Skip to main content
Erschienen in: Polymer Bulletin 6/2019

27.09.2018 | Original Paper

Building an electron push–pull system of linear conjugated polymers for improving photocatalytic hydrogen evolution efficiency

verfasst von: Zijian Wang, Na Mao, Yongbo Zhao, Tongjia Yang, Feng Wang, Jia-Xing Jiang

Erschienen in: Polymer Bulletin | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of linear conjugated polymers with different acceptor units has been synthesized and applied as photocatalysts for hydrogen evolution from water splitting. It was found that the introduction of nitrogen atom into the polymer skeleton could efficiently improve the photocatalytic performance due to the improvement in charge carriers’ transport and separation, and the enhanced interfacial wettability from the hydrogen-bonding interaction between nitrogen atom and water molecule. The replacement position of nitrogen atom also has a big influence on the photocatalytic performance due to the enhanced internal dipole orientation. A high hydrogen evolution rate of 18.7 µmol h−1 was achieved by PyPm with strong acceptor unit of pyrimidine. The results demonstrate that the construction of an electronic push–pull system is an efficient strategy to produce linear conjugated polymer photocatalysts with high photocatalytic performance.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefPubMed Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefPubMed
2.
Zurück zum Zitat Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796CrossRefPubMed Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796CrossRefPubMed
3.
Zurück zum Zitat Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefPubMed Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefPubMed
4.
Zurück zum Zitat Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42:8012–8031CrossRefPubMed Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42:8012–8031CrossRefPubMed
5.
Zurück zum Zitat Wong Y-L, Tobin JM, Xu Z, Vilela F (2016) Conjugated porous polymers for photocatalytic applications. J Mater Chem A 4:18677–18686CrossRef Wong Y-L, Tobin JM, Xu Z, Vilela F (2016) Conjugated porous polymers for photocatalytic applications. J Mater Chem A 4:18677–18686CrossRef
6.
Zurück zum Zitat Zhang G, Lan Z-A, Wang X (2016) Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew Chem Int Ed 55:15712–15727CrossRef Zhang G, Lan Z-A, Wang X (2016) Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew Chem Int Ed 55:15712–15727CrossRef
7.
Zurück zum Zitat Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H (2017) Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv Mater 29:1702428CrossRef Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H (2017) Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv Mater 29:1702428CrossRef
8.
Zurück zum Zitat Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefPubMed Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefPubMed
9.
Zurück zum Zitat Xu Y, Mao N, Feng S, Zhang C, Wang F, Chen Zeng J, Jiang J (2017) Perylene-containing conjugated microporous polymers for photocatalytic hydrogen evolution. Macromol Chem Phys 218:1700049CrossRef Xu Y, Mao N, Feng S, Zhang C, Wang F, Chen Zeng J, Jiang J (2017) Perylene-containing conjugated microporous polymers for photocatalytic hydrogen evolution. Macromol Chem Phys 218:1700049CrossRef
10.
Zurück zum Zitat Xu Y, Zhang C, Mu P, Mao N, Wang X, He Q, Wang F, Jiang J (2017) Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution. Sci China Chem 60:1075–1083CrossRef Xu Y, Zhang C, Mu P, Mao N, Wang X, He Q, Wang F, Jiang J (2017) Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution. Sci China Chem 60:1075–1083CrossRef
11.
Zurück zum Zitat Sprick RS, Jiang JX, Bonillo B, Ren S, Ratvijitvech T, Guiglion P, Zwijnenburg MA, Adams DJ, Cooper AI (2015) Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc 137:3265–3270CrossRefPubMed Sprick RS, Jiang JX, Bonillo B, Ren S, Ratvijitvech T, Guiglion P, Zwijnenburg MA, Adams DJ, Cooper AI (2015) Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc 137:3265–3270CrossRefPubMed
12.
Zurück zum Zitat Wang Z, Yang X, Yang T, Zhao Y, Wang F, Chen Y, Zeng J, Yan C, Huang F, Jiang J (2018) Dibenzothiophene dioxide-based conjugated microporous polymers for visible-light-driven hydrogen production. ACS Catal 8:8590–8596CrossRef Wang Z, Yang X, Yang T, Zhao Y, Wang F, Chen Y, Zeng J, Yan C, Huang F, Jiang J (2018) Dibenzothiophene dioxide-based conjugated microporous polymers for visible-light-driven hydrogen production. ACS Catal 8:8590–8596CrossRef
13.
Zurück zum Zitat Stegbauer L, Schwinghammer K, Lotsch BV (2014) A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci 5:2789–2793CrossRef Stegbauer L, Schwinghammer K, Lotsch BV (2014) A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci 5:2789–2793CrossRef
14.
Zurück zum Zitat Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV (2015) A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 6:8508CrossRefPubMedPubMedCentral Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV (2015) A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 6:8508CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Meier CB, Sprick RS, Monti A, Guiglion P, Lee J-M, Zwijnenburg MA, Cooper AI (2017) Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water. Polymer 126:283–290CrossRef Meier CB, Sprick RS, Monti A, Guiglion P, Lee J-M, Zwijnenburg MA, Cooper AI (2017) Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water. Polymer 126:283–290CrossRef
16.
Zurück zum Zitat Sprick RS, Bonillo B, Sachs M, Clowes R, Durrant JR, Adams DJ, Cooper AI (2016) Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chem Commun 52:10008–10011CrossRef Sprick RS, Bonillo B, Sachs M, Clowes R, Durrant JR, Adams DJ, Cooper AI (2016) Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chem Commun 52:10008–10011CrossRef
17.
Zurück zum Zitat Schwab MG, Hamburger M, Feng X, Shu J, Spiess HW, Wang X, Antonietti M, Mullen K (2010) Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem Commun 46:8932–8934CrossRef Schwab MG, Hamburger M, Feng X, Shu J, Spiess HW, Wang X, Antonietti M, Mullen K (2010) Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem Commun 46:8932–8934CrossRef
18.
Zurück zum Zitat Li L, Cai Z, Wu Q, Lo W-Y, Zhang N, Chen L, Yu L (2016) Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J Am Chem Soc 138:7681–7686CrossRefPubMed Li L, Cai Z, Wu Q, Lo W-Y, Zhang N, Chen L, Yu L (2016) Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J Am Chem Soc 138:7681–7686CrossRefPubMed
19.
Zurück zum Zitat Yang C, Ma BC, Zhang L, Lin S, Ghasimi S, Landfester K, Zhang K, Wang X (2016) Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed 55:9202–9206CrossRef Yang C, Ma BC, Zhang L, Lin S, Ghasimi S, Landfester K, Zhang K, Wang X (2016) Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed 55:9202–9206CrossRef
20.
Zurück zum Zitat Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K (1985) Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J Chem Soc Chem Commun 8:474CrossRef Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K (1985) Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J Chem Soc Chem Commun 8:474CrossRef
21.
Zurück zum Zitat Maruyama T, Yamamoto T (1997) Effective photocatalytic system based on chelating π-conjugated poly(2,2′-bipyridine-5,5′-diyl) and platinum for photoevolution of H2 from aqueous media and spectroscopic analysis of the catalyst. J Phys Chem B 101:3806–3810CrossRef Maruyama T, Yamamoto T (1997) Effective photocatalytic system based on chelating π-conjugated poly(2,2′-bipyridine-5,5′-diyl) and platinum for photoevolution of H2 from aqueous media and spectroscopic analysis of the catalyst. J Phys Chem B 101:3806–3810CrossRef
22.
Zurück zum Zitat Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Coope AI (2016) Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew Chem Int Ed 55:1792–1796CrossRef Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Coope AI (2016) Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew Chem Int Ed 55:1792–1796CrossRef
23.
Zurück zum Zitat Woods DJ, Sprick RS, Smith CL, Cowan AJ, Cooper AI (2017) A solution-processable polymer photocatalyst for hydrogen evolution from water. Adv Energy Mater 7:1700479CrossRef Woods DJ, Sprick RS, Smith CL, Cowan AJ, Cooper AI (2017) A solution-processable polymer photocatalyst for hydrogen evolution from water. Adv Energy Mater 7:1700479CrossRef
24.
Zurück zum Zitat Zhang XH, Wang XP, Xiao J, Wang SY, Huang DK, Ding X, Xiang Y-G, Chen H (2017) Synthesis of 1,4-diethynylbenzene-based conjugated polymer photocatalysts and their enhanced visible/near-infrared-light-driven hydrogen production activity. J Catal 350:64–71CrossRef Zhang XH, Wang XP, Xiao J, Wang SY, Huang DK, Ding X, Xiang Y-G, Chen H (2017) Synthesis of 1,4-diethynylbenzene-based conjugated polymer photocatalysts and their enhanced visible/near-infrared-light-driven hydrogen production activity. J Catal 350:64–71CrossRef
25.
Zurück zum Zitat Zong X, Miao X, Hua S, An L, Gao X, Jiang W, Qu D, Zhou Z, Liu X, Su Z (2017) Structure defects assisted photocatalytic H2 production for polythiophene nanofibers. Appl Catal B Environ 211:98–105CrossRef Zong X, Miao X, Hua S, An L, Gao X, Jiang W, Qu D, Zhou Z, Liu X, Su Z (2017) Structure defects assisted photocatalytic H2 production for polythiophene nanofibers. Appl Catal B Environ 211:98–105CrossRef
26.
Zurück zum Zitat Wang L, Fernández-Terán R, Zhang L, Fernandes DLA, Tian L, Chen H, Tian H (2016) Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew Chem Int Ed 55:12306–12310CrossRef Wang L, Fernández-Terán R, Zhang L, Fernandes DLA, Tian L, Chen H, Tian H (2016) Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew Chem Int Ed 55:12306–12310CrossRef
27.
Zurück zum Zitat Pati PB, Damas G, Tian L, Fernandes DLA, Zhang L, Pehlivan IB, Edvinsson T, Araujo M, Tian H (2017) An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy Environ Sci 10:1372–1376CrossRef Pati PB, Damas G, Tian L, Fernandes DLA, Zhang L, Pehlivan IB, Edvinsson T, Araujo M, Tian H (2017) An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy Environ Sci 10:1372–1376CrossRef
28.
Zurück zum Zitat Kerszulis JA, Amb CM, Dyer AL, Reynolds JR (2014) Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers. Macromolecules 47:5462–5469CrossRef Kerszulis JA, Amb CM, Dyer AL, Reynolds JR (2014) Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers. Macromolecules 47:5462–5469CrossRef
29.
Zurück zum Zitat Xu Y, Mao N, Zhang C, Wang X, Zeng J, Chen Y, Wang F, Jiang J (2018) Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Appl Catal B Environ 228:1–9CrossRef Xu Y, Mao N, Zhang C, Wang X, Zeng J, Chen Y, Wang F, Jiang J (2018) Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Appl Catal B Environ 228:1–9CrossRef
30.
Zurück zum Zitat Bhunia A, Esquivel D, Dey S, Fernández-Terán R, Goto Y, Inagaki S, Voort PV, Janiak C (2016) A photoluminescent covalent triazine framework: Co2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. J Mater Chem A 4:13450–13457CrossRef Bhunia A, Esquivel D, Dey S, Fernández-Terán R, Goto Y, Inagaki S, Voort PV, Janiak C (2016) A photoluminescent covalent triazine framework: Co2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. J Mater Chem A 4:13450–13457CrossRef
31.
Zurück zum Zitat Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z, Tang J (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem Int Ed 53:9240–9245CrossRef Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z, Tang J (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem Int Ed 53:9240–9245CrossRef
32.
Zurück zum Zitat He F, Chen G, Yu Y, Hao S, Zhou Y, Zheng Y (2014) Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity. ACS Appl Mater Interfaces 6:7171–7179CrossRefPubMed He F, Chen G, Yu Y, Hao S, Zhou Y, Zheng Y (2014) Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity. ACS Appl Mater Interfaces 6:7171–7179CrossRefPubMed
33.
Zurück zum Zitat Lin L, Ou H, Zhang Y, Wang X (2016) Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal 6:3921–3931CrossRef Lin L, Ou H, Zhang Y, Wang X (2016) Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal 6:3921–3931CrossRef
34.
Zurück zum Zitat Li L, Lo W-Y, Cai Z, Zhang N, Yu L (2016) Donor–acceptor porous conjugated polymers for photocatalytic hydrogen production: the importance of acceptor comonomer. Macromolecules 49:6903–6909CrossRef Li L, Lo W-Y, Cai Z, Zhang N, Yu L (2016) Donor–acceptor porous conjugated polymers for photocatalytic hydrogen production: the importance of acceptor comonomer. Macromolecules 49:6903–6909CrossRef
35.
Zurück zum Zitat Shibata T, Kabumoto A, Shiragami T, Ishitani O, Pac C, Yanagida S (1990) Novel visible-light-driven photocatalyst. poly(p-phenylene)-catalyzed photoreductions of water, carbonyl compounds, and olefins. J Phys Chem 94:2068–2076CrossRef Shibata T, Kabumoto A, Shiragami T, Ishitani O, Pac C, Yanagida S (1990) Novel visible-light-driven photocatalyst. poly(p-phenylene)-catalyzed photoreductions of water, carbonyl compounds, and olefins. J Phys Chem 94:2068–2076CrossRef
36.
Zurück zum Zitat Matsuoka S, Fujii H, Yamada T, Pac C, Ishida A, Takamuku S, Kusaba M, Nakashima N, Yanagida S (1991) Photocatalysis of oligo(p-phenylenes): photoreductive production of hydrogen and ethanol in aqueous triethylamine. J Phys Chem 95:5802–5808CrossRef Matsuoka S, Fujii H, Yamada T, Pac C, Ishida A, Takamuku S, Kusaba M, Nakashima N, Yanagida S (1991) Photocatalysis of oligo(p-phenylenes): photoreductive production of hydrogen and ethanol in aqueous triethylamine. J Phys Chem 95:5802–5808CrossRef
37.
Zurück zum Zitat Yan H, Huang Y (2011) Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chem Commun 47:4168–4170CrossRef Yan H, Huang Y (2011) Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chem Commun 47:4168–4170CrossRef
38.
Zurück zum Zitat Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman DB (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces 9:12427–12435CrossRefPubMed Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman DB (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces 9:12427–12435CrossRefPubMed
39.
Zurück zum Zitat Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909CrossRefPubMed Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909CrossRefPubMed
40.
Zurück zum Zitat Pan C, Xu J, Wang Y, Li D, Zhu Y (2012) Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv Funct Mater 22:1518–1524CrossRef Pan C, Xu J, Wang Y, Li D, Zhu Y (2012) Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv Funct Mater 22:1518–1524CrossRef
41.
Zurück zum Zitat Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491CrossRefPubMed Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491CrossRefPubMed
42.
Zurück zum Zitat Wang Y, Shi R, Lin J, Zhu Y (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929CrossRef Wang Y, Shi R, Lin J, Zhu Y (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929CrossRef
Metadaten
Titel
Building an electron push–pull system of linear conjugated polymers for improving photocatalytic hydrogen evolution efficiency
verfasst von
Zijian Wang
Na Mao
Yongbo Zhao
Tongjia Yang
Feng Wang
Jia-Xing Jiang
Publikationsdatum
27.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 6/2019
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2535-3

Weitere Artikel der Ausgabe 6/2019

Polymer Bulletin 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.