Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2016

01.08.2016

Modeling the effect of sleep regulation on a neural mass model

verfasst von: Michael Schellenberger Costa, Jan Born, Jens Christian Claussen, Thomas Martinetz

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In mammals, sleep is categorized by two main sleep stages, rapid eye movement (REM) and non-REM (NREM) sleep that are known to fulfill different functional roles, the most notable being the consolidation of memory. While REM sleep is characterized by brain activity similar to wakefulness, the EEG activity changes drastically with the emergence of K-complexes, sleep spindles and slow oscillations during NREM sleep. These changes are regulated by circadian and ultradian rhythms, which emerge from an intricate interplay between multiple neuronal populations in the brainstem, forebrain and hypothalamus and the resulting varying levels of neuromodulators. Recently, there has been progress in the understanding of those rhythms both from a physiological as well as theoretical perspective. However, how these neuromodulators affect the generation of the different EEG patterns and their temporal dynamics is poorly understood. Here, we build upon previous work on a neural mass model of the sleeping cortex and investigate the effect of those neuromodulators on the dynamics of the cortex and the corresponding transition between wakefulness and the different sleep stages. We show that our simplified model is sufficient to generate the essential features of human EEG over a full day. This approach builds a bridge between sleep regulatory networks and EEG generating neural mass models and provides a valuable tool for model validation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Atay, F.M., & Hutt, A. (2006). Neural fields with distributed transmission speeds and long range feedback delays. SIAM Journal on Applied Dynamical Systems, 5(4), 670–698. doi:10.1137/050629367.CrossRef Atay, F.M., & Hutt, A. (2006). Neural fields with distributed transmission speeds and long range feedback delays. SIAM Journal on Applied Dynamical Systems, 5(4), 670–698. doi:10.​1137/​050629367.CrossRef
Zurück zum Zitat Barkai, E., & Hasselmo, M.E. (1994). Modulation of the input/output function of rat piriform cortex pyramidal cells. Journal of Neurophysiology, 72(2), 644–658.PubMed Barkai, E., & Hasselmo, M.E. (1994). Modulation of the input/output function of rat piriform cortex pyramidal cells. Journal of Neurophysiology, 72(2), 644–658.PubMed
Zurück zum Zitat Benita, J.M., Guillamon, A., Deco, G., & Sanchez-Vives, M.V. (2012). Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. Frontiers in computational neuroscience, 6 (64). doi:10.3389/fncom.2012.00064. Benita, J.M., Guillamon, A., Deco, G., & Sanchez-Vives, M.V. (2012). Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. Frontiers in computational neuroscience, 6 (64). doi:10.​3389/​fncom.​2012.​00064.
Zurück zum Zitat Benoıt, E., Callot, J.L., Diener, F., & Diener, M. (1981). Chasse au canard. Collectanea Mathematica, 31-32(1-3), 37–119. Benoıt, E., Callot, J.L., Diener, F., & Diener, M. (1981). Chasse au canard. Collectanea Mathematica, 31-32(1-3), 37–119.
Zurück zum Zitat Borbély, A.A. (1982). A two process model of sleep regulation Human neurobiology. Borbély, A.A. (1982). A two process model of sleep regulation Human neurobiology.
Zurück zum Zitat Brown, R.E., McKenna, J.T., Winston, S., Basheer, R., Yanagawa, Y., Thakkar, M.M., & McCarley, R.W. (2008). Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. European Journal of Neuroscience, 27(2), 352–363. doi:10.1111/j.1460-9568.2008.06024.x.CrossRefPubMedPubMedCentral Brown, R.E., McKenna, J.T., Winston, S., Basheer, R., Yanagawa, Y., Thakkar, M.M., & McCarley, R.W. (2008). Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. European Journal of Neuroscience, 27(2), 352–363. doi:10.​1111/​j.​1460-9568.​2008.​06024.​x.CrossRefPubMedPubMedCentral
Zurück zum Zitat Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89 (5), 2707–25. doi:10.1152/jn.00845.2002.CrossRefPubMed Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89 (5), 2707–25. doi:10.​1152/​jn.​00845.​2002.CrossRefPubMed
Zurück zum Zitat Daan, S., Beersma, D.G.M., & Borbély, A.A. (1984). Timing of human sleep: recovery process gated by a circadian pacemaker. The American Journal of Physiology, 246(2 Pt 2), 161– 183. Daan, S., Beersma, D.G.M., & Borbély, A.A. (1984). Timing of human sleep: recovery process gated by a circadian pacemaker. The American Journal of Physiology, 246(2 Pt 2), 161– 183.
Zurück zum Zitat Datta, S., & MacLean, R.R. (2007). Neurobiological Mechanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of Historical Evidence and Inclusion of Contemporary Cellular and Molecular Evidence. Neuroscience Biobehavior Reviews, 31(5), 775–824. doi:10.1016/j.biotechadv.2011.08.021.Secreted.CrossRef Datta, S., & MacLean, R.R. (2007). Neurobiological Mechanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of Historical Evidence and Inclusion of Contemporary Cellular and Molecular Evidence. Neuroscience Biobehavior Reviews, 31(5), 775–824. doi:10.​1016/​j.​biotechadv.​2011.​08.​021.​Secreted.CrossRef
Zurück zum Zitat Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., & Friston, K.J. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Computational Biology, 4(8), e1000,092. doi:10.1371/journal.pcbi.1000092.CrossRef Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., & Friston, K.J. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Computational Biology, 4(8), e1000,092. doi:10.​1371/​journal.​pcbi.​1000092.CrossRef
Zurück zum Zitat Diniz Behn, C.G., & Booth, V. (2012). A fast-slow analysis of the dynamics of REM sleep. SIAM Journal on Applied Dynamical Systems, 11(1), 212–242. doi:10.1137/110832823.CrossRef Diniz Behn, C.G., & Booth, V. (2012). A fast-slow analysis of the dynamics of REM sleep. SIAM Journal on Applied Dynamical Systems, 11(1), 212–242. doi:10.​1137/​110832823.CrossRef
Zurück zum Zitat Diniz Behn, C.G., Brown, E.N., Scammell, T.E., & Kopell, N.J. (2007). Mathematical model of network dynamics governing mouse sleep wake behavior. Journal of Neurophysiology, 97, 3828–3840. doi:10.1152/jn.01184.2006.CrossRef Diniz Behn, C.G., Brown, E.N., Scammell, T.E., & Kopell, N.J. (2007). Mathematical model of network dynamics governing mouse sleep wake behavior. Journal of Neurophysiology, 97, 3828–3840. doi:10.​1152/​jn.​01184.​2006.CrossRef
Zurück zum Zitat Fleshner, M., Booth, V., Forger, D.B., & Diniz Behn, C.G. (2011). Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus. Philosophical Transactions of the Royal Society A: Mathematical, physical, and engineering sciences, 369(1952), 3855–3883. doi:10.1098/rsta.2011.0085.CrossRef Fleshner, M., Booth, V., Forger, D.B., & Diniz Behn, C.G. (2011). Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus. Philosophical Transactions of the Royal Society A: Mathematical, physical, and engineering sciences, 369(1952), 3855–3883. doi:10.​1098/​rsta.​2011.​0085.CrossRef
Zurück zum Zitat Hasselmo, M.E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behavioural Brain Research, 67(1), 1–27.CrossRefPubMed Hasselmo, M.E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behavioural Brain Research, 67(1), 1–27.CrossRefPubMed
Zurück zum Zitat Iber, C., Ancoli-Israel, S., Chesson Jr., A.L., & Quan, S.F. (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules Terminology and Technical Specifications 1st ed. Iber, C., Ancoli-Israel, S., Chesson Jr., A.L., & Quan, S.F. (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules Terminology and Technical Specifications 1st ed.
Zurück zum Zitat Jansen, B.H., Zouridakis, G., & Brandt, M.E. (1993). A neurophysiologically-based mathematical model of flash visual evoked potentials. Electrical Engineering, 283, 275–283. Jansen, B.H., Zouridakis, G., & Brandt, M.E. (1993). A neurophysiologically-based mathematical model of flash visual evoked potentials. Electrical Engineering, 283, 275–283.
Zurück zum Zitat Kales, A., & Rechtschaffen, A. (1968). Rechtschaffen, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. U. S. National Institute of Neurological Diseases and Blindness, Neurological Information Network. Kales, A., & Rechtschaffen, A. (1968). Rechtschaffen, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. U. S. National Institute of Neurological Diseases and Blindness, Neurological Information Network.
Zurück zum Zitat Léna, I., Parrot, S., Deschaux, O., Muffat-Joly, S., Sauvinet, V., Renaud, B., Suaud-Chagny, M.F., & Gottesmann, C. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research, 81(6), 891–899. doi:10.1002/jnr.20602.CrossRefPubMed Léna, I., Parrot, S., Deschaux, O., Muffat-Joly, S., Sauvinet, V., Renaud, B., Suaud-Chagny, M.F., & Gottesmann, C. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research, 81(6), 891–899. doi:10.​1002/​jnr.​20602.CrossRefPubMed
Zurück zum Zitat Liljenström, N., & Hasselmo, M.E. (1995). Cholinergic modulation of cortical oscillatory dynamics. Journal of Neurophysiology, 74(1), 288–297.PubMed Liljenström, N., & Hasselmo, M.E. (1995). Cholinergic modulation of cortical oscillatory dynamics. Journal of Neurophysiology, 74(1), 288–297.PubMed
Zurück zum Zitat Lopes da Silva, F.H., Hoeks, A., Smits, H., & Zetterberg, L.H. (1974). Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik, 15(1), 27–37.CrossRefPubMed Lopes da Silva, F.H., Hoeks, A., Smits, H., & Zetterberg, L.H. (1974). Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik, 15(1), 27–37.CrossRefPubMed
Zurück zum Zitat Luppi, P.H., Gervasoni, D., Verret, L., Goutagny, R., Peyron, C., Salvert, D., Leger, L., & Fort, P. (2006). Paradoxical (REM) sleep genesis: The switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. Journal of Physiology Paris, 100(5-6), 271–283. doi:10.1016/j.jphysparis.2007.05.006.CrossRef Luppi, P.H., Gervasoni, D., Verret, L., Goutagny, R., Peyron, C., Salvert, D., Leger, L., & Fort, P. (2006). Paradoxical (REM) sleep genesis: The switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. Journal of Physiology Paris, 100(5-6), 271–283. doi:10.​1016/​j.​jphysparis.​2007.​05.​006.CrossRef
Zurück zum Zitat Madison, D.V., & Nicoll, R.A. (1986). Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurons, in vitro. The Journal of Physiology, 372, 221– 244.CrossRefPubMedPubMedCentral Madison, D.V., & Nicoll, R.A. (1986). Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurons, in vitro. The Journal of Physiology, 372, 221– 244.CrossRefPubMedPubMedCentral
Zurück zum Zitat Madison, D. V., Lancaster, B., & Nicoll, R.A. (1987). Voltage clamp analysis of cholinergic action in the hippocampus. The Journal of Neuroscience, 7(3), 733–741.PubMed Madison, D. V., Lancaster, B., & Nicoll, R.A. (1987). Voltage clamp analysis of cholinergic action in the hippocampus. The Journal of Neuroscience, 7(3), 733–741.PubMed
Zurück zum Zitat McCormick, D.A., & Huguenard, J.R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68(4), 1384–400.PubMed McCormick, D.A., & Huguenard, J.R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68(4), 1384–400.PubMed
Zurück zum Zitat Moruzzi, G. (1972). The sleep-waking cycle. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, 64, 1–165.PubMed Moruzzi, G. (1972). The sleep-waking cycle. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, 64, 1–165.PubMed
Zurück zum Zitat Nicoll, R.A., Malenka, R.C., & Kauer, J.A. (1990). Functional comparison of neurotransmitter receptor subtypes in mamMalian central nervous system. Physiological Reviews, 70(2), 513– 565.PubMed Nicoll, R.A., Malenka, R.C., & Kauer, J.A. (1990). Functional comparison of neurotransmitter receptor subtypes in mamMalian central nervous system. Physiological Reviews, 70(2), 513– 565.PubMed
Zurück zum Zitat Patel, A.J., Honoré, E., Lesage, F., Fink, M., Romey, G., & Lazdunski, M. (1999). Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neuroscience, 2(5), 422–426. doi:10.1038/8084.CrossRefPubMed Patel, A.J., Honoré, E., Lesage, F., Fink, M., Romey, G., & Lazdunski, M. (1999). Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neuroscience, 2(5), 422–426. doi:10.​1038/​8084.CrossRefPubMed
Zurück zum Zitat Peyron, C., Tighe, D.K., Van den Pol, A.N., de Lecea, L., Heller, H.C., Sutcliffe, J.G., & Kilduff, T.S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience, 015(23), 9996–10. Peyron, C., Tighe, D.K., Van den Pol, A.N., de Lecea, L., Heller, H.C., Sutcliffe, J.G., & Kilduff, T.S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience, 015(23), 9996–10.
Zurück zum Zitat Phillips, A.J.K., & Robinson, P.A. (2007). A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. Journal of Biological Rhythms, 22(2), 167–179. doi:10.1177/0748730406297512.CrossRefPubMed Phillips, A.J.K., & Robinson, P.A. (2007). A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. Journal of Biological Rhythms, 22(2), 167–179. doi:10.​1177/​0748730406297512​.CrossRefPubMed
Zurück zum Zitat Rößler, A. (2010). Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM Journal on Numerical Analysis, 48(3), 922–952 . doi:10.1137/09076636X.CrossRef Rößler, A. (2010). Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM Journal on Numerical Analysis, 48(3), 922–952 . doi:10.​1137/​09076636X.CrossRef
Zurück zum Zitat Sanchez-Vives, M.V., & McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 1027–34. doi:10.1038/79848.CrossRefPubMed Sanchez-Vives, M.V., & McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 1027–34. doi:10.​1038/​79848.CrossRefPubMed
Zurück zum Zitat Sapin, E., Lapray, D., Bérod, A., Goutagny, R., Léger, L., Ravassard, P., Clément, O., Hanriot, L., Fort, P., & Luppi, P.H. (2009). Localization of the brainstem GABAergic neurons controlling Paradoxical (REM) sleep. PLoS One, 4(1). doi:10.1371/journal.pone.0004272. Sapin, E., Lapray, D., Bérod, A., Goutagny, R., Léger, L., Ravassard, P., Clément, O., Hanriot, L., Fort, P., & Luppi, P.H. (2009). Localization of the brainstem GABAergic neurons controlling Paradoxical (REM) sleep. PLoS One, 4(1). doi:10.​1371/​journal.​pone.​0004272.
Zurück zum Zitat Soma, S., & Shimegi, S. (2016). Cholinergic modulation of response gain in the primary visual cortex of the macaque. Journal of Neurophysiology, 107, 283–291. doi:10.1152/jn.00330.2011. Soma, S., & Shimegi, S. (2016). Cholinergic modulation of response gain in the primary visual cortex of the macaque. Journal of Neurophysiology, 107, 283–291. doi:10.​1152/​jn.​00330.​2011.
Zurück zum Zitat Talley, E.M., & Bayliss, D.A. (2002). Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels volatile anesthetics and neurotransmitters share a molecular site of action. Journal of Biological Chemistry, 277(20), 17,733–17,742. doi:10.1074/jbc.M200502200.CrossRef Talley, E.M., & Bayliss, D.A. (2002). Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels volatile anesthetics and neurotransmitters share a molecular site of action. Journal of Biological Chemistry, 277(20), 17,733–17,742. doi:10.​1074/​jbc.​M200502200.CrossRef
Zurück zum Zitat Tamakawa, Y., Karashima, A., Koyama, Y., Katayama, N., & Nakao, M. (2006). A quartet neural system model orchestrating sleep and wakefulness mechanisms. Journal of Neurophysiology, 95(4), 2055–2069. doi:10.1152/jn.00575.2005.CrossRefPubMed Tamakawa, Y., Karashima, A., Koyama, Y., Katayama, N., & Nakao, M. (2006). A quartet neural system model orchestrating sleep and wakefulness mechanisms. Journal of Neurophysiology, 95(4), 2055–2069. doi:10.​1152/​jn.​00575.​2005.CrossRefPubMed
Zurück zum Zitat Weigenand, A., Schellenberger Costa, M., Ngo, H.V.V., Claussen, J.C., & Martinetz, T. (2014). Characterization of K-complexes and slow wave activity in a neural mass model. PLoS Computational Biology, 10, e1003,923. doi:10.1371/journal.pcbi.1003923.CrossRef Weigenand, A., Schellenberger Costa, M., Ngo, H.V.V., Claussen, J.C., & Martinetz, T. (2014). Characterization of K-complexes and slow wave activity in a neural mass model. PLoS Computational Biology, 10, e1003,923. doi:10.​1371/​journal.​pcbi.​1003923.CrossRef
Zurück zum Zitat Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.CrossRefPubMed Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.CrossRefPubMed
Metadaten
Titel
Modeling the effect of sleep regulation on a neural mass model
verfasst von
Michael Schellenberger Costa
Jan Born
Jens Christian Claussen
Thomas Martinetz
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2016
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0602-z

Weitere Artikel der Ausgabe 1/2016

Journal of Computational Neuroscience 1/2016 Zur Ausgabe

Premium Partner