Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2016

01.08.2016

Calcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field model

verfasst von: M. T. Wilson, P. K. Fung, P. A. Robinson, J. Shemmell, J. N. J. Reynolds

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The calcium dependent plasticity (CaDP) approach to the modeling of synaptic weight change is applied using a neural field approach to realistic repetitive transcranial magnetic stimulation (rTMS) protocols. A spatially-symmetric nonlinear neural field model consisting of populations of excitatory and inhibitory neurons is used. The plasticity between excitatory cell populations is then evaluated using a CaDP approach that incorporates metaplasticity. The direction and size of the plasticity (potentiation or depression) depends on both the amplitude of stimulation and duration of the protocol. The breaks in the inhibitory theta-burst stimulation protocol are crucial to ensuring that the stimulation bursts are potentiating in nature. Tuning the parameters of a spike-timing dependent plasticity (STDP) window with a Monte Carlo approach to maximize agreement between STDP predictions and the CaDP results reproduces a realistically-shaped window with two regions of depression in agreement with the existing literature. Developing understanding of how TMS interacts with cells at a network level may be important for future investigation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abraham, W.C., & Bear, M.F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences, 19, 126–130.CrossRefPubMed Abraham, W.C., & Bear, M.F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences, 19, 126–130.CrossRefPubMed
Zurück zum Zitat Bi, G.Q., & Poo, M.M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10,464–10,472. Bi, G.Q., & Poo, M.M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10,464–10,472.
Zurück zum Zitat Bienenstock, E., & Lehmann, D. (1998). Regulated criticality in the brain?. Advances in Complex Systems, 1, 361–384.CrossRef Bienenstock, E., & Lehmann, D. (1998). Regulated criticality in the brain?. Advances in Complex Systems, 1, 361–384.CrossRef
Zurück zum Zitat Bienenstock, E.L., Cooper, L.N., & Munro, PW (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interation in visual cortex. Journal of Neuroscience, 2, 32–48.PubMed Bienenstock, E.L., Cooper, L.N., & Munro, PW (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interation in visual cortex. Journal of Neuroscience, 2, 32–48.PubMed
Zurück zum Zitat Bojak, I., & Liley, D.TJ. (2005). Modelling the effects of anaesthesia on the electroencephalogram. Physical Review E, 71(41), 902. Bojak, I., & Liley, D.TJ. (2005). Modelling the effects of anaesthesia on the electroencephalogram. Physical Review E, 71(41), 902.
Zurück zum Zitat Bojak, I., & Liley, D.TJ. (2010). Axonal velocity distributions in neural field equations. PLoS Computational Biology, 6(e1000), 653. Bojak, I., & Liley, D.TJ. (2010). Axonal velocity distributions in neural field equations. PLoS Computational Biology, 6(e1000), 653.
Zurück zum Zitat Castellani, G.C., Quinlan, E.M., Cooper, L.N., Yeung, L.C., & Shouval, H.Z. (2001). A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proceedings of the National Academy of Sciences, 98, 12,772–12,777.CrossRef Castellani, G.C., Quinlan, E.M., Cooper, L.N., Yeung, L.C., & Shouval, H.Z. (2001). A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proceedings of the National Academy of Sciences, 98, 12,772–12,777.CrossRef
Zurück zum Zitat Civardi, C., Collini, A., Monaco, F., & Cantello, R. (2009). Applications of transcranial magnetic stimulation in sleep medicine. Sleep Medicine Reviews, 13, 35–46.CrossRefPubMed Civardi, C., Collini, A., Monaco, F., & Cantello, R. (2009). Applications of transcranial magnetic stimulation in sleep medicine. Sleep Medicine Reviews, 13, 35–46.CrossRefPubMed
Zurück zum Zitat Clopath, C., & Gerstner, W. (2010). Voltage and spike timing interact in STDP — a unified model. Frontiers in Synaptic Neuroscience, 2, 25.PubMedPubMedCentral Clopath, C., & Gerstner, W. (2010). Voltage and spike timing interact in STDP — a unified model. Frontiers in Synaptic Neuroscience, 2, 25.PubMedPubMedCentral
Zurück zum Zitat Fregni, F., Simon, D.K., Wu, A., & Pascual-Leone, A. (2005). Biophysical mechanisms of multistability in resting-state cortical rhythms. Journal of Neurology, Neurosurgery and Psychiatry, 76, 1614–1623.CrossRefPubMedPubMedCentral Fregni, F., Simon, D.K., Wu, A., & Pascual-Leone, A. (2005). Biophysical mechanisms of multistability in resting-state cortical rhythms. Journal of Neurology, Neurosurgery and Psychiatry, 76, 1614–1623.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fung, P.K., Haber, A.L., & Robinson, P.A. (2013). Neural field theory of plasticity in the cerebral cortex. Journal of Theoretical Biology, 318, 44–57.CrossRefPubMed Fung, P.K., Haber, A.L., & Robinson, P.A. (2013). Neural field theory of plasticity in the cerebral cortex. Journal of Theoretical Biology, 318, 44–57.CrossRefPubMed
Zurück zum Zitat Fung, P.K., & Robinson, P.A. (2013). Neural field theory of calcium dependent plasticity with applications to transcranial magnetic stimulation. Journal of Theoretical Biology, 324, 72–83.CrossRefPubMed Fung, P.K., & Robinson, P.A. (2013). Neural field theory of calcium dependent plasticity with applications to transcranial magnetic stimulation. Journal of Theoretical Biology, 324, 72–83.CrossRefPubMed
Zurück zum Zitat Fung, P.K., & Robinson, P.A. (2014). Neural field theory of synaptic metaplasticity with applications to theta burst stimulation. Journal of Theoretical Biology, 340, 164–176.CrossRefPubMed Fung, P.K., & Robinson, P.A. (2014). Neural field theory of synaptic metaplasticity with applications to theta burst stimulation. Journal of Theoretical Biology, 340, 164–176.CrossRefPubMed
Zurück zum Zitat Funke, K., & Benali, A. (2010). Cortical cellular actions of transcranial magnetic stimulation. Restorative Neurology and Neuroscience, 28, 399–417.PubMed Funke, K., & Benali, A. (2010). Cortical cellular actions of transcranial magnetic stimulation. Restorative Neurology and Neuroscience, 28, 399–417.PubMed
Zurück zum Zitat Graupner, M., & Brunel, N. (2007). STDP In a bistable synapse model based on caMKII and associated signalling pathways. PLoS Computational Biology, 3, 2299–2323.CrossRef Graupner, M., & Brunel, N. (2007). STDP In a bistable synapse model based on caMKII and associated signalling pathways. PLoS Computational Biology, 3, 2299–2323.CrossRef
Zurück zum Zitat Graupner, M., & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing dependent plasticity in biological synapse models. Frontiers in Computational Neuroscience, 4, 1–19.CrossRef Graupner, M., & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing dependent plasticity in biological synapse models. Frontiers in Computational Neuroscience, 4, 1–19.CrossRef
Zurück zum Zitat Hamada, M., Hanajima, R., Terao, Y., Arai, N., Furubayashi, T., Inomata-Terada, S., Yugeta, A., Matsumoto, H., Shirota, Y., & Ugawa, Y. (2007). Quadro-pulse stimulation is more effective than paired pulse stimulation for plasticity induction of the human motor cortex. Clinical Neurophysiology, 118, 2672–2682.CrossRefPubMed Hamada, M., Hanajima, R., Terao, Y., Arai, N., Furubayashi, T., Inomata-Terada, S., Yugeta, A., Matsumoto, H., Shirota, Y., & Ugawa, Y. (2007). Quadro-pulse stimulation is more effective than paired pulse stimulation for plasticity induction of the human motor cortex. Clinical Neurophysiology, 118, 2672–2682.CrossRefPubMed
Zurück zum Zitat Hamada, M., Murase, N., Hasan, A., Balaratnam, M., & Rothwell, J.C. (2013). The role of interneuron networks in driving human motor cortex plasticity. Cerebral Cortex, 23, 1593–1605.CrossRefPubMed Hamada, M., Murase, N., Hasan, A., Balaratnam, M., & Rothwell, J.C. (2013). The role of interneuron networks in driving human motor cortex plasticity. Cerebral Cortex, 23, 1593–1605.CrossRefPubMed
Zurück zum Zitat Hamada, M., Terao, Y., Hanajima, R., Shirota, Y., Nakatani-Enomoto, S., Furubayashi, T., Matsumoto, H., & Ugawa, Y. (2008). Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. Journal of Physiology, 586, 3927–3947.CrossRefPubMedPubMedCentral Hamada, M., Terao, Y., Hanajima, R., Shirota, Y., Nakatani-Enomoto, S., Furubayashi, T., Matsumoto, H., & Ugawa, Y. (2008). Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. Journal of Physiology, 586, 3927–3947.CrossRefPubMedPubMedCentral
Zurück zum Zitat Huang, Y.Z., Edwards, M.J., Rounis, E., Bhatia, K.P., & Rothwell, J. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45, 201–206.CrossRefPubMed Huang, Y.Z., Edwards, M.J., Rounis, E., Bhatia, K.P., & Rothwell, J. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45, 201–206.CrossRefPubMed
Zurück zum Zitat Ilic, T.V., Meintzschel, F., Cleff, U., Ruge, D., Kessler, K.R., & Ziemann, U. (2002). Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. Journal of Physiology London, 545, 153–167.CrossRef Ilic, T.V., Meintzschel, F., Cleff, U., Ruge, D., Kessler, K.R., & Ziemann, U. (2002). Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. Journal of Physiology London, 545, 153–167.CrossRef
Zurück zum Zitat Izhikevich, E.M., & Desai, N.S. (2003). Relating STDP to BCM. Neural Computation, 15, 1511–1523.CrossRefPubMed Izhikevich, E.M., & Desai, N.S. (2003). Relating STDP to BCM. Neural Computation, 15, 1511–1523.CrossRefPubMed
Zurück zum Zitat Jirsa, V.K., & Haken, H. (1996). A field theory of electromagnetic brain activity. Physical Review Letters, 77, 960–963.CrossRefPubMed Jirsa, V.K., & Haken, H. (1996). A field theory of electromagnetic brain activity. Physical Review Letters, 77, 960–963.CrossRefPubMed
Zurück zum Zitat Jirsa, V.K., & Haken, H. (1997). A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D, 99, 503–526.CrossRef Jirsa, V.K., & Haken, H. (1997). A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D, 99, 503–526.CrossRef
Zurück zum Zitat Kamitani, Y., Bhalodia, V.M., Kubota, Y., & Shimojo, S. (2001). A model of magnetic stimulation of neocortical neurons. Neurocomputing, 38–40, 697–703.CrossRef Kamitani, Y., Bhalodia, V.M., Kubota, Y., & Shimojo, S. (2001). A model of magnetic stimulation of neocortical neurons. Neurocomputing, 38–40, 697–703.CrossRef
Zurück zum Zitat Liley, D.T.J., Cadusch, P.J., & Wright, J.J. (1999). A continuum theory of electro-cortical activity. Neurocomputing, 26–27, 795–800.CrossRef Liley, D.T.J., Cadusch, P.J., & Wright, J.J. (1999). A continuum theory of electro-cortical activity. Neurocomputing, 26–27, 795–800.CrossRef
Zurück zum Zitat Loo, C.K., & Mitchell, P.B. (2005). A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. Journal of Affective Disorders, 88, 255–267.CrossRefPubMed Loo, C.K., & Mitchell, P.B. (2005). A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. Journal of Affective Disorders, 88, 255–267.CrossRefPubMed
Zurück zum Zitat Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M., & Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408, 584–588.CrossRefPubMed Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M., & Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408, 584–588.CrossRefPubMed
Zurück zum Zitat Oberman, L., Edwards, D., Eldaief, M., & Pascual-Leone, A. (2011). Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. Journal of Clinical Neurophysiology, 28, 67–74.CrossRefPubMedPubMedCentral Oberman, L., Edwards, D., Eldaief, M., & Pascual-Leone, A. (2011). Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. Journal of Clinical Neurophysiology, 28, 67–74.CrossRefPubMedPubMedCentral
Zurück zum Zitat O’Reardon, J.P., Solvason, H.B., Janicak, P.G., Sampson, S., Isenberg, K.E., Nahas, Z., McDonald, W.M., Avery, D., Fitzgerald, P.B., Loo, C., Demitrack, M.A., George, M.S., & Sackeim, H.A. (2007). Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized control trial. Biological Psychiatry, 62, 1208–216.CrossRefPubMed O’Reardon, J.P., Solvason, H.B., Janicak, P.G., Sampson, S., Isenberg, K.E., Nahas, Z., McDonald, W.M., Avery, D., Fitzgerald, P.B., Loo, C., Demitrack, M.A., George, M.S., & Sackeim, H.A. (2007). Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized control trial. Biological Psychiatry, 62, 1208–216.CrossRefPubMed
Zurück zum Zitat Pell, G.S., Roth, Y., & Zangen, A. (2011). Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: Influence of timing and geometrical parameters and underlying mechanisms. Progress in Neurobiology, 93, 59–98.CrossRefPubMed Pell, G.S., Roth, Y., & Zangen, A. (2011). Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: Influence of timing and geometrical parameters and underlying mechanisms. Progress in Neurobiology, 93, 59–98.CrossRefPubMed
Zurück zum Zitat Pérez-Garci, E., Gassmann, M., Bettler, B., & Larkum, M.E. (2006). The GABA B1b isoform mediates long-lasting inhibition of dendritic Ca 2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron, 50, 603–616.CrossRefPubMed Pérez-Garci, E., Gassmann, M., Bettler, B., & Larkum, M.E. (2006). The GABA B1b isoform mediates long-lasting inhibition of dendritic Ca 2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron, 50, 603–616.CrossRefPubMed
Zurück zum Zitat Pfister, J.P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. Journal of Neuroscience, 26, 9763–9682.CrossRef Pfister, J.P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. Journal of Neuroscience, 26, 9763–9682.CrossRef
Zurück zum Zitat Ridding, M.C., & Rothwell, J.C. (2007). Is there a future for theraputic use of transcranial magnetic stimulation? Nature Neuroscience, 8, 559–567.CrossRef Ridding, M.C., & Rothwell, J.C. (2007). Is there a future for theraputic use of transcranial magnetic stimulation? Nature Neuroscience, 8, 559–567.CrossRef
Zurück zum Zitat Robinson, P.A. (2005). Propagator theory of brain dynamics. Physical Review E, 72(011), 904. Robinson, P.A. (2005). Propagator theory of brain dynamics. Physical Review E, 72(011), 904.
Zurück zum Zitat Robinson, P.A. (2011). Neural field theory of synaptic plasticity. Journal of Theoretical Biology, 285, 156–163.CrossRefPubMed Robinson, P.A. (2011). Neural field theory of synaptic plasticity. Journal of Theoretical Biology, 285, 156–163.CrossRefPubMed
Zurück zum Zitat Robinson, P.A., Rennie, C.J., Rowe, D.L., O‘Connor, S., & Gordon, E. (2005). Multiscale brain modelling. Philisophical Transactions of the Royal Society B, 360, 1043.CrossRef Robinson, P.A., Rennie, C.J., Rowe, D.L., O‘Connor, S., & Gordon, E. (2005). Multiscale brain modelling. Philisophical Transactions of the Royal Society B, 360, 1043.CrossRef
Zurück zum Zitat Robinson, P.A., Rennie, C.J., & Wright, J.J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Physical Review E, 56, 826–840.CrossRef Robinson, P.A., Rennie, C.J., & Wright, J.J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Physical Review E, 56, 826–840.CrossRef
Zurück zum Zitat Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., & Rowe, D.L. (2001). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 63(021), 903. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., & Rowe, D.L. (2001). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 63(021), 903.
Zurück zum Zitat Roth, B.J., & Basser, P.J. (1990). A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Transactions on Biomedical Engineering, 37, 588–597.CrossRefPubMed Roth, B.J., & Basser, P.J. (1990). A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Transactions on Biomedical Engineering, 37, 588–597.CrossRefPubMed
Zurück zum Zitat Rothkegel, H., Sommer, M., & Paulus, W. (2010). Breaks during 5 Hz rTMS are essential for facilitatory after effects. Clinical Neurophysiology, 121, 426–430.CrossRefPubMed Rothkegel, H., Sommer, M., & Paulus, W. (2010). Breaks during 5 Hz rTMS are essential for facilitatory after effects. Clinical Neurophysiology, 121, 426–430.CrossRefPubMed
Zurück zum Zitat Rothwell, J. (2003). Techniques of transcranial magnetic stimulation. In S. boniface, U. Ziemann (eds.) Plasticity in the human nervous system: Investigations with transcranial magnetic stimulation, pp. 26–61. Cambridge University Press. Rothwell, J. (2003). Techniques of transcranial magnetic stimulation. In S. boniface, U. Ziemann (eds.) Plasticity in the human nervous system: Investigations with transcranial magnetic stimulation, pp. 26–61. Cambridge University Press.
Zurück zum Zitat Rubin, J.E., Gerkin, R.C., Bi, G.Q., & Chow, C.C. (2005). Calcium time course as a signal for spiking-timing-dependent plasticity. Journal of Neurophysiology, 93, 2600–2613.CrossRefPubMed Rubin, J.E., Gerkin, R.C., Bi, G.Q., & Chow, C.C. (2005). Calcium time course as a signal for spiking-timing-dependent plasticity. Journal of Neurophysiology, 93, 2600–2613.CrossRefPubMed
Zurück zum Zitat Sabatini, B.L., Oertner, T.G., & Svoboda, K. (2002). The life cycle of Ca 2+ ions in dendritic spines. Neuron, 33, 439 –452.CrossRefPubMed Sabatini, B.L., Oertner, T.G., & Svoboda, K. (2002). The life cycle of Ca 2+ ions in dendritic spines. Neuron, 33, 439 –452.CrossRefPubMed
Zurück zum Zitat Shah, N.T., Yeung, L.C., Cooper, L.N., Cai, Y., & Shouval, H.Z. (2006). A biophysical basis for the inter-spike interaction of spike-timing dependent plasticity. Biological Cybernetics, 95, 113– 121.CrossRefPubMed Shah, N.T., Yeung, L.C., Cooper, L.N., Cai, Y., & Shouval, H.Z. (2006). A biophysical basis for the inter-spike interaction of spike-timing dependent plasticity. Biological Cybernetics, 95, 113– 121.CrossRefPubMed
Zurück zum Zitat Shouval, H.Z., Bear, M.F., & Cooper, L.N. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Acadamy of Sciences, 99, 10,831– 10,836.CrossRef Shouval, H.Z., Bear, M.F., & Cooper, L.N. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Acadamy of Sciences, 99, 10,831– 10,836.CrossRef
Zurück zum Zitat Shouval, H.Z., Blais, G.C.S., Blais, B.S., Yeung, L.C., & Cooper, L.N. (2002). Converging evidence for a simplified biophysical model of synaptic plasticity. Biological Cybernetics, 87, 383–391.CrossRefPubMed Shouval, H.Z., Blais, G.C.S., Blais, B.S., Yeung, L.C., & Cooper, L.N. (2002). Converging evidence for a simplified biophysical model of synaptic plasticity. Biological Cybernetics, 87, 383–391.CrossRefPubMed
Zurück zum Zitat Shouval, H.Z., & Kalantzis, G. (2005). Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. Journal of Neurophysiology, 93, 1067–1073. Shouval, H.Z., & Kalantzis, G. (2005). Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. Journal of Neurophysiology, 93, 1067–1073.
Zurück zum Zitat Silva, S., Basser, P.J., & Miranda, P.C. (2008). Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clinical Neurophysiology, 119, 2405–2413.CrossRefPubMedPubMedCentral Silva, S., Basser, P.J., & Miranda, P.C. (2008). Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clinical Neurophysiology, 119, 2405–2413.CrossRefPubMedPubMedCentral
Zurück zum Zitat Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., & Wright, J.J. (2005). The sleep cycle modelled as a cortical phase transition. Journal of Biophysics, 31, 547–569. Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., & Wright, J.J. (2005). The sleep cycle modelled as a cortical phase transition. Journal of Biophysics, 31, 547–569.
Zurück zum Zitat Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., & Liley, D.T.J. (1999). Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Physical Review E, 60, 7299–7311.CrossRef Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., & Liley, D.T.J. (1999). Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Physical Review E, 60, 7299–7311.CrossRef
Zurück zum Zitat Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., & Sleigh, J.W. (2009). Modeling brain activation patterns for the default and cognitive states. NeuroImage, 45, 289 –311.CrossRef Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., & Sleigh, J.W. (2009). Modeling brain activation patterns for the default and cognitive states. NeuroImage, 45, 289 –311.CrossRef
Zurück zum Zitat Talelli, P., Wallace, A., Dileone, M., Hoad, D., Cheeran, B., Oliver, R., VandenBos, M., Hammerbeck, U., Barratt, K., Gillini, C., Musumeci, G., Boudrias, H.H., Cloud, G.C., Ball, J., Marsden, J.F., Ward, N.S., Lazzaro, V.D., Greenwood, R.G., & Rothwell, J.C. (2012). Theta burst stimulation in the rehabilitation of the upper limb: A semIrandomized, placebo-controlled trial in chronic stroke patients. Neurorehabilitation and Neural Repair, 26, 976–987.CrossRefPubMedPubMedCentral Talelli, P., Wallace, A., Dileone, M., Hoad, D., Cheeran, B., Oliver, R., VandenBos, M., Hammerbeck, U., Barratt, K., Gillini, C., Musumeci, G., Boudrias, H.H., Cloud, G.C., Ball, J., Marsden, J.F., Ward, N.S., Lazzaro, V.D., Greenwood, R.G., & Rothwell, J.C. (2012). Theta burst stimulation in the rehabilitation of the upper limb: A semIrandomized, placebo-controlled trial in chronic stroke patients. Neurorehabilitation and Neural Repair, 26, 976–987.CrossRefPubMedPubMedCentral
Zurück zum Zitat Thut, G., & Pascual-Leone, A. (2010). A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topography, 22, 219–232.CrossRefPubMed Thut, G., & Pascual-Leone, A. (2010). A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topography, 22, 219–232.CrossRefPubMed
Zurück zum Zitat Tsutsumi, R., Hanajima, R., Terao, Y., Shirota, Y., Ohminami, S., Shimizu, T., Tanaka, N., & Ugawa, Y. (2014). Effects of the motor cortical quadripulse transcranial magnetic stimulation (QPS) on the contralateral motor cortex and interhemispheric interactions. Journal of Neurophysiology, 111, 26–35.CrossRefPubMed Tsutsumi, R., Hanajima, R., Terao, Y., Shirota, Y., Ohminami, S., Shimizu, T., Tanaka, N., & Ugawa, Y. (2014). Effects of the motor cortical quadripulse transcranial magnetic stimulation (QPS) on the contralateral motor cortex and interhemispheric interactions. Journal of Neurophysiology, 111, 26–35.CrossRefPubMed
Zurück zum Zitat Vahabzadeh-Hagh, A.M., Muller, P.A., Gersner, R., Zangen, A., & Rotenberg, A. (2012). Translational neuromodulation: approximating human transcranial magnetic stimulation protocols in rats. Neuromodulation, 15, 296–305.CrossRefPubMed Vahabzadeh-Hagh, A.M., Muller, P.A., Gersner, R., Zangen, A., & Rotenberg, A. (2012). Translational neuromodulation: approximating human transcranial magnetic stimulation protocols in rats. Neuromodulation, 15, 296–305.CrossRefPubMed
Zurück zum Zitat Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews: Neuroscience, 1, 73–79.CrossRefPubMed Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews: Neuroscience, 1, 73–79.CrossRefPubMed
Zurück zum Zitat Wang, H.X., Gerkin, R.C., Nauen, D.W., & Bi, G.Q. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neuroscience, 8, 187–193.CrossRefPubMed Wang, H.X., Gerkin, R.C., Nauen, D.W., & Bi, G.Q. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neuroscience, 8, 187–193.CrossRefPubMed
Zurück zum Zitat Wilson, M.T., Goodwin, D.P., Brownjohn, P.W., Shemmell, J., & Reynolds, J.NJ. (2014). Numerical modelling of plasticity induced by transcranial magnetic stimulation. Journal of Computational Neuroscience, 36, 499–514.CrossRefPubMed Wilson, M.T., Goodwin, D.P., Brownjohn, P.W., Shemmell, J., & Reynolds, J.NJ. (2014). Numerical modelling of plasticity induced by transcranial magnetic stimulation. Journal of Computational Neuroscience, 36, 499–514.CrossRefPubMed
Zurück zum Zitat Wilson, M.T., Robinson, P.A., O’Neill, B., & Steyn-Ross, D.A. (2012). Complementarity of spike- and rate-based dynamics of neural systems. PLoS Computational Biology, 8(e1002), 560. Wilson, M.T., Robinson, P.A., O’Neill, B., & Steyn-Ross, D.A. (2012). Complementarity of spike- and rate-based dynamics of neural systems. PLoS Computational Biology, 8(e1002), 560.
Zurück zum Zitat Wilson, M.T., Sleigh, J.W., Steyn-Ross, D.A., & Steyn-Ross, M.L. (2006). General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology, 104, 588–593.CrossRefPubMed Wilson, M.T., Sleigh, J.W., Steyn-Ross, D.A., & Steyn-Ross, M.L. (2006). General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology, 104, 588–593.CrossRefPubMed
Zurück zum Zitat Wittenberg, G.M., & Wang, S. S. H. (2006). Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. Journal of Neuroscience, 26, 6610–6617.CrossRefPubMed Wittenberg, G.M., & Wang, S. S. H. (2006). Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. Journal of Neuroscience, 26, 6610–6617.CrossRefPubMed
Metadaten
Titel
Calcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field model
verfasst von
M. T. Wilson
P. K. Fung
P. A. Robinson
J. Shemmell
J. N. J. Reynolds
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2016
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0607-7

Weitere Artikel der Ausgabe 1/2016

Journal of Computational Neuroscience 1/2016 Zur Ausgabe