Skip to main content

2019 | OriginalPaper | Buchkapitel

Bioethanol from Lignocellulosic Biomass

verfasst von : Charles E. Wyman, Charles M. Cai, Rajeev Kumar

Erschienen in: Energy from Organic Materials (Biomass)

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Biomass
Plant matter of recent (nongeologic) origin.
Cellulase
One or more enzymes that catalyze the reaction of water with cellulose to release shorter glucose oligomers and ultimately monomeric glucose sugar.
Cellulose
A glucose polymer composed of up to about 15,000 glucose molecules covalently joined by β 1–4 linkages in long, straight chains that can hydrogen bond with parallel cellulose chains to form crystalline regions. About 35–50% of the structural portion of plants is cellulose.
Cellulosic biomass
Also known as lignocellulosic biomass, the structural part of plants that is not edible by humans and contains cellulose, hemicellulose, pectin, and lignin. Examples include grass, wood, and agricultural and forestry residues.
Cellulosic ethanol
Ethanol made from lignocellulosic biomass by biological, chemical, or chemo-biological processes.
Enzymes
Proteins produced by living cells or organisms that are able to catalyze chemical reactions in organic substances.
Ethanol
An alcohol with the formula C2H5OH that is a high octane (greater than 100 Motor Octane Number) transportation fuel and also used commercially in alcoholic beverages, solvents, cosmetics, and other products. Ethanol can be made by microbial fermentation of sugars derived from sugarcane, starch, or cellulosic biomass or made catalytically from synthesis gas. Ethanol is hygroscopic (attracts water molecules) and biodegradable.
Hemicellulose
An amorphous, noncrystalline polymer typically made up of some combination of arabinose, galactose, glucose, mannose, and/or xylose sugars but also containing less amounts of other compounds such as methoxyl, acetyl, and free carboxyl groups. Hemicellulose joins with lignin to glue long cellulose fibers into a very strong composite material. Although the proportions can vary widely, hemicellulose often makes up about 15–30% of the overall dry weight of cellulosic biomass.
Hydrolysis
The reaction of water with a sugar polymer or other compound to form other compounds.
Lignin
A complex phenylpropanoic acid polymer chemically linked with hemicellulose to bind cellulose chains together. Lignin often represents about 7–35% of the dry weight of cellulosic biomass. Lignin is more difficult to break down into its component molecules and is not fermentable at an appreciable rate.
Sugars
Ring-shaped compounds consisting of five to six carbon atoms along with hydrogen and oxygen at a ratio of two hydrogen atoms and one oxygen atom to one carbon atom. Sugar is obtained from the juice of such plants as sugarcane and sugar beets and can be obtained by hydrolysis of starch in corn and other starch plants and by hydrolysis of cellulose and hemicellulose in cellulosic biomass. Sugars typically contained in cellulosic biomass include arabinose, galactose, glucose, mannose, fructose, rhamnose, and xylose. Sugars are typically sweet.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323CrossRef Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323CrossRef
2.
Zurück zum Zitat Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157CrossRef Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157CrossRef
3.
Zurück zum Zitat Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRef Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRef
4.
Zurück zum Zitat Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2005) Hydrolysis of cellulose and hemicellulose. Marcel Dekker, Inc., 995–1033 Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2005) Hydrolysis of cellulose and hemicellulose. Marcel Dekker, Inc., 995–1033
5.
Zurück zum Zitat Viëtor RJ, Newman RH, Ha M-A, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731CrossRef Viëtor RJ, Newman RH, Ha M-A, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731CrossRef
6.
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
7.
8.
Zurück zum Zitat Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRef Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRef
9.
Zurück zum Zitat Maxim S, Rajeev K, Haitao Z, Steven H (2011) Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production. Biofuels 2:59–70CrossRef Maxim S, Rajeev K, Haitao Z, Steven H (2011) Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production. Biofuels 2:59–70CrossRef
10.
Zurück zum Zitat Davison BH, Parks J, Davis MF, Donohoe BS (2013) Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Hoboken, New Jersey, pp 23–38 Davison BH, Parks J, Davis MF, Donohoe BS (2013) Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Hoboken, New Jersey, pp 23–38
11.
Zurück zum Zitat Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:709CrossRef Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:709CrossRef
12.
Zurück zum Zitat Zhang YHP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 46:2091–2110CrossRef Zhang YHP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 46:2091–2110CrossRef
13.
Zurück zum Zitat Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R et al (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRef Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R et al (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRef
14.
Zurück zum Zitat Stephen JD, Mabee WE, Saddler JN (2012) Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin 6:159–176CrossRef Stephen JD, Mabee WE, Saddler JN (2012) Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin 6:159–176CrossRef
15.
Zurück zum Zitat Saeman JF (1949) Kinetics of wood hydrolysis and the decomposition of sugars in dilute acids at high temperatures. Holzforschung 4:1–14CrossRef Saeman JF (1949) Kinetics of wood hydrolysis and the decomposition of sugars in dilute acids at high temperatures. Holzforschung 4:1–14CrossRef
16.
Zurück zum Zitat Saeman JF (1945) Kinetics of wood saccharification – hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52CrossRef Saeman JF (1945) Kinetics of wood saccharification – hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52CrossRef
17.
Zurück zum Zitat Zhang T, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr Polym 92:334–344CrossRef Zhang T, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr Polym 92:334–344CrossRef
18.
Zurück zum Zitat Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793CrossRef Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793CrossRef
19.
Zurück zum Zitat Wyman CE, Dale BE (2015) Producing biofuels via the sugar platform. Chem Eng Prog 111:45–51 Wyman CE, Dale BE (2015) Producing biofuels via the sugar platform. Chem Eng Prog 111:45–51
20.
Zurück zum Zitat Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol – a review. Biofuel Res J 3:347–356CrossRef Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol – a review. Biofuel Res J 3:347–356CrossRef
21.
Zurück zum Zitat Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRef Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRef
22.
Zurück zum Zitat So KS, Brown RC (1999) Economic analysis of selected lignocellulose-to-ethanol conversion technologies. Appl Biochem Biotechnol 77–9:633–640CrossRef So KS, Brown RC (1999) Economic analysis of selected lignocellulose-to-ethanol conversion technologies. Appl Biochem Biotechnol 77–9:633–640CrossRef
23.
Zurück zum Zitat Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:1086–1102CrossRef Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:1086–1102CrossRef
24.
Zurück zum Zitat Brown TR, Brown RC (2013) A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels Bioprod Biorefin 7:235–245CrossRef Brown TR, Brown RC (2013) A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels Bioprod Biorefin 7:235–245CrossRef
25.
Zurück zum Zitat Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810CrossRef Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810CrossRef
26.
Zurück zum Zitat Grohmann K, Wyman CE, Himmel ME (1992) Potential for fuels from biomass and wastes. ACS Symp Ser 476:354–392CrossRef Grohmann K, Wyman CE, Himmel ME (1992) Potential for fuels from biomass and wastes. ACS Symp Ser 476:354–392CrossRef
27.
Zurück zum Zitat Wiselogel A, Kistner J, Althoff K (2008) Analysis of the US Fuel Ethanol Industry and Market Expectations. Clean Technology and Sustainable Industries Conference and Trade Show. Boston, MA. Smart Grid, Storage, and Water, pp 16–18 Wiselogel A, Kistner J, Althoff K (2008) Analysis of the US Fuel Ethanol Industry and Market Expectations. Clean Technology and Sustainable Industries Conference and Trade Show. Boston, MA. Smart Grid, Storage, and Water, pp 16–18
28.
Zurück zum Zitat Narula CK, Li Z, Casbeer EM, Geiger RA, Moses-Debusk M, Keller M et al (2015) Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons. Sci Rep 5:16039CrossRef Narula CK, Li Z, Casbeer EM, Geiger RA, Moses-Debusk M, Keller M et al (2015) Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons. Sci Rep 5:16039CrossRef
29.
Zurück zum Zitat Saha SK, Sivasanker S (1992) The conversion of ethanol to hydrocarbons over Zsm-5. Ind J Technol 30:71–76 Saha SK, Sivasanker S (1992) The conversion of ethanol to hydrocarbons over Zsm-5. Ind J Technol 30:71–76
30.
Zurück zum Zitat Chum HL, Warner E, Seabra JEA, Macedo IC (2014) A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuels Bioprod Biorefin 8:205–223CrossRef Chum HL, Warner E, Seabra JEA, Macedo IC (2014) A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuels Bioprod Biorefin 8:205–223CrossRef
31.
Zurück zum Zitat Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580CrossRef Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580CrossRef
32.
33.
Zurück zum Zitat Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu Rev Energy Environ 25:199–244CrossRef Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu Rev Energy Environ 25:199–244CrossRef
34.
Zurück zum Zitat Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G et al (2014) Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol 48:7200–7203CrossRef Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G et al (2014) Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol 48:7200–7203CrossRef
35.
Zurück zum Zitat Wyman CE (1994) Alternative fuels from biomass and their impact on carbon dioxide accumulation. Appl Biochem Biotechnol 45–6:897–915CrossRef Wyman CE (1994) Alternative fuels from biomass and their impact on carbon dioxide accumulation. Appl Biochem Biotechnol 45–6:897–915CrossRef
36.
Zurück zum Zitat Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels-the food, energy, and environment trilemma. Science 325:270–271CrossRef Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels-the food, energy, and environment trilemma. Science 325:270–271CrossRef
37.
Zurück zum Zitat Lynd L, Greene N, Dale B, Laser M, Lashof D, Wang M et al (2006) Energy returns on ethanol production. Science (New York, NY) 312:1746–1748CrossRef Lynd L, Greene N, Dale B, Laser M, Lashof D, Wang M et al (2006) Energy returns on ethanol production. Science (New York, NY) 312:1746–1748CrossRef
38.
Zurück zum Zitat Wyman CE, Goodman BJ (1994) Economic fundamentals of ethanol production from lignocellulosic biomass. Abstr Pap Am Chem Soc 207:174-BTEC Wyman CE, Goodman BJ (1994) Economic fundamentals of ethanol production from lignocellulosic biomass. Abstr Pap Am Chem Soc 207:174-BTEC
39.
Zurück zum Zitat Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
40.
Zurück zum Zitat Langholtz MH, Stokes BJ, Eaton LM (2016) Billion-ton report: Advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstock. Oak Ridge National Laboratory, Oak Ridge, Tennessee, managed by UT-Battelle, LLC for the US Department of Energy 2016:1–411 Langholtz MH, Stokes BJ, Eaton LM (2016) Billion-ton report: Advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstock. Oak Ridge National Laboratory, Oak Ridge, Tennessee, managed by UT-Battelle, LLC for the US Department of Energy 2016:1–411
41.
Zurück zum Zitat Perlack RD, Stokes BJ (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, p 227 Perlack RD, Stokes BJ (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, p 227
42.
Zurück zum Zitat Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176CrossRef Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176CrossRef
43.
Zurück zum Zitat Jae J, Tompsett GA, Lin Y-C, Carlson TR, Shen J, Zhang T et al (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3 Jae J, Tompsett GA, Lin Y-C, Carlson TR, Shen J, Zhang T et al (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3
44.
Zurück zum Zitat Wyman CE, Ragauskas AJ (2015) Lignin bioproducts to enable biofuels. Biofuels Bioprod Biorefin 9:447–449CrossRef Wyman CE, Ragauskas AJ (2015) Lignin bioproducts to enable biofuels. Biofuels Bioprod Biorefin 9:447–449CrossRef
45.
Zurück zum Zitat Tian X, Fang Z, Smith RL, Wu Z, Liu M (2016) Properties, chemical characteristics and application of lignin and its derivatives. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 3–33CrossRef Tian X, Fang Z, Smith RL, Wu Z, Liu M (2016) Properties, chemical characteristics and application of lignin and its derivatives. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 3–33CrossRef
46.
Zurück zum Zitat Lipinsky ES (1981) Chemicals from biomass – petrochemical substitution options. Science 212:1465–1471CrossRef Lipinsky ES (1981) Chemicals from biomass – petrochemical substitution options. Science 212:1465–1471CrossRef
47.
Zurück zum Zitat Lipinsky ES (1978) Fuels from biomass – integration with food and materials systems. Science 199:644–651CrossRef Lipinsky ES (1978) Fuels from biomass – integration with food and materials systems. Science 199:644–651CrossRef
48.
Zurück zum Zitat Wyman CE (1995). Biomass-derived oxygenates for transportation fuels. Proceedings – biomass conference of the Americas: energy, environment, agriculture and industry, 2nd, Portland, 21–24 Aug 1995, pp 966–975 Wyman CE (1995). Biomass-derived oxygenates for transportation fuels. Proceedings – biomass conference of the Americas: energy, environment, agriculture and industry, 2nd, Portland, 21–24 Aug 1995, pp 966–975
49.
Zurück zum Zitat Fulton LM, Lynd LR, Körner A, Greene N, Tonachel LR (2015) The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Biorefin 9:476CrossRef Fulton LM, Lynd LR, Körner A, Greene N, Tonachel LR (2015) The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Biorefin 9:476CrossRef
50.
Zurück zum Zitat Fatehi P, Chen J (2016) Extraction of technical lignins from pulping spent liquors, challenges and opportunities. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 35–54CrossRef Fatehi P, Chen J (2016) Extraction of technical lignins from pulping spent liquors, challenges and opportunities. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 35–54CrossRef
51.
Zurück zum Zitat Thies MC, Klett AS (2016) Recovery of low-ash and ultrapure lignins from alkaline liquor by-product streams. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 55–78CrossRef Thies MC, Klett AS (2016) Recovery of low-ash and ultrapure lignins from alkaline liquor by-product streams. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 55–78CrossRef
52.
Zurück zum Zitat Laser M, Lynd LR (2014) Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries. Proc Natl Acad Sci 111:3360–3364 Laser M, Lynd LR (2014) Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries. Proc Natl Acad Sci 111:3360–3364
53.
Zurück zum Zitat Lynd LR, Larson E, Greene N, Laser M, Sheehan J, Dale BE et al (2009) The role of biomass in America’s energy future: framing the analysis. Biofuels Bioprod Biorefin 3:113–123CrossRef Lynd LR, Larson E, Greene N, Laser M, Sheehan J, Dale BE et al (2009) The role of biomass in America’s energy future: framing the analysis. Biofuels Bioprod Biorefin 3:113–123CrossRef
54.
Zurück zum Zitat Wyman C, Hinman N (1990) Ethanol: fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol 24–25:735–753CrossRef Wyman C, Hinman N (1990) Ethanol: fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol 24–25:735–753CrossRef
55.
Zurück zum Zitat Durbin TD, Karavalakis G, Johnson KC (2016) Environmental and performance impacts of alternative fuels in transportation applications. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York, pp 339–445 Durbin TD, Karavalakis G, Johnson KC (2016) Environmental and performance impacts of alternative fuels in transportation applications. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York, pp 339–445
56.
Zurück zum Zitat Kohse-Höinghaus K, Oßwald P, Cool TA, Kasper T, Hansen N, Qi F et al (2010) Biofuel combustion chemistry: from ethanol to biodiesel. Angew Chem Int Ed 49:3572–3597CrossRef Kohse-Höinghaus K, Oßwald P, Cool TA, Kasper T, Hansen N, Qi F et al (2010) Biofuel combustion chemistry: from ethanol to biodiesel. Angew Chem Int Ed 49:3572–3597CrossRef
57.
Zurück zum Zitat Wyman CE, Hinman ND, Bain RL, Stevens DJ (1992) Ethanol and methanol from cellulosic biomass. In: Williams RH, Johansson TB, Kelly H, Reddy AKN (eds) Fuels and electricity from renewable resources. Island Press, Washington, DC, pp 865–924 Wyman CE, Hinman ND, Bain RL, Stevens DJ (1992) Ethanol and methanol from cellulosic biomass. In: Williams RH, Johansson TB, Kelly H, Reddy AKN (eds) Fuels and electricity from renewable resources. Island Press, Washington, DC, pp 865–924
58.
Zurück zum Zitat Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T et al (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211CrossRef Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T et al (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211CrossRef
59.
Zurück zum Zitat Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2010) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:1–25 Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2010) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:1–25
60.
Zurück zum Zitat Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRef Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRef
61.
Zurück zum Zitat Karimi K, Shafiei M, Kumar R (2013) Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta VK, Tuohy MG (eds) Biofuel technologies. Springer, Berlin/Heidelberg, pp 53–96CrossRef Karimi K, Shafiei M, Kumar R (2013) Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta VK, Tuohy MG (eds) Biofuel technologies. Springer, Berlin/Heidelberg, pp 53–96CrossRef
62.
Zurück zum Zitat Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRef Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRef
63.
Zurück zum Zitat Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef
64.
Zurück zum Zitat Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060CrossRef Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060CrossRef
65.
Zurück zum Zitat Atalla RH, Brady JW, Matthews JF, Ding S-Y, Himmel ME (2008) Structures of plant cell wall celluloses. Biomass recalcitrance. Blackwell, London, pp 188–212CrossRef Atalla RH, Brady JW, Matthews JF, Ding S-Y, Himmel ME (2008) Structures of plant cell wall celluloses. Biomass recalcitrance. Blackwell, London, pp 188–212CrossRef
66.
Zurück zum Zitat Timell TE (1964) Wood hemicelluloses: part I. In: Melville LW (ed) Advances in carbohydrate chemistry. Academic Press, New York, pp 247–302 Timell TE (1964) Wood hemicelluloses: part I. In: Melville LW (ed) Advances in carbohydrate chemistry. Academic Press, New York, pp 247–302
67.
Zurück zum Zitat Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRef Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRef
68.
Zurück zum Zitat Mohnen D, Bar-Peled M, Somerville C (2008) Cell wall polysaccharide synthesis. Biomass recalcitrance. Blackwell, London, pp 94–187 Mohnen D, Bar-Peled M, Somerville C (2008) Cell wall polysaccharide synthesis. Biomass recalcitrance. Blackwell, London, pp 94–187
69.
Zurück zum Zitat Lacayo CI, Hwang MS, Ding S-Y, Thelen MP (2013) Lignin depletion enhances the digestibility of cellulose in cultured xylem cells. PLoS One 8:e68266CrossRef Lacayo CI, Hwang MS, Ding S-Y, Thelen MP (2013) Lignin depletion enhances the digestibility of cellulose in cultured xylem cells. PLoS One 8:e68266CrossRef
70.
Zurück zum Zitat Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45CrossRef Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45CrossRef
71.
Zurück zum Zitat Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182CrossRef Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182CrossRef
72.
Zurück zum Zitat Kumar R, Wyman CE (2008) The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers. Carbohydr Res 343:290–300CrossRef Kumar R, Wyman CE (2008) The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers. Carbohydr Res 343:290–300CrossRef
73.
Zurück zum Zitat Gao X, Kumar R, Wyman CE (2014) Fast hemicellulose quantification via a simple one-step acid hydrolysis. Biotechnol Bioeng 111:1088–1096CrossRef Gao X, Kumar R, Wyman CE (2014) Fast hemicellulose quantification via a simple one-step acid hydrolysis. Biotechnol Bioeng 111:1088–1096CrossRef
74.
Zurück zum Zitat Hespell RB, O’Bryan PJ, Moniruzzaman M, Bothast RJ (1997) Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans. Appl Biochem Biotechnol 62:87–97CrossRef Hespell RB, O’Bryan PJ, Moniruzzaman M, Bothast RJ (1997) Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans. Appl Biochem Biotechnol 62:87–97CrossRef
75.
Zurück zum Zitat Dien BS, Ximenes EA, O’Bryan PJ, Moniruzzaman M, Li X-L, Balan V et al (2008) Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresour Technol 99:5216–5225CrossRef Dien BS, Ximenes EA, O’Bryan PJ, Moniruzzaman M, Li X-L, Balan V et al (2008) Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresour Technol 99:5216–5225CrossRef
76.
Zurück zum Zitat Spindler D, Wyman C, Mohagheghi A, Grohmann K (1988) Thermotolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Biochem Biotechnol 17:279–293CrossRef Spindler D, Wyman C, Mohagheghi A, Grohmann K (1988) Thermotolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Biochem Biotechnol 17:279–293CrossRef
77.
Zurück zum Zitat Spindler DD, Wyman CE, Grohmann K, Mohagheghi A (1989) Simultaneous saccharification and fermentation of pretreated wheat straw to ethanol with selected yeast strains and beta -glucosidase supplementation. Appl Biochem Biotechnol 20–21:529–540CrossRef Spindler DD, Wyman CE, Grohmann K, Mohagheghi A (1989) Simultaneous saccharification and fermentation of pretreated wheat straw to ethanol with selected yeast strains and beta -glucosidase supplementation. Appl Biochem Biotechnol 20–21:529–540CrossRef
78.
Zurück zum Zitat Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in escherichia coli. Appl Environ Microbiol 53:2420–2425 Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in escherichia coli. Appl Environ Microbiol 53:2420–2425
79.
Zurück zum Zitat Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose and xylose by recombinant escherichia coli. Appl Microbiol Biotechnol 55:1943–1948 Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose and xylose by recombinant escherichia coli. Appl Microbiol Biotechnol 55:1943–1948
80.
Zurück zum Zitat Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859 Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859
81.
Zurück zum Zitat Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875CrossRef Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875CrossRef
82.
Zurück zum Zitat Zhang X, Athmanathan A, Mosier NS (2016) Biochemical conversion of biomass to biofuels. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York, pp 79–141 Zhang X, Athmanathan A, Mosier NS (2016) Biochemical conversion of biomass to biofuels. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York, pp 79–141
83.
Zurück zum Zitat Sun Q, Khunsupat R, Akato K, Tao J, Labbe N, Gallego NC et al (2016) A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chem 18:5015–5024 Sun Q, Khunsupat R, Akato K, Tao J, Labbe N, Gallego NC et al (2016) A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chem 18:5015–5024
84.
Zurück zum Zitat Cai CM (2014) Co-solvent enhanced production of platform fuel precursors from lignocellulosic biomass [PhD]. UC Riverside, Riverside Cai CM (2014) Co-solvent enhanced production of platform fuel precursors from lignocellulosic biomass [PhD]. UC Riverside, Riverside
85.
Zurück zum Zitat Saha BC, Bothast RJ (1997) Enzymes in lignocellulosic biomass conversion. ACS Symp Ser 666:46–56CrossRef Saha BC, Bothast RJ (1997) Enzymes in lignocellulosic biomass conversion. ACS Symp Ser 666:46–56CrossRef
86.
Zurück zum Zitat Horn S, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRef Horn S, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRef
87.
Zurück zum Zitat Kumar R, Wyman CE (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102:457–467CrossRef Kumar R, Wyman CE (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102:457–467CrossRef
88.
Zurück zum Zitat Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557CrossRef Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557CrossRef
89.
Zurück zum Zitat Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726CrossRef Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726CrossRef
90.
Zurück zum Zitat Vinzant TB, Adney WS, Decker SR, Baker JO, Kinter MT, Sherman NE et al (2001) Fingerprinting trichoderma reesei hydrolases in a commercial cellulase preparation. Appl Biochem Biotechnol 91–93:99–107CrossRef Vinzant TB, Adney WS, Decker SR, Baker JO, Kinter MT, Sherman NE et al (2001) Fingerprinting trichoderma reesei hydrolases in a commercial cellulase preparation. Appl Biochem Biotechnol 91–93:99–107CrossRef
91.
Zurück zum Zitat Chundawat SPS, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V et al (2011) Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures. J Proteome Res 10:4365–4372CrossRef Chundawat SPS, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V et al (2011) Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures. J Proteome Res 10:4365–4372CrossRef
92.
Zurück zum Zitat Jeoh T, Michener W, Himmel M, Decker S, Adney W (2008) Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 1:10CrossRef Jeoh T, Michener W, Himmel M, Decker S, Adney W (2008) Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 1:10CrossRef
93.
Zurück zum Zitat Stahlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9:286–290CrossRef Stahlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9:286–290CrossRef
94.
Zurück zum Zitat Stahlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157:107–113CrossRef Stahlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157:107–113CrossRef
95.
Zurück zum Zitat Gusakov AV, Sinitsyn AP, Gerasimas VB, Savitskene RY, Steponavichus YY (1985) A product inhibition study of cellulases from trichoderma longibrachiatum using dyed cellulose. J Biotechnol 3:167–174CrossRef Gusakov AV, Sinitsyn AP, Gerasimas VB, Savitskene RY, Steponavichus YY (1985) A product inhibition study of cellulases from trichoderma longibrachiatum using dyed cellulose. J Biotechnol 3:167–174CrossRef
96.
Zurück zum Zitat Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36:275–287CrossRef Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36:275–287CrossRef
97.
Zurück zum Zitat Gong C-S, Ladisch MR, Tsao GT (1977) Cellobiase from trichoderma iride: purification, properties, kinetics, and mechanism. Biotechnol Bioeng 19:959–981CrossRef Gong C-S, Ladisch MR, Tsao GT (1977) Cellobiase from trichoderma iride: purification, properties, kinetics, and mechanism. Biotechnol Bioeng 19:959–981CrossRef
98.
Zurück zum Zitat Hong J, Ladisch MR, Gong CS, Wankat PC, Tsao GT (1981) Combined product and substrate inhibition equation for cellobiase. Biotechnol Bioeng 23:2779–2788CrossRef Hong J, Ladisch MR, Gong CS, Wankat PC, Tsao GT (1981) Combined product and substrate inhibition equation for cellobiase. Biotechnol Bioeng 23:2779–2788CrossRef
99.
Zurück zum Zitat Kumar R, Wyman CE (2008) An improved method to directly estimate cellulase adsorption on biomass solids. Enzym Microb Technol 42:426–433CrossRef Kumar R, Wyman CE (2008) An improved method to directly estimate cellulase adsorption on biomass solids. Enzym Microb Technol 42:426–433CrossRef
100.
Zurück zum Zitat Kadam KL, Rydholm EC, McMillan JD (2004) Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol Prog 20:698–705CrossRef Kadam KL, Rydholm EC, McMillan JD (2004) Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol Prog 20:698–705CrossRef
101.
Zurück zum Zitat Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen J-CN, Johansen KS et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci 108:15079–15084CrossRef Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen J-CN, Johansen KS et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci 108:15079–15084CrossRef
102.
Zurück zum Zitat Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7:2308–2315CrossRef Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7:2308–2315CrossRef
103.
Zurück zum Zitat Hu J, Chandra R, Arantes V, Gourlay K, Susan van Dyk J, Saddler JN (2015) The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol 186:149–153CrossRef Hu J, Chandra R, Arantes V, Gourlay K, Susan van Dyk J, Saddler JN (2015) The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol 186:149–153CrossRef
104.
Zurück zum Zitat Jeoh T, Wilson DB, Walker LP (2006) Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol Prog 22:270–277CrossRef Jeoh T, Wilson DB, Walker LP (2006) Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol Prog 22:270–277CrossRef
105.
Zurück zum Zitat Gusakov AV (2013) Cellulases and hemicellulases in the 21st century race for cellulosic ethanol. Biofuels 4:567–569CrossRef Gusakov AV (2013) Cellulases and hemicellulases in the 21st century race for cellulosic ethanol. Biofuels 4:567–569CrossRef
106.
Zurück zum Zitat Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRef Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRef
107.
Zurück zum Zitat Viikari L, Tenkanen M, Poutanen K (1999) Hemicellulases. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, Chichester, pp 1383–1391 Viikari L, Tenkanen M, Poutanen K (1999) Hemicellulases. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, Chichester, pp 1383–1391
108.
Zurück zum Zitat Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRef Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRef
109.
Zurück zum Zitat Shafiei M, Kumar R, Karimi K (2015) Pretreatment of lignocellulosic biomass. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer International Publishing, Cham, Switzerland, pp 85–154 Shafiei M, Kumar R, Karimi K (2015) Pretreatment of lignocellulosic biomass. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer International Publishing, Cham, Switzerland, pp 85–154
110.
Zurück zum Zitat Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRef Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRef
111.
Zurück zum Zitat Gruno M, Valjamae P, Pettersson G, Johansson G (2004) Inhibition of the trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 86:503–511CrossRef Gruno M, Valjamae P, Pettersson G, Johansson G (2004) Inhibition of the trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 86:503–511CrossRef
112.
Zurück zum Zitat Podkaminer K, Kenealy W, Herring C, Hogsett D, Lynd L (2012) Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF). Biotechnol Biofuels 5:43CrossRef Podkaminer K, Kenealy W, Herring C, Hogsett D, Lynd L (2012) Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF). Biotechnol Biofuels 5:43CrossRef
113.
Zurück zum Zitat Wyman CE, Spindler DD, Grohmann K, Lastick SM (1986) Simultaneous saccharification and fermentation of cellulose with the yeast brettanomyces clausenii. Biotechnol Bioeng Symp 17:221–238 Wyman CE, Spindler DD, Grohmann K, Lastick SM (1986) Simultaneous saccharification and fermentation of cellulose with the yeast brettanomyces clausenii. Biotechnol Bioeng Symp 17:221–238
114.
Zurück zum Zitat Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314CrossRef Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314CrossRef
115.
Zurück zum Zitat Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213CrossRef Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213CrossRef
116.
Zurück zum Zitat Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630CrossRef Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630CrossRef
117.
Zurück zum Zitat Kumar R, Wyman CE (2014) Strong cellulase inhibition by mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111:1341–1353CrossRef Kumar R, Wyman CE (2014) Strong cellulase inhibition by mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111:1341–1353CrossRef
118.
Zurück zum Zitat Gauss WF, Suzuki S, Takagi M (1976). Manufacture of alcohol from cellulosic materials using plural ferments US3990944. Gauss WF, Suzuki S, Takagi M (1976). Manufacture of alcohol from cellulosic materials using plural ferments US3990944.
119.
Zurück zum Zitat Takagi M, Abe S, Suzuki S, Emert GH, Yata N. A method for production of alcohol directly from cellulose using cellulase and yeast. Bioconversion Symposium. Delhi, India: Indian Institute of Technology, pp 551–71 Takagi M, Abe S, Suzuki S, Emert GH, Yata N. A method for production of alcohol directly from cellulose using cellulase and yeast. Bioconversion Symposium. Delhi, India: Indian Institute of Technology, pp 551–71
120.
Zurück zum Zitat Takagi M (1984) Inhibition of cellulase by fermentation products. Biotechnol Bioeng XXVI:1506–1507CrossRef Takagi M (1984) Inhibition of cellulase by fermentation products. Biotechnol Bioeng XXVI:1506–1507CrossRef
121.
Zurück zum Zitat Nguyen TY, Cai CM, Osman O, Kumar R, Wyman CE (2016) CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem 18:1581–1589CrossRef Nguyen TY, Cai CM, Osman O, Kumar R, Wyman CE (2016) CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem 18:1581–1589CrossRef
122.
Zurück zum Zitat Ghosh P, Pamment NB, Martin WRB (1982) Simultaneous saccharification and fermentation of cellulose: effect of β-glucosidase activity and ethanol inhibition of cellulases. Enzym Microb Technol 4:425–430CrossRef Ghosh P, Pamment NB, Martin WRB (1982) Simultaneous saccharification and fermentation of cellulose: effect of β-glucosidase activity and ethanol inhibition of cellulases. Enzym Microb Technol 4:425–430CrossRef
123.
Zurück zum Zitat Spindler DD, Wyman CE, Grohmann K, Philippidis GP (1992) Evaluation of the cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharification and fermentation of cellulose. Biotechnol Lett 14:403–407CrossRef Spindler DD, Wyman CE, Grohmann K, Philippidis GP (1992) Evaluation of the cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharification and fermentation of cellulose. Biotechnol Lett 14:403–407CrossRef
124.
Zurück zum Zitat Mohagheghi A, Tucker M, Grohmann K, Wyman C (1992) High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol. Appl Biochem Biotechnol 33:67–81CrossRef Mohagheghi A, Tucker M, Grohmann K, Wyman C (1992) High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol. Appl Biochem Biotechnol 33:67–81CrossRef
125.
Zurück zum Zitat Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by clostridium thermocellum. Appl Environ Microbiol 55:3131–3139 Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by clostridium thermocellum. Appl Environ Microbiol 55:3131–3139
126.
Zurück zum Zitat Paye JMD, Guseva A, Hammer SK, Gjersing E, Davis MF, Davison BH et al (2016) Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnol Biofuels 9:1–13CrossRef Paye JMD, Guseva A, Hammer SK, Gjersing E, Davis MF, Davison BH et al (2016) Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnol Biofuels 9:1–13CrossRef
127.
Zurück zum Zitat Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2:152–195CrossRef Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2:152–195CrossRef
128.
Zurück zum Zitat Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B et al (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052–11062CrossRef Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B et al (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052–11062CrossRef
129.
Zurück zum Zitat Wyman CE, Dale BE, Balan V, Elander RT, Holtzapple MT, Ramirez RS et al (2013) Comparative performance of leading pretreatment technologies for biological conversion of corn stover, poplar wood, and switchgrass to sugars. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, USA, pp 239–259 Wyman CE, Dale BE, Balan V, Elander RT, Holtzapple MT, Ramirez RS et al (2013) Comparative performance of leading pretreatment technologies for biological conversion of corn stover, poplar wood, and switchgrass to sugars. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, USA, pp 239–259
130.
Zurück zum Zitat Elander R, Dale B, Holtzapple M, Ladisch M, Lee Y, Mitchinson C et al (2009) Summary of findings from the biomass refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose 16:649–659CrossRef Elander R, Dale B, Holtzapple M, Ladisch M, Lee Y, Mitchinson C et al (2009) Summary of findings from the biomass refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose 16:649–659CrossRef
131.
Zurück zum Zitat Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ et al (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102:11105–11114CrossRef Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ et al (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102:11105–11114CrossRef
132.
Zurück zum Zitat Eggeman T, Elander R (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96(18):2019–2025CrossRef Eggeman T, Elander R (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96(18):2019–2025CrossRef
133.
Zurück zum Zitat Holtzapple MT, Humphrey AE (1984) The effect of organosolv pretreatment on the enzymatic-hydrolysis of poplar. Biotechnol Bioeng 26:670–676CrossRef Holtzapple MT, Humphrey AE (1984) The effect of organosolv pretreatment on the enzymatic-hydrolysis of poplar. Biotechnol Bioeng 26:670–676CrossRef
134.
Zurück zum Zitat Chum HL, Johnson DK, Black SK (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res 29:156–162CrossRef Chum HL, Johnson DK, Black SK (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res 29:156–162CrossRef
135.
Zurück zum Zitat Ferraz A, Rodriguez J, Freer J, Baeza J (2000) Formic acid/acetone-organosolv pulping of white-rotted Pinus radiata softwood. J Chem Technol Biotechnol 75:1190–1196CrossRef Ferraz A, Rodriguez J, Freer J, Baeza J (2000) Formic acid/acetone-organosolv pulping of white-rotted Pinus radiata softwood. J Chem Technol Biotechnol 75:1190–1196CrossRef
136.
Zurück zum Zitat Pan X, Xie D, Kang KY, Yoon SL, Saddler JN (2007) Effect of organosolv ethanol pre-treatment variables on physical characteristics of hybrid poplar substrates. Appl Biochem Biotechnol 136–140:367–377 Pan X, Xie D, Kang KY, Yoon SL, Saddler JN (2007) Effect of organosolv ethanol pre-treatment variables on physical characteristics of hybrid poplar substrates. Appl Biochem Biotechnol 136–140:367–377
137.
Zurück zum Zitat Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474–5479CrossRef Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474–5479CrossRef
138.
Zurück zum Zitat Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472CrossRef Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472CrossRef
139.
Zurück zum Zitat Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381CrossRef Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381CrossRef
140.
Zurück zum Zitat Bozell JJ, Black SK, Myers M, Cahill D, Miller WP, Park S (2011) Solvent fractionation of renewable woody feedstocks: organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenergy 35:4197–4208CrossRef Bozell JJ, Black SK, Myers M, Cahill D, Miller WP, Park S (2011) Solvent fractionation of renewable woody feedstocks: organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenergy 35:4197–4208CrossRef
141.
Zurück zum Zitat Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910CrossRef Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910CrossRef
142.
Zurück zum Zitat Singh S, Cheng G, Sathitsuksanoh N, Wu D, Varanasi P, George A et al (2015) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res 2:62CrossRef Singh S, Cheng G, Sathitsuksanoh N, Wu D, Varanasi P, George A et al (2015) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res 2:62CrossRef
143.
Zurück zum Zitat Shuai L, Questell-Santiago YM, Luterbacher JS (2016) A mild biomass pretreatment using [gamma]-valerolactone for concentrated sugar production. Green Chem 18:937–943CrossRef Shuai L, Questell-Santiago YM, Luterbacher JS (2016) A mild biomass pretreatment using [gamma]-valerolactone for concentrated sugar production. Green Chem 18:937–943CrossRef
144.
Zurück zum Zitat Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8:1716–1725CrossRef Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8:1716–1725CrossRef
145.
Zurück zum Zitat Cai CM, Zhang T, Kumar R, Wyman CE (2013) THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem 15:3140–3145CrossRef Cai CM, Zhang T, Kumar R, Wyman CE (2013) THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem 15:3140–3145CrossRef
146.
Zurück zum Zitat Smith MD, Mostofian B, Cheng X, Petridis L, Cai CM, Wyman CE et al (2016) Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics. Green Chem 18:1268–1277CrossRef Smith MD, Mostofian B, Cheng X, Petridis L, Cai CM, Wyman CE et al (2016) Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics. Green Chem 18:1268–1277CrossRef
147.
Zurück zum Zitat Hirst EL, Morrison DR (1923) The action of highly concentrated hydrochloric acid on cellulose and on some derivatives of glucose and of xylose. J Chem Soc Trans 123:3226–3235CrossRef Hirst EL, Morrison DR (1923) The action of highly concentrated hydrochloric acid on cellulose and on some derivatives of glucose and of xylose. J Chem Soc Trans 123:3226–3235CrossRef
148.
Zurück zum Zitat Goldstein IS, Pereira H, Pittman JL, Strouse BA, Scaringelli FP (1983) The hydrolysis of cellulose with super concentrated hydrochloric-acid. Biotechnol Bioeng 13:17–25 Goldstein IS, Pereira H, Pittman JL, Strouse BA, Scaringelli FP (1983) The hydrolysis of cellulose with super concentrated hydrochloric-acid. Biotechnol Bioeng 13:17–25
149.
Zurück zum Zitat Voloch M, Ladisch MR, Cantarella M, Tsao GT (1984) Preparation of cellodextrins using sulfuric acid. Biotechnol Bioeng 26:557–559CrossRef Voloch M, Ladisch MR, Cantarella M, Tsao GT (1984) Preparation of cellodextrins using sulfuric acid. Biotechnol Bioeng 26:557–559CrossRef
150.
Zurück zum Zitat Wijaya YP, Putra RDD, Widyaya VT, Ha J-M, Suh DJ, Kim CS (2014) Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresour Technol 164:221–231CrossRef Wijaya YP, Putra RDD, Widyaya VT, Ha J-M, Suh DJ, Kim CS (2014) Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresour Technol 164:221–231CrossRef
151.
Zurück zum Zitat Goldstein IS, Bayat-Makooi F, Sabharwal HS, Singh TM (1989) Acid recovery by electrodialysis and its economic implications for concentrated acid hydrolysis of wood. Appl Biochem Biotechnol 20–21:95–106CrossRef Goldstein IS, Bayat-Makooi F, Sabharwal HS, Singh TM (1989) Acid recovery by electrodialysis and its economic implications for concentrated acid hydrolysis of wood. Appl Biochem Biotechnol 20–21:95–106CrossRef
152.
Zurück zum Zitat Lambert R, Moore-Bulls M, Barrier J (1990) An evaluation of two acid hydrolysis processes for the conversion of cellulosic feedstocks to ethanol and other chemicals. Appl Biochem Biotechnol 24–25:773–783. 83CrossRef Lambert R, Moore-Bulls M, Barrier J (1990) An evaluation of two acid hydrolysis processes for the conversion of cellulosic feedstocks to ethanol and other chemicals. Appl Biochem Biotechnol 24–25:773–783. 83CrossRef
153.
Zurück zum Zitat von Sivers M, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51:43–52CrossRef von Sivers M, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51:43–52CrossRef
154.
Zurück zum Zitat Katzen R, Othmer DF (1942) Wood hydrolysis. A continuous process. Ind Eng Chem 34:314–322CrossRef Katzen R, Othmer DF (1942) Wood hydrolysis. A continuous process. Ind Eng Chem 34:314–322CrossRef
155.
Zurück zum Zitat Wright JD, D’Agincourt CG (1984) Evaluation of sulfuric acid hydrolysis processes for alcohol fuel production. Biotechnol Bioeng Symp 14:105–123 Wright JD, D’Agincourt CG (1984) Evaluation of sulfuric acid hydrolysis processes for alcohol fuel production. Biotechnol Bioeng Symp 14:105–123
156.
Zurück zum Zitat Wright JD (1988) Ethanol from lignocellulose: an overview. Energy Prog 8:71–78 Wright JD (1988) Ethanol from lignocellulose: an overview. Energy Prog 8:71–78
157.
Zurück zum Zitat Brennan AH, Hoagland W, Schell DJ (1986) High temperature acid hydrolysis of biomass using an engineering scale plug flow reactor: results of low solids testing. Biotechnol Bioeng Symp 17:53–70 Brennan AH, Hoagland W, Schell DJ (1986) High temperature acid hydrolysis of biomass using an engineering scale plug flow reactor: results of low solids testing. Biotechnol Bioeng Symp 17:53–70
158.
Zurück zum Zitat Kwarteng KI (1983) Kinetics of acid hydrolysis of hardwood in a plug flow reactor, PhD thesis. Thayer School of Engineering, Dartmouth College, Hanover Kwarteng KI (1983) Kinetics of acid hydrolysis of hardwood in a plug flow reactor, PhD thesis. Thayer School of Engineering, Dartmouth College, Hanover
159.
Zurück zum Zitat Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89:2–10CrossRef Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89:2–10CrossRef
160.
Zurück zum Zitat Shen J, Wyman CE (2012) Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AICHE J 58:236–246CrossRef Shen J, Wyman CE (2012) Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AICHE J 58:236–246CrossRef
161.
Zurück zum Zitat Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110:737–753CrossRef Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110:737–753CrossRef
162.
Zurück zum Zitat Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T et al (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13:261–268CrossRef Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T et al (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13:261–268CrossRef
163.
Zurück zum Zitat Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890CrossRef Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890CrossRef
164.
Zurück zum Zitat Antal MJ Jr, Brittain A, De Almeida C, Mok W, Ramayya S (1987) Catalyzed and uncatalyzed conversion of cellulose biopolymer model compounds to chemical feedstocks in supercritical solvents. Energy Biomass Wastes 10th:865–877 Antal MJ Jr, Brittain A, De Almeida C, Mok W, Ramayya S (1987) Catalyzed and uncatalyzed conversion of cellulose biopolymer model compounds to chemical feedstocks in supercritical solvents. Energy Biomass Wastes 10th:865–877
165.
Zurück zum Zitat Johnson DK, Chum HL, Anzick R, Baldwin RM (1988) Lignin liquefaction in supercritical water. Res Thermochemical Biomass Convers:485–496 Johnson DK, Chum HL, Anzick R, Baldwin RM (1988) Lignin liquefaction in supercritical water. Res Thermochemical Biomass Convers:485–496
166.
Zurück zum Zitat Aki SNVK, Abraham MA (1998) An economic evaluation of catalytic supercritical water oxidation: comparison with alternative waste treatment technologies. Environ Prog 17:246–255CrossRef Aki SNVK, Abraham MA (1998) An economic evaluation of catalytic supercritical water oxidation: comparison with alternative waste treatment technologies. Environ Prog 17:246–255CrossRef
167.
Zurück zum Zitat Veriansyah B, Kim JD (2007) Supercritical water oxidation for the destruction of toxic organic wastewaters: a review. J Environ Sci 19:513–522CrossRef Veriansyah B, Kim JD (2007) Supercritical water oxidation for the destruction of toxic organic wastewaters: a review. J Environ Sci 19:513–522CrossRef
168.
Zurück zum Zitat Dai J, Saayman J, Grace JR, Ellis N (2015) Gasification of woody biomass. Annu Rev Chem Biomol Eng 6:77–99CrossRef Dai J, Saayman J, Grace JR, Ellis N (2015) Gasification of woody biomass. Annu Rev Chem Biomol Eng 6:77–99CrossRef
169.
Zurück zum Zitat Pereira EG, da Silva JN, de Oliveira JL, Machado CS (2012) Sustainable energy: a review of gasification technologies. Renew Sust Energ Rev 16:4753–4762CrossRef Pereira EG, da Silva JN, de Oliveira JL, Machado CS (2012) Sustainable energy: a review of gasification technologies. Renew Sust Energ Rev 16:4753–4762CrossRef
170.
Zurück zum Zitat Park CS, Raju ASK (2016) Current developments in thermochemical conversion of biomass to fuels and chemicals. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York (in press) Park CS, Raju ASK (2016) Current developments in thermochemical conversion of biomass to fuels and chemicals. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York (in press)
171.
Zurück zum Zitat Jeon SK, Park CS, Hackett CE, Norbeck JM (2007) Characteristics of steam hydrogasification of wood using a micro-batch reactor. Fuel 86:2817–2823CrossRef Jeon SK, Park CS, Hackett CE, Norbeck JM (2007) Characteristics of steam hydrogasification of wood using a micro-batch reactor. Fuel 86:2817–2823CrossRef
172.
Zurück zum Zitat Shen YW, Brown RC, Wen ZY (2017) Syngas fermentation by clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594CrossRef Shen YW, Brown RC, Wen ZY (2017) Syngas fermentation by clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594CrossRef
173.
Zurück zum Zitat Brown RC (2007) Hybrid thermochemical/biological processing. Appl Biochem Biotechnol 137:947–956 Brown RC (2007) Hybrid thermochemical/biological processing. Appl Biochem Biotechnol 137:947–956
174.
Zurück zum Zitat Cummer KR, Brown RC (2002) Ancillary equipment for biomass gasification. Biomass Bioenergy 23:113–128CrossRef Cummer KR, Brown RC (2002) Ancillary equipment for biomass gasification. Biomass Bioenergy 23:113–128CrossRef
175.
Zurück zum Zitat Wright M, Brown RC (2007) Establishing the optimal sizes of different kinds of biorefineries. Biofuels Bioprod Bioref-Biofpr 1:191–200CrossRef Wright M, Brown RC (2007) Establishing the optimal sizes of different kinds of biorefineries. Biofuels Bioprod Bioref-Biofpr 1:191–200CrossRef
176.
Zurück zum Zitat Marie-Rose SC, Chornet E, Lynch D, Lavoie JM (2015) From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis. Biomass to Biofuels 83:91–100 Marie-Rose SC, Chornet E, Lynch D, Lavoie JM (2015) From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis. Biomass to Biofuels 83:91–100
177.
Zurück zum Zitat Marie-Rose SC, Chornet E, Lynch D, Lavoie JM (2011) From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis. Energy Sustain III 143:123–12+ Marie-Rose SC, Chornet E, Lynch D, Lavoie JM (2011) From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis. Energy Sustain III 143:123–12+
178.
Zurück zum Zitat Wyman CE (1994) Ethanol from lignocellulosic biomass – technology, economics, and opportunities. Bioresour Technol 50:3–16CrossRef Wyman CE (1994) Ethanol from lignocellulosic biomass – technology, economics, and opportunities. Bioresour Technol 50:3–16CrossRef
179.
Zurück zum Zitat Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: NREL/TP-5100-47764. National Renewable Energy Laboratory, Golden Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: NREL/TP-5100-47764. National Renewable Energy Laboratory, Golden
180.
Zurück zum Zitat Tao L, Schell D, Davis R, Tan E, Elander R, Bratis A (2014) NREL 2012 achievement of ethanol cost targets: biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory (NREL), GoldenCrossRef Tao L, Schell D, Davis R, Tan E, Elander R, Bratis A (2014) NREL 2012 achievement of ethanol cost targets: biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory (NREL), GoldenCrossRef
181.
Zurück zum Zitat Humbird D, Mohagheghi A, Dowe N, Schell DJ (2010) Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnol Prog 26:1245–1251CrossRef Humbird D, Mohagheghi A, Dowe N, Schell DJ (2010) Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnol Prog 26:1245–1251CrossRef
182.
Zurück zum Zitat Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087CrossRef Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087CrossRef
183.
Zurück zum Zitat Balch ML, Holwerda EK, Davis M, Sykes R, Happs RM, Kumar R et al (2017) Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by clostridium thermocellum in the presence and absence of continuous in-situ ball-milling. Energy Environ Sci 10:1252–1261 Balch ML, Holwerda EK, Davis M, Sykes R, Happs RM, Kumar R et al (2017) Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by clostridium thermocellum in the presence and absence of continuous in-situ ball-milling. Energy Environ Sci 10:1252–1261
184.
Zurück zum Zitat Salvachua D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem 17:4951–4967CrossRef Salvachua D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem 17:4951–4967CrossRef
185.
Zurück zum Zitat Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA et al (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci 111:12013–12018CrossRef Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA et al (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci 111:12013–12018CrossRef
186.
Zurück zum Zitat Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas A et al (2015) Synergistic enzymatic and microbial conversion of lignin for lipid. Green Chem 18:1306–1312CrossRef Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas A et al (2015) Synergistic enzymatic and microbial conversion of lignin for lipid. Green Chem 18:1306–1312CrossRef
Metadaten
Titel
Bioethanol from Lignocellulosic Biomass
verfasst von
Charles E. Wyman
Charles M. Cai
Rajeev Kumar
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-7813-7_521