-Stankovic V (2013) Silver nanoparticles in alginate solutions and hydrogels aimed for biomedical applications. In: Armentano I, Kenny JM (eds) Silver nanoparticles: synthesis, uses and health concerns. Nova Science, Hauppauge, pp 247–260 Obradovic B, Miskovic-Stankovic V (2013) Silver nanoparticles in alginate solutions and hydrogels aimed for biomedical applications. In: Armentano I, Kenny JM (eds) Silver nanoparticles: synthesis, uses and health concerns. Nova Science, Hauppauge, pp 247–260
6.
Zurück zum Zitat Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRef Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRef
7.
Zurück zum Zitat Martinsen A, Skjak-Braek G, Smidsrod O (1989) Alginate as immobilization material. I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33:79–89CrossRef Martinsen A, Skjak-Braek G, Smidsrod O (1989) Alginate as immobilization material. I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33:79–89CrossRef
8.
Zurück zum Zitat Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285CrossRef Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285CrossRef
9.
Zurück zum Zitat Drury JL, Dennis RG, Mooney DJ (2004) The tensile properties of alginate hydrogels. Biomaterials 25:3187–3199CrossRef Drury JL, Dennis RG, Mooney DJ (2004) The tensile properties of alginate hydrogels. Biomaterials 25:3187–3199CrossRef
10.
Zurück zum Zitat Melvik JE, Dornish M (2005) Alginate as a carrier for cell immobilisation. In: Nedovic V, Willaert RG (eds) Focus on biotechnology: fundamentals of cell immobilisation biotechnology. Kluwer Academic, Dordrecht, pp 33–53 Melvik JE, Dornish M (2005) Alginate as a carrier for cell immobilisation. In: Nedovic V, Willaert RG (eds) Focus on biotechnology: fundamentals of cell immobilisation biotechnology. Kluwer Academic, Dordrecht, pp 33–53
11.
Zurück zum Zitat Qin Y (2005) Silver-containing alginate fibres and dressings. Int Wound J 2:172–176CrossRef Qin Y (2005) Silver-containing alginate fibres and dressings. Int Wound J 2:172–176CrossRef
12.
Zurück zum Zitat Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633CrossRef Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633CrossRef
13.
Zurück zum Zitat Wiegand C, Heinze T, Hipler U-C (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521CrossRef Wiegand C, Heinze T, Hipler U-C (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521CrossRef
14.
Zurück zum Zitat Dubas ST, Pimpan V (2008) Optical switch from silver nanocomposite thin films. Mater Lett 62:3361–3363CrossRef Dubas ST, Pimpan V (2008) Optical switch from silver nanocomposite thin films. Mater Lett 62:3361–3363CrossRef
15.
Zurück zum Zitat Marie Arockianathan P, Sekara S, Sankara S, Kumaran B, Sastry TP (2012) Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles. Carbohydr Polym 90:717–724CrossRef Marie Arockianathan P, Sekara S, Sankara S, Kumaran B, Sastry TP (2012) Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles. Carbohydr Polym 90:717–724CrossRef
16.
Zurück zum Zitat Liu Y, Chen S, Zhong L, Wu G (2009) Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat Phys Chem 78:251–255CrossRef Liu Y, Chen S, Zhong L, Wu G (2009) Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat Phys Chem 78:251–255CrossRef
17.
Zurück zum Zitat Sharma S, Sanpui P, Chattopadhyay A, Ghosh SS (2012) Fabrication of antibacterial silver nanoparticle—sodium alginate–chitosan composite films. RSC Adv 2:5837–5843CrossRef Sharma S, Sanpui P, Chattopadhyay A, Ghosh SS (2012) Fabrication of antibacterial silver nanoparticle—sodium alginate–chitosan composite films. RSC Adv 2:5837–5843CrossRef
18.
Zurück zum Zitat Rodrigues-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688CrossRef Rodrigues-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688CrossRef
19.
Zurück zum Zitat Obradovic B, Miskovic-Stankovic V, Jovanovic Z, Stojkovska J (2010) Production of alginate microbeads with incorporated silver nanoparticles. The Intellectual Property Office of the Republic of Serbia Patent No. 53508, Nov 2014 Obradovic B, Miskovic-Stankovic V, Jovanovic Z, Stojkovska J (2010) Production of alginate microbeads with incorporated silver nanoparticles. The Intellectual Property Office of the Republic of Serbia Patent No. 53508, Nov 2014
20.
Zurück zum Zitat Jovanovic Z, Stojkovska J, Obradovic B, Miskovic-Stankovic V (2012) Alginate hydrogel microbeads incorporated with Ag nanoparticles obtained by electrochemical method. Mater Chem Phys 133:182–189CrossRef Jovanovic Z, Stojkovska J, Obradovic B, Miskovic-Stankovic V (2012) Alginate hydrogel microbeads incorporated with Ag nanoparticles obtained by electrochemical method. Mater Chem Phys 133:182–189CrossRef
21.
Zurück zum Zitat Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164CrossRef Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164CrossRef
22.
Zurück zum Zitat Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808CrossRef Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808CrossRef
23.
Zurück zum Zitat Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Phys E 27:104–112CrossRef Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Phys E 27:104–112CrossRef
24.
Zurück zum Zitat Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Assessment of growth of silver nanoparticles synthesized from an ethylene glycol–silver nitrate–polyvinylpyrrolidone solution. Phys E 25:438–448CrossRef Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Assessment of growth of silver nanoparticles synthesized from an ethylene glycol–silver nitrate–polyvinylpyrrolidone solution. Phys E 25:438–448CrossRef
25.
Zurück zum Zitat Angelescu DG, Vasilesku M, Somoghi R, Teodoresku VS (2010) Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloids Surf A 366:155–162CrossRef Angelescu DG, Vasilesku M, Somoghi R, Teodoresku VS (2010) Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloids Surf A 366:155–162CrossRef
26.
Zurück zum Zitat Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRef Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRef
27.
Zurück zum Zitat Šileikaitė A, Prosyčevas I, Puišo J, Juraitis A, Guobienė A (2006) Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci Medzg 12:287–291 Šileikaitė A, Prosyčevas I, Puišo J, Juraitis A, Guobienė A (2006) Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci Medzg 12:287–291
28.
Zurück zum Zitat Li X, Xu A, Xie H, Yu W, Xie W, Ma X (2010) Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr Polym 79:660–664CrossRef Li X, Xu A, Xie H, Yu W, Xie W, Ma X (2010) Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr Polym 79:660–664CrossRef
29.
Zurück zum Zitat Krklješ AN, Marinović-Cincović MT, Kačarević-Popović ZM, Nedeljković JM (2007) Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur Polym J 43:2171–2176CrossRef Krklješ AN, Marinović-Cincović MT, Kačarević-Popović ZM, Nedeljković JM (2007) Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur Polym J 43:2171–2176CrossRef
30.
Zurück zum Zitat Krklješ A, Nedeljković JM, Kačarević-Popović Z (2007) Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym Bull 58:271–279CrossRef Krklješ A, Nedeljković JM, Kačarević-Popović Z (2007) Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym Bull 58:271–279CrossRef
31.
Zurück zum Zitat Li M-G, Shang Y-J, Gao Y-C, Wang G-F, Fang B (2005) Preparation of novel mercury-doped silver nanoparticles film glassy carbon electrode and its application for electrochemical biosensor. Anal Biochem 341:52–57CrossRef Li M-G, Shang Y-J, Gao Y-C, Wang G-F, Fang B (2005) Preparation of novel mercury-doped silver nanoparticles film glassy carbon electrode and its application for electrochemical biosensor. Anal Biochem 341:52–57CrossRef
32.
Zurück zum Zitat Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B 107:8898–8904CrossRef Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B 107:8898–8904CrossRef
33.
Zurück zum Zitat Lim PY, Liu RS, She PL, Hung CF, Shih HC (2006) Synthesis of Ag nanospheres particles in ethylene glycol by electrochemical-assisted polyol process. Chem Phys Lett 420:304–308CrossRef Lim PY, Liu RS, She PL, Hung CF, Shih HC (2006) Synthesis of Ag nanospheres particles in ethylene glycol by electrochemical-assisted polyol process. Chem Phys Lett 420:304–308CrossRef
34.
Zurück zum Zitat Bouazza S, Alonzo V, Hauchard D (2009) Synthesis and characterization of Ag nanoparticles–polyaniline composite powder material. Synth Met 159:1612–1619CrossRef Bouazza S, Alonzo V, Hauchard D (2009) Synthesis and characterization of Ag nanoparticles–polyaniline composite powder material. Synth Met 159:1612–1619CrossRef
35.
Zurück zum Zitat Štofik M, Strýhal Z, Malý J (2009) Dendrimer-encapsulated silver nanoparticles as a novel electrochemical label for sensitive immunosensors. Biosens Bioelectron 24:1918–1923CrossRef Štofik M, Strýhal Z, Malý J (2009) Dendrimer-encapsulated silver nanoparticles as a novel electrochemical label for sensitive immunosensors. Biosens Bioelectron 24:1918–1923CrossRef
36.
Zurück zum Zitat Jin W-J, Jeon HJ, Kim JH, Youk JH (2007) A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synth Met 157:454–459CrossRef Jin W-J, Jeon HJ, Kim JH, Youk JH (2007) A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synth Met 157:454–459CrossRef
37.
Zurück zum Zitat Nedović VA, Obradović B, Leskošek CI, Trifunović O, Pešić R, Bugarski B (2001) Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem 37:17–22CrossRef Nedović VA, Obradović B, Leskošek CI, Trifunović O, Pešić R, Bugarski B (2001) Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem 37:17–22CrossRef
38.
Zurück zum Zitat Obradović B, Stojkovska J, Jovanović Ž, Mišković-Stanković V (2011) Novel hydrogel nanocomposites based on alginate and silver nanoparticles. In: Book of abstracts of the 24th European conference on biomaterials, Dublin, September 2011, poster/rapid fire presentation VII—324 Obradović B, Stojkovska J, Jovanović Ž, Mišković-Stanković V (2011) Novel hydrogel nanocomposites based on alginate and silver nanoparticles. In: Book of abstracts of the 24th European conference on biomaterials, Dublin, September 2011, poster/rapid fire presentation VII—324
39.
Zurück zum Zitat Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46:384–389CrossRef Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46:384–389CrossRef
40.
Zurück zum Zitat Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureu. Res Microbiol 162:542–549CrossRef Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureu. Res Microbiol 162:542–549CrossRef
41.
Zurück zum Zitat Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol 6:103–109CrossRef Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol 6:103–109CrossRef
42.
Zurück zum Zitat Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716CrossRef Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716CrossRef
43.
Zurück zum Zitat Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol 8:37–45CrossRef Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol 8:37–45CrossRef
44.
Zurück zum Zitat Goosen MFA, Mahmud ESC, M-Ghafi AS, M-Hajri HA, Al-Sinani YS, Bugarski B (1997) Immobilization of cells using electrostatic droplet generation. In: Bickerstaff GF (ed) Immobilization of enzymes and cells. Humana, Totowa, pp 16–174 Goosen MFA, Mahmud ESC, M-Ghafi AS, M-Hajri HA, Al-Sinani YS, Bugarski B (1997) Immobilization of cells using electrostatic droplet generation. In: Bickerstaff GF (ed) Immobilization of enzymes and cells. Humana, Totowa, pp 16–174
45.
Zurück zum Zitat Nedovic VA, Obradovic B, Leskosek-Cukalovic I, Vunjak-Novakovic G (2001) Immobilized yeast bioreactor systems for brewing. In: Thonart P, Hofman M (eds) Focus on biotechnology, vol IV, Engineering and manufacturing for biotechnology. Kluwer Academic, Dordrecht, pp 277–292 Nedovic VA, Obradovic B, Leskosek-Cukalovic I, Vunjak-Novakovic G (2001) Immobilized yeast bioreactor systems for brewing. In: Thonart P, Hofman M (eds) Focus on biotechnology, vol IV, Engineering and manufacturing for biotechnology. Kluwer Academic, Dordrecht, pp 277–292
46.
Zurück zum Zitat Osmokrovic A, Obradovic B, Bugarski D, Bugarski B, Vunjak-Novakovic G (2006) Development of a packed bed bioreactor for cartilage tissue engineering. FME Trans 34:65–70 Osmokrovic A, Obradovic B, Bugarski D, Bugarski B, Vunjak-Novakovic G (2006) Development of a packed bed bioreactor for cartilage tissue engineering. FME Trans 34:65–70
47.
Zurück zum Zitat Stojkovska J, Bugarski B, Obradovic B (2010) Evaluation of alginate hydrogels under in vivo–like bioreactor conditions for cartilage tissue engineering. J Mater Sci Mater Med 21:2869–2879CrossRef Stojkovska J, Bugarski B, Obradovic B (2010) Evaluation of alginate hydrogels under in vivo–like bioreactor conditions for cartilage tissue engineering. J Mater Sci Mater Med 21:2869–2879CrossRef
48.
Zurück zum Zitat Keshavartz T, Ramsden G, Phillips P, Mussenden P, Bucke C (1992) Application of electric field for production of immobilized biocatalysts. Biotechnol Tech 6:445–450CrossRef Keshavartz T, Ramsden G, Phillips P, Mussenden P, Bucke C (1992) Application of electric field for production of immobilized biocatalysts. Biotechnol Tech 6:445–450CrossRef
49.
Zurück zum Zitat Bugarski B, Li Q, Goosen MFA, Poncelet D, Neufeld RJ, Vunjak G (1994) Electrostatic droplet generation: mechanism of polymer droplet formation. AIChE J 40:1026–1031CrossRef Bugarski B, Li Q, Goosen MFA, Poncelet D, Neufeld RJ, Vunjak G (1994) Electrostatic droplet generation: mechanism of polymer droplet formation. AIChE J 40:1026–1031CrossRef
50.
Zurück zum Zitat Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B (2006) Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. J Chem Technol Biotechnol 81:505–510CrossRef Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B (2006) Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. J Chem Technol Biotechnol 81:505–510CrossRef
51.
Zurück zum Zitat Poncelet D, Babak VG, Neufeld RJ, Goosen M, Bugarski B (1999) Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Adv Colloid Interface Sci 79:213–228CrossRef Poncelet D, Babak VG, Neufeld RJ, Goosen M, Bugarski B (1999) Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Adv Colloid Interface Sci 79:213–228CrossRef
52.
Zurück zum Zitat Stojkovska J, Zvicer J, Jovanović Ž, Mišković-Stanković V, Obradović B (2012) Controlled production of alginate nanocomposites with incorporated silver nanoparticles aimed for biomedical applications. J Serb Chem Soc 77:1709–1722CrossRef Stojkovska J, Zvicer J, Jovanović Ž, Mišković-Stanković V, Obradović B (2012) Controlled production of alginate nanocomposites with incorporated silver nanoparticles aimed for biomedical applications. J Serb Chem Soc 77:1709–1722CrossRef
53.
Zurück zum Zitat Velings NM, Mestdagh MM (1995) Physico-chemical properties of alginate gel beads. Polym Gels Networks 3:311–330CrossRef Velings NM, Mestdagh MM (1995) Physico-chemical properties of alginate gel beads. Polym Gels Networks 3:311–330CrossRef
54.
Zurück zum Zitat Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRef Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRef
55.
Zurück zum Zitat Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver−polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024CrossRef Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver−polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024CrossRef
56.
Zurück zum Zitat Thomas BH, Fryman JC, Liu K, Mason J (2009) Hydrophilic-hydrophobic hydrogels for cartilage replacement. J Mech Behav Biomed Mater 2:588–595CrossRef Thomas BH, Fryman JC, Liu K, Mason J (2009) Hydrophilic-hydrophobic hydrogels for cartilage replacement. J Mech Behav Biomed Mater 2:588–595CrossRef
57.
Zurück zum Zitat Ma R, Xiong D, Miao F, Zhang J, Peng Y (2009) Novel PVP/PVA hydrogels for articular cartilage replacement. Mater Sci Eng C 29:1979–1983CrossRef Ma R, Xiong D, Miao F, Zhang J, Peng Y (2009) Novel PVP/PVA hydrogels for articular cartilage replacement. Mater Sci Eng C 29:1979–1983CrossRef
58.
Zurück zum Zitat Joshi A, Fussell G, Thomas J, Hsuan A, Lowman A, Karduna A, Vresilovic E, Marcolongo M (2006) Functional compressive mechanics of PVA/PVP nucleus pulposus replacement. Biomaterials 27:176–184CrossRef Joshi A, Fussell G, Thomas J, Hsuan A, Lowman A, Karduna A, Vresilovic E, Marcolongo M (2006) Functional compressive mechanics of PVA/PVP nucleus pulposus replacement. Biomaterials 27:176–184CrossRef
59.
Zurück zum Zitat Zheng Y, Huang X, Wang Y, Xu H, Chen X (2009) Performance and characterization of irradiated poly(vinyl alcohol)/polyvinylpyrrolidone composite hydrogels used as cartilage replacement. J Appl Polym Sci 113:736–741CrossRef Zheng Y, Huang X, Wang Y, Xu H, Chen X (2009) Performance and characterization of irradiated poly(vinyl alcohol)/polyvinylpyrrolidone composite hydrogels used as cartilage replacement. J Appl Polym Sci 113:736–741CrossRef
60.
Zurück zum Zitat Carotenuto G, Pepe GP, Nicolais L (2000) Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur Phys J B 16:11–17CrossRef Carotenuto G, Pepe GP, Nicolais L (2000) Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur Phys J B 16:11–17CrossRef
61.
Zurück zum Zitat Pastoriza-Santos I, Liz-Marzán LM (2002) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894CrossRef Pastoriza-Santos I, Liz-Marzán LM (2002) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894CrossRef
62.
Zurück zum Zitat Eid M, El-Arnaouty MB, Salah M, Soliman E-S, Hegazy E-S A (2012) Radiation synthesis and characterization of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J Polym Res 19:1–10CrossRef Eid M, El-Arnaouty MB, Salah M, Soliman E-S, Hegazy E-S A (2012) Radiation synthesis and characterization of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J Polym Res 19:1–10CrossRef
63.
Zurück zum Zitat Shin HS, Yang HJ, Kim SB, Lee MS (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J Colloid Interface Sci 274:89–94CrossRef Shin HS, Yang HJ, Kim SB, Lee MS (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J Colloid Interface Sci 274:89–94CrossRef
64.
Zurück zum Zitat Wang H, Xueliang Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94:449–453CrossRef Wang H, Xueliang Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94:449–453CrossRef
65.
Zurück zum Zitat Lee WF, Tsao KT (2010) Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization. J Mater Sci 45:89–97CrossRef Lee WF, Tsao KT (2010) Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization. J Mater Sci 45:89–97CrossRef
66.
Zurück zum Zitat Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133CrossRef Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133CrossRef
67.
Zurück zum Zitat Richards VN, Rath NP, Buhro WE (2010) Pathway from a molecular precursor to silver nanoparticles: the prominent role of aggregative growth. Chem Mater 22:3556–3567CrossRef Richards VN, Rath NP, Buhro WE (2010) Pathway from a molecular precursor to silver nanoparticles: the prominent role of aggregative growth. Chem Mater 22:3556–3567CrossRef
68.
Zurück zum Zitat Obradovic B, Stojkovska J, Jovanovic Z, Miskovic-Stankovic V (2012) Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J Mater Sci Mater Med 23:99–107CrossRef Obradovic B, Stojkovska J, Jovanovic Z, Miskovic-Stankovic V (2012) Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J Mater Sci Mater Med 23:99–107CrossRef
69.
Zurück zum Zitat Sung J-M (2001) Nonisothermal phase formation kinetics in sol-gel-derived strontium bismuth tantalate. J Mater Res 16:2039–2044CrossRef Sung J-M (2001) Nonisothermal phase formation kinetics in sol-gel-derived strontium bismuth tantalate. J Mater Res 16:2039–2044CrossRef
70.
Zurück zum Zitat Chraska T, Hostomsky J, Klementova M, Dubsky J (2009) Crystallization kinetics of amorphous alumina–zirconia–silica ceramics. J Eur Ceram Soc 29:3159–3165CrossRef Chraska T, Hostomsky J, Klementova M, Dubsky J (2009) Crystallization kinetics of amorphous alumina–zirconia–silica ceramics. J Eur Ceram Soc 29:3159–3165CrossRef
71.
Zurück zum Zitat Spiller KL, Laurencin SJ, Charlton D, Maher SA, Lowman AM (2008) Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties. Acta Biomater 4:17–25CrossRef Spiller KL, Laurencin SJ, Charlton D, Maher SA, Lowman AM (2008) Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties. Acta Biomater 4:17–25CrossRef
72.
Zurück zum Zitat Thomas J, Gomes K, Lowman A, Marcolongo M (2004) The effect of dehydration history on PVA/PVP hydrogels for nucleus pulposus replacement. J Biomed Mater Res Part B Appl Biomater 69B:135–140CrossRef Thomas J, Gomes K, Lowman A, Marcolongo M (2004) The effect of dehydration history on PVA/PVP hydrogels for nucleus pulposus replacement. J Biomed Mater Res Part B Appl Biomater 69B:135–140CrossRef
73.
Zurück zum Zitat De Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27:5603–5617CrossRef De Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27:5603–5617CrossRef
74.
Zurück zum Zitat Orr DE, Burg KJL (2008) Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications. Ann Biomed Eng 36:1228–1241CrossRef Orr DE, Burg KJL (2008) Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications. Ann Biomed Eng 36:1228–1241CrossRef
75.
Zurück zum Zitat Stojkovska J, Kostic D, Jovanovic Z, Vukasinovic-Sekulic M, Miskovic-Stankovic V, Obradovic B (2014) A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels. Carbohydr Polym 111:305–314CrossRef Stojkovska J, Kostic D, Jovanovic Z, Vukasinovic-Sekulic M, Miskovic-Stankovic V, Obradovic B (2014) A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels. Carbohydr Polym 111:305–314CrossRef
76.
Zurück zum Zitat Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRef Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRef
77.
Zurück zum Zitat Meriç G, Dahl JE, Eystein Ruyter I (2008) Cytotoxicity of silica–glass fiber reinforced composites. Dent Mater 24:1201–1206CrossRef Meriç G, Dahl JE, Eystein Ruyter I (2008) Cytotoxicity of silica–glass fiber reinforced composites. Dent Mater 24:1201–1206CrossRef
78.
Zurück zum Zitat Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983CrossRef Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983CrossRef
79.
Zurück zum Zitat Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878CrossRef Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878CrossRef
80.
Zurück zum Zitat Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevĕčná T, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRef Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevĕčná T, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRef
81.
Zurück zum Zitat Kong H, Jang J (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056CrossRef Kong H, Jang J (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056CrossRef
82.
Zurück zum Zitat Sanpui P, Murugadoss A, Durga Prasad PV, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. Int J Food Microbiol 124:142–146CrossRef Sanpui P, Murugadoss A, Durga Prasad PV, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. Int J Food Microbiol 124:142–146CrossRef
83.
Zurück zum Zitat Marius S, Lucian H, Marius M, Daniela P, Irina G, Romeo-Iulian O, Simona D, Viorel M (2011) Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(-amide-hydroxyurethane) media. J Mater Sci Mater Med 22:789–796CrossRef Marius S, Lucian H, Marius M, Daniela P, Irina G, Romeo-Iulian O, Simona D, Viorel M (2011) Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(-amide-hydroxyurethane) media. J Mater Sci Mater Med 22:789–796CrossRef
84.
Zurück zum Zitat Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef
85.
Zurück zum Zitat Pal S, Tak KY, Song MJ (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRef Pal S, Tak KY, Song MJ (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRef
86.
Zurück zum Zitat Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRef Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRef
87.
Zurück zum Zitat Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18:18–23 Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18:18–23
88.
Zurück zum Zitat Queen D, Orsted H, Sanada H, Sussman G (2004) A dressing history. Int Wound J 1:59–77CrossRef Queen D, Orsted H, Sanada H, Sussman G (2004) A dressing history. Int Wound J 1:59–77CrossRef
89.
Zurück zum Zitat Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T et al (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10:1429–1435CrossRef Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T et al (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10:1429–1435CrossRef
90.
Zurück zum Zitat Dubas ST, Wacharanad S, Potiyaraj P (2011) Tunning of the antimicrobial activity of surgical sutures coated with silver nanoparticles. Colloids Surf A 380:25–28CrossRef Dubas ST, Wacharanad S, Potiyaraj P (2011) Tunning of the antimicrobial activity of surgical sutures coated with silver nanoparticles. Colloids Surf A 380:25–28CrossRef
91.
Zurück zum Zitat Vidovic S, Zvicer J, Stojkovska J, Miskovic-Stankovic V, Obradovic B (2012) Nanocomposite microfibers based on alginate and PVA hydrogels with incorporated silver nanoparticles. In: Abstract of the 3rd TERMIS world congress, Vienna, Austria, 29.P18. J Tiss Eng Reg Med 6(suppl 1):189 Vidovic S, Zvicer J, Stojkovska J, Miskovic-Stankovic V, Obradovic B (2012) Nanocomposite microfibers based on alginate and PVA hydrogels with incorporated silver nanoparticles. In: Abstract of the 3rd TERMIS world congress, Vienna, Austria, 29.P18. J Tiss Eng Reg Med 6(suppl 1):189
92.
Zurück zum Zitat Stojkovska J, Jovanović Ž, Jančić I, Bufan B, Milenković M, Mišković-Stanković V, Obradović B (2013) Novel Ag/alginate nanocomposites for wound treatments: animal studies. Wounds 4(1–2):17–22 Stojkovska J, Jovanović Ž, Jančić I, Bufan B, Milenković M, Mišković-Stanković V, Obradović B (2013) Novel Ag/alginate nanocomposites for wound treatments: animal studies. Wounds 4(1–2):17–22
93.
Zurück zum Zitat dos Santos Tavares Pereira D, Madruga Lima-Ribeiro MH, de Pontes-Filho NT, dos Anjos Carneiro-Leão AM, dos Santos Correia MT (2012) Development of animal model for studying deep second-degree thermal burns. J Biomed Biotechnol Article ID 460841, 7 pp dos Santos Tavares Pereira D, Madruga Lima-Ribeiro MH, de Pontes-Filho NT, dos Anjos Carneiro-Leão AM, dos Santos Correia MT (2012) Development of animal model for studying deep second-degree thermal burns. J Biomed Biotechnol Article ID 460841, 7 pp
94.
Zurück zum Zitat Mišković-Stanković V, Stojkovska J, Jovanović Ž, Jančić I, Bufan B, Milenković M, Obradović B (2014) Novel Ag/alginate nanocomposites for wound ttreatments. In: Abstract book of the VI Serbian Congress of Pharmacy with international participations, Belgrade, Serbia, p 122 Mišković-Stanković V, Stojkovska J, Jovanović Ž, Jančić I, Bufan B, Milenković M, Obradović B (2014) Novel Ag/alginate nanocomposites for wound ttreatments. In: Abstract book of the VI Serbian Congress of Pharmacy with international participations, Belgrade, Serbia, p 122
95.
Zurück zum Zitat Jovanović Ž, Radosavljević A, Stojkovska J, Nikolić B, Obradović B, Kačarević-Popović Z, Mišković-Stanković V (2014) Silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposites obtained by electrochemical synthesis of silver nanoparticles inside the polymer hydrogel aimed for biomedical applications. Polym Compos 35(2):217–226CrossRef Jovanović Ž, Radosavljević A, Stojkovska J, Nikolić B, Obradović B, Kačarević-Popović Z, Mišković-Stanković V (2014) Silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposites obtained by electrochemical synthesis of silver nanoparticles inside the polymer hydrogel aimed for biomedical applications. Polym Compos 35(2):217–226CrossRef
96.
Zurück zum Zitat Hovel H, Fritz S, Hilger A, Kreibig V, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178–18188CrossRef Hovel H, Fritz S, Hilger A, Kreibig V, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178–18188CrossRef
97.
Zurück zum Zitat He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786CrossRef He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786CrossRef
98.
Zurück zum Zitat Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82:670–679CrossRef Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82:670–679CrossRef
99.
Zurück zum Zitat Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520CrossRef Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520CrossRef
100.
Zurück zum Zitat Davis TP, Huglin MB, Yip DCF (1988) Properties of poly (N-vinyl-2-pyrrolidone) hydrogels crosslinked with ethyleneglycol dimethacrylate. Polymer 29:701–706CrossRef Davis TP, Huglin MB, Yip DCF (1988) Properties of poly (N-vinyl-2-pyrrolidone) hydrogels crosslinked with ethyleneglycol dimethacrylate. Polymer 29:701–706CrossRef
101.
Zurück zum Zitat Nickerson MT, Paulson AT, Wagar E, Farnworth R, Hodge SM, Rousseau D (2006) Some physical properties of crosslinked gelatin–maltodextrin hydrogels. Food Hydrocoll 20:1072–1079CrossRef Nickerson MT, Paulson AT, Wagar E, Farnworth R, Hodge SM, Rousseau D (2006) Some physical properties of crosslinked gelatin–maltodextrin hydrogels. Food Hydrocoll 20:1072–1079CrossRef
102.
Zurück zum Zitat Rattanaruengsrikul V, Pimpha N, Supaphol P (2009) Development of gelatin hydrogel pads as antibacterial wound dressings. Macromol Biosci 9:1004–1015CrossRef Rattanaruengsrikul V, Pimpha N, Supaphol P (2009) Development of gelatin hydrogel pads as antibacterial wound dressings. Macromol Biosci 9:1004–1015CrossRef
103.
Zurück zum Zitat Crank J (1970) The mathematics of diffusion. Clarendon Press, Oxford Crank J (1970) The mathematics of diffusion. Clarendon Press, Oxford
104.
Zurück zum Zitat Schmal H, Niemeyer P, Roesslein M, Hartl D, Loop T, Südkamp NP, Stark GB, Mehlhorn AT (2007) Comparison of cellular functionality of human mesenchymal stromal cells and PBMC. Cytotherapy 9:69–79CrossRef Schmal H, Niemeyer P, Roesslein M, Hartl D, Loop T, Südkamp NP, Stark GB, Mehlhorn AT (2007) Comparison of cellular functionality of human mesenchymal stromal cells and PBMC. Cytotherapy 9:69–79CrossRef
105.
Zurück zum Zitat Jovanović Ž, Radosavljević A, Kačarević-Popović Z, Stojkovska J, Perić-Grujić A, Ristić M, Matić IZ, Juranić ZD, Obradović B, Mišković-Stanković V (2013) Bioreactor validation and biocompatibility of Ag/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposites. Colloids Surf B 105:230–235CrossRef Jovanović Ž, Radosavljević A, Kačarević-Popović Z, Stojkovska J, Perić-Grujić A, Ristić M, Matić IZ, Juranić ZD, Obradović B, Mišković-Stanković V (2013) Bioreactor validation and biocompatibility of Ag/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposites. Colloids Surf B 105:230–235CrossRef
106.
Zurück zum Zitat Hidalgo E, Domínguez C (1998) Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett 98:169–179CrossRef Hidalgo E, Domínguez C (1998) Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett 98:169–179CrossRef
107.
Zurück zum Zitat Jovanović Ž, Krklješ A, Stojkovska J, Tomić S, Obradović B, Mišković-Stanković V, Kačarević-Popović Z (2011) Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1215CrossRef Jovanović Ž, Krklješ A, Stojkovska J, Tomić S, Obradović B, Mišković-Stanković V, Kačarević-Popović Z (2011) Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1215CrossRef
108.
Zurück zum Zitat Dewire P, Einhorn TA (2001) Diagnosis and Medical/Surgical Management. In: Moskowitz RW, Howell DS, Altman RD, Buckwalter JA, Goldberg VM (eds) Osteoarthritis. W.B. Saunders, Philadelphia, pp 49–68 Dewire P, Einhorn TA (2001) Diagnosis and Medical/Surgical Management. In: Moskowitz RW, Howell DS, Altman RD, Buckwalter JA, Goldberg VM (eds) Osteoarthritis. W.B. Saunders, Philadelphia, pp 49–68
109.
Zurück zum Zitat Levick JR, Mason RM, Coleman PJ, Scott D (1999) Physiology of synovial fluid and trans-synovial flow. In: Archer CW, Benjamin M, Caterson B, Ralphs JR (eds) Biology of the synovial joint. Harwood Academic, Amsterdam, pp 235–252 Levick JR, Mason RM, Coleman PJ, Scott D (1999) Physiology of synovial fluid and trans-synovial flow. In: Archer CW, Benjamin M, Caterson B, Ralphs JR (eds) Biology of the synovial joint. Harwood Academic, Amsterdam, pp 235–252
110.
Zurück zum Zitat Han M, Yun J, Kim H, Lee Y (2012) Effect of surface modification of graphene oxide on photochemical stability of poly(vinyl alcohol)/graphene oxide composites. J Ind Eng Chem 18:752–756CrossRef Han M, Yun J, Kim H, Lee Y (2012) Effect of surface modification of graphene oxide on photochemical stability of poly(vinyl alcohol)/graphene oxide composites. J Ind Eng Chem 18:752–756CrossRef
111.
Zurück zum Zitat Yang L, Li Y, Hu H, Jin X, Ye Z, Ma Y, Zhang S (2011) Preparation of novel spherical PVA/ATP composites with macroreticular structure and their adsorption behavior for methylene blue and lead in aqueous solution. Chem Eng J 173:446–455CrossRef Yang L, Li Y, Hu H, Jin X, Ye Z, Ma Y, Zhang S (2011) Preparation of novel spherical PVA/ATP composites with macroreticular structure and their adsorption behavior for methylene blue and lead in aqueous solution. Chem Eng J 173:446–455CrossRef
112.
Zurück zum Zitat Alcântara MTS, Brant AJC, Giannini DR, Pessoa JOCP, Andrade AB, Riella HG, Lugão AB (2012) Influence of dissolution processing of PVA blends on the characteristics of their hydrogels synthesized by radiation—part I: gel fraction, swelling, and mechanical properties. Radiat Phys Chem 81:1465–1470CrossRef Alcântara MTS, Brant AJC, Giannini DR, Pessoa JOCP, Andrade AB, Riella HG, Lugão AB (2012) Influence of dissolution processing of PVA blends on the characteristics of their hydrogels synthesized by radiation—part I: gel fraction, swelling, and mechanical properties. Radiat Phys Chem 81:1465–1470CrossRef
113.
Zurück zum Zitat Gaume J, Rivaton A, Thérias S, Gardette J-L (2012) Influence of nanoclays on the photochemical behaviour of poly(vinyl alcohol). Polym Degrad Stab 97:488–495CrossRef Gaume J, Rivaton A, Thérias S, Gardette J-L (2012) Influence of nanoclays on the photochemical behaviour of poly(vinyl alcohol). Polym Degrad Stab 97:488–495CrossRef
114.
Zurück zum Zitat Jipa IM, Stroescu M, Stoica-Guzun A, Dobre T, Jinga S, Zaharescu T (2012) Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose. Nucl Instrum Methods B 278:82–87CrossRef Jipa IM, Stroescu M, Stoica-Guzun A, Dobre T, Jinga S, Zaharescu T (2012) Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose. Nucl Instrum Methods B 278:82–87CrossRef
115.
Zurück zum Zitat Constantina M, Fundueanua G, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E (2004) Preparation and characterisation of poly(vinyl alcohol)/cyclodextrin microspheres as matrix for inclusion and separation of drugs. Int J Pharm 285:87–96CrossRef Constantina M, Fundueanua G, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E (2004) Preparation and characterisation of poly(vinyl alcohol)/cyclodextrin microspheres as matrix for inclusion and separation of drugs. Int J Pharm 285:87–96CrossRef
116.
Zurück zum Zitat Georgieva N, Bryaskova R, Tzoneva R (2012) New polyvinyl alcohol-based hybrid materials for biomedical application. Mater Lett 88:19–22CrossRef Georgieva N, Bryaskova R, Tzoneva R (2012) New polyvinyl alcohol-based hybrid materials for biomedical application. Mater Lett 88:19–22CrossRef
117.
Zurück zum Zitat Islam A, Yasin T (2012) Controlled delivery of drug from pH sensitive chitosan/poly (vinyl alcohol) blend. Carbohydr Polym 88:1055–1060CrossRef Islam A, Yasin T (2012) Controlled delivery of drug from pH sensitive chitosan/poly (vinyl alcohol) blend. Carbohydr Polym 88:1055–1060CrossRef
118.
Zurück zum Zitat Gonzalez JS, Maiolo AS, Hoppe CE, Alvarez VA (2012) Composite gels based on poly (vinyl alcohol) for biomedical uses. Proc Mater Sci 1:483–490CrossRef Gonzalez JS, Maiolo AS, Hoppe CE, Alvarez VA (2012) Composite gels based on poly (vinyl alcohol) for biomedical uses. Proc Mater Sci 1:483–490CrossRef
119.
Zurück zum Zitat Maiolo AS, Amado MN, Gonzalez JS, Alvarez VA (2012) Development and characterization of poly (vinyl alcohol) based hydrogels for potential use as an articular cartilage replacement. Mater Sci Eng C 32:1490–1495CrossRef Maiolo AS, Amado MN, Gonzalez JS, Alvarez VA (2012) Development and characterization of poly (vinyl alcohol) based hydrogels for potential use as an articular cartilage replacement. Mater Sci Eng C 32:1490–1495CrossRef
120.
Zurück zum Zitat Killeen D, Frydrych M, Chen B (2012) Porous poly (vinyl alcohol)/sepiolite bone scaffolds: preparation, structure and mechanical properties. Mater Sci Eng C 32:749–757CrossRef Killeen D, Frydrych M, Chen B (2012) Porous poly (vinyl alcohol)/sepiolite bone scaffolds: preparation, structure and mechanical properties. Mater Sci Eng C 32:749–757CrossRef
121.
Zurück zum Zitat Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233CrossRef Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233CrossRef
122.
Zurück zum Zitat Zaina NAM, Suhaimi MS, Idris A (2011) Development and modification of PVA–alginate as a suitable immobilization matrix. Process Biochem 46:2122–2129CrossRef Zaina NAM, Suhaimi MS, Idris A (2011) Development and modification of PVA–alginate as a suitable immobilization matrix. Process Biochem 46:2122–2129CrossRef
123.
Zurück zum Zitat Khodja AN, Mahlous M, Tahtat D, Benamer S, Youcef SL, Chader H, Mouhoub L, Sedgelmaci M, Ammi N, Mansouri MB, Mameri S (2013) Evaluation of healing activity of PVA/chitosan hydrogels on deep second degree burn: pharmacological and toxicological tests. Burns 39:98–104CrossRef Khodja AN, Mahlous M, Tahtat D, Benamer S, Youcef SL, Chader H, Mouhoub L, Sedgelmaci M, Ammi N, Mansouri MB, Mameri S (2013) Evaluation of healing activity of PVA/chitosan hydrogels on deep second degree burn: pharmacological and toxicological tests. Burns 39:98–104CrossRef
124.
Zurück zum Zitat Singh B, Pal L (2011) Radiation crosslinking polymerization of sterculia polysaccharide–PVA–PVP for making hydrogel wound dressings. Int J Biol Macromol 48:501–510CrossRef Singh B, Pal L (2011) Radiation crosslinking polymerization of sterculia polysaccharide–PVA–PVP for making hydrogel wound dressings. Int J Biol Macromol 48:501–510CrossRef
125.
Zurück zum Zitat Huang M-H, Yang M-C (2008) Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. Int J Pharm 346:38–46CrossRef Huang M-H, Yang M-C (2008) Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. Int J Pharm 346:38–46CrossRef
126.
Zurück zum Zitat Singh B, Pal L (2012) Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater 9:9–21CrossRef Singh B, Pal L (2012) Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater 9:9–21CrossRef
127.
Zurück zum Zitat Păduraru OM, Ciolacu D, Darie RN, Vasile C (2012) Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Mater Sci Eng C 32:2508–2515CrossRef Păduraru OM, Ciolacu D, Darie RN, Vasile C (2012) Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Mater Sci Eng C 32:2508–2515CrossRef
128.
Zurück zum Zitat Salarizadeh P, Javanbakht M, Abdollahi M, Naji L (2013) Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly(vinyl alcohol) and poly(sulfonic acid)-grafted silica nanoparticles. Int J Hydrogen Energy 38:5473–5479CrossRef Salarizadeh P, Javanbakht M, Abdollahi M, Naji L (2013) Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly(vinyl alcohol) and poly(sulfonic acid)-grafted silica nanoparticles. Int J Hydrogen Energy 38:5473–5479CrossRef
129.
Zurück zum Zitat Ahmad AL, Yusuf NM, Ooi BS (2012) Preparation and modification of poly (vinyl) alcohol membrane: effect of crosslinking time towards its morphology. Desalination 287:35–40CrossRef Ahmad AL, Yusuf NM, Ooi BS (2012) Preparation and modification of poly (vinyl) alcohol membrane: effect of crosslinking time towards its morphology. Desalination 287:35–40CrossRef
130.
Zurück zum Zitat Surudžić R, Jovanović Ž, Bibić N, Nikolić B, Mišković-Stanković V (2013) Electrochemical synthesis of silver nanoparticles in poly(vinyl alcohol) solution. J Serb Chem Soc 78:2087–2098CrossRef Surudžić R, Jovanović Ž, Bibić N, Nikolić B, Mišković-Stanković V (2013) Electrochemical synthesis of silver nanoparticles in poly(vinyl alcohol) solution. J Serb Chem Soc 78:2087–2098CrossRef
131.
Zurück zum Zitat Buraidah MH, Arof AK (2011) Characterization of chitosan/PVA blended electrolyte doped with NH4I. J Non-Cryst Solids 357:3261–3266CrossRef Buraidah MH, Arof AK (2011) Characterization of chitosan/PVA blended electrolyte doped with NH4I. J Non-Cryst Solids 357:3261–3266CrossRef
132.
Zurück zum Zitat Surudzić R, Janković A, Bibić N, Vukašinović-Sekulić M, Perić-Grujić A, Mišković-Stanković V, Park SJ, Rhee KY (2016) Physico-chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Compos Part B 85:102–112CrossRef Surudzić R, Janković A, Bibić N, Vukašinović-Sekulić M, Perić-Grujić A, Mišković-Stanković V, Park SJ, Rhee KY (2016) Physico-chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Compos Part B 85:102–112CrossRef
133.
Zurück zum Zitat Van Hoa N, Byung-Keuk K, Youl-Lae J, Jae-Jin S (2012) Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J Supercrit Fluids 72:28–35CrossRef Van Hoa N, Byung-Keuk K, Youl-Lae J, Jae-Jin S (2012) Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J Supercrit Fluids 72:28–35CrossRef
134.
Zurück zum Zitat Li J, Liu C (2010) Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 2010:1244–1248CrossRef Li J, Liu C (2010) Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 2010:1244–1248CrossRef
135.
Zurück zum Zitat Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21:9702–9709CrossRef Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21:9702–9709CrossRef
136.
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187404CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187404CrossRef
137.
Zurück zum Zitat Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping, and nonadiabatic effects. Solid State Commun 143:47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping, and nonadiabatic effects. Solid State Commun 143:47–57CrossRef
138.
Zurück zum Zitat Bryaskova R, Pencheva D, Kale GM, Lad U, Kantardjiev T (2010) Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. J Colloid Interface Sci 349:77–85CrossRef Bryaskova R, Pencheva D, Kale GM, Lad U, Kantardjiev T (2010) Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. J Colloid Interface Sci 349:77–85CrossRef
139.
Zurück zum Zitat Tang Z, Lei Y, Guo B, Zhang L, Jia D (2012) The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer 53:673–680CrossRef Tang Z, Lei Y, Guo B, Zhang L, Jia D (2012) The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer 53:673–680CrossRef
140.
Zurück zum Zitat Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078–11081CrossRef Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078–11081CrossRef
141.
Zurück zum Zitat Ouyang Y, Chen L (2011) Surface-enhanced Raman scattering studies of few-layer graphene on silver substrate with 514 nm excitation. J Mol Struct 992:48–51CrossRef Ouyang Y, Chen L (2011) Surface-enhanced Raman scattering studies of few-layer graphene on silver substrate with 514 nm excitation. J Mol Struct 992:48–51CrossRef
142.
Zurück zum Zitat Liu Y, Huang J, Li H (2013) Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B 1:1826–1834CrossRef Liu Y, Huang J, Li H (2013) Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B 1:1826–1834CrossRef
143.
Zurück zum Zitat Josh AC, Markad GB, Haram SK (2015) Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: their application for the amperometric detection of glucose in the human blood samples. Electrochim Acta 161:108–114CrossRef Josh AC, Markad GB, Haram SK (2015) Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: their application for the amperometric detection of glucose in the human blood samples. Electrochim Acta 161:108–114CrossRef
144.
Zurück zum Zitat Bon SB, Valentini L, Verdejo R, Fierro JLG, Peponi L, Lopez-Manchado MA, Kenny JM (2009) Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chem Mater 21:3433–3438CrossRef Bon SB, Valentini L, Verdejo R, Fierro JLG, Peponi L, Lopez-Manchado MA, Kenny JM (2009) Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chem Mater 21:3433–3438CrossRef
145.
Zurück zum Zitat Yuan X (2011) Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene. Polym Bull 67:1785–1797CrossRef Yuan X (2011) Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene. Polym Bull 67:1785–1797CrossRef
146.
Zurück zum Zitat Gong L, Yin B, L-p L, Yang M-b (2015) Nylon-6/Graphene composites modified through polymeric modification of graphene. Compos Part B Eng 73:49–56CrossRef Gong L, Yin B, L-p L, Yang M-b (2015) Nylon-6/Graphene composites modified through polymeric modification of graphene. Compos Part B Eng 73:49–56CrossRef
Metadaten
Titel
Electrochemical Production of Polymer Hydrogels with Silver Nanoparticles for Medical Applications as Wound Dressings and Soft Tissue Implants
verfasst von
Vesna B. Mišković-Stanković
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31849-3_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.