Skip to main content
Erschienen in: Wireless Networks 4/2022

23.03.2022 | Original Paper

Capacity analysis of cognitive radio wireless sensor network under optimal power allocation in imperfect channel

verfasst von: Mohamed S. El Tokhy

Erschienen in: Wireless Networks | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The cognitive radio wireless sensor network (CRWSN) suffers from a limited frequency spectrum and signal detection in which the sensing method cannot differentiate between signals from a primary user (PU) and a secondary user (SU). Channel capacity limit is an additional issue in CRWSN. These challenges prevent the realization of CRWSN especially in the presence of channel impairments and power constraints. Overcoming these challenges is the main objective of this article. Explicit analytical models are suggested for treatment purposes of these issues. Initially, the detection of PU becomes a challenge if user experiences fading effects in which users cannot distinguish between idle band and deep fading. Signal detection models of PU are suggested for tackling the sensing issues in CRWSN over imperfect Rician fading in CRWSN system. Several models for average probability of detection (PD) and probability of missed detection (PMD) of PU over imperfect Rician fading are built for handling the sensing insufficiency. The scarcity of the available spectrum and lacks of signal detection lead to shortage in channel capacity. Overcoming the channel capacity limit with special emphasis of average/peak interference/transmission power limits and channel degradations is addressed. Full analyses of three different capacities are proposed. These are SU capacity under imperfect chi square channel fading, capacity of truncated channel inversion with fixed rate (TIFR) strategy over Nakagami-m fading channel and ergodic capacity over Nakagami-m fading. The SU's ergodic capacity is implemented under equal power allocation (EPA) and optimal power allocation (OPA) strategies. Analytical frameworks for these capacities are developed for improvement of bandwidth of CRWSN in imperfect channel information. Because of allocating most transmitting power to the optimum antenna, the capacity with OPA is much better than of EPA. A comparison between capacity with TIFR and ergodic policies is presented. It is declared that cutoff of suspended transmission has no impact on the capacity with TIFR transmission. Hence, a plateau response above 3 dB is realized. Capacity values are insignificant for Nakagami-m fading above 10 dB. Ergodic capacity is shrinking after average fading value of 0.56 dB. Accordingly, an improvement of ergodic capacity is realized in comparison to capacity with TIFR transmission under imperfect fading environment. As a final conclusion, the optimal ergodic channel capacity with OPA policy reduces the consumed energy and increases the lifetime of the CRWSN. Therefore, the CRWSN can be implemented in hazardous and nuclear applications for longer times.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atawi, I. E., Badarneh, O. S., Aloqlah, M. S., & Mesleh, R. (2016). Spectrum-sensing in cognitive radio networks over composite multipath/shadowed fading channels. Computers and Electrical Engineering, 52, 337–348.CrossRef Atawi, I. E., Badarneh, O. S., Aloqlah, M. S., & Mesleh, R. (2016). Spectrum-sensing in cognitive radio networks over composite multipath/shadowed fading channels. Computers and Electrical Engineering, 52, 337–348.CrossRef
2.
Zurück zum Zitat Liu, Z., Zhao, M., Yuan, Y., & Guan, X. (2020). Subchannel and resource allocation in cognitive radio sensor network with wireless energy harvesting. Computer Networks, 167, 107028.CrossRef Liu, Z., Zhao, M., Yuan, Y., & Guan, X. (2020). Subchannel and resource allocation in cognitive radio sensor network with wireless energy harvesting. Computer Networks, 167, 107028.CrossRef
3.
Zurück zum Zitat Alhumud, H., Zohdy, M., Debnath, D., & Olawoyin, R. (2019). Cooperative spectrum sensing for cognitive radio-wireless sensors network based on OR rule decision to enhance energy consumption in greenhouses. Wireless Sensor Network, 11, 1–11.CrossRef Alhumud, H., Zohdy, M., Debnath, D., & Olawoyin, R. (2019). Cooperative spectrum sensing for cognitive radio-wireless sensors network based on OR rule decision to enhance energy consumption in greenhouses. Wireless Sensor Network, 11, 1–11.CrossRef
4.
Zurück zum Zitat Joshi, G. P., & Kim, S. W. (2016). A survey on node clustering in cognitive radio wireless sensor networks. Sensors, 16(9), 1465.CrossRef Joshi, G. P., & Kim, S. W. (2016). A survey on node clustering in cognitive radio wireless sensor networks. Sensors, 16(9), 1465.CrossRef
5.
Zurück zum Zitat Jaglan, R. R., Sarowa, S., Mustafa, R., Agrawal, S., & Kumar, N. (2015). Comparative study of single-user spectrum sensing techniques in cognitive radio networks. Procedia Computer Science, 58, 121–128.CrossRef Jaglan, R. R., Sarowa, S., Mustafa, R., Agrawal, S., & Kumar, N. (2015). Comparative study of single-user spectrum sensing techniques in cognitive radio networks. Procedia Computer Science, 58, 121–128.CrossRef
6.
Zurück zum Zitat Raschellà, A., & Umbert, A. (2016). Implementation of cognitive radio networks to evaluate spectrum management strategies in real-time. Computer Communications, 79, 37–52.CrossRef Raschellà, A., & Umbert, A. (2016). Implementation of cognitive radio networks to evaluate spectrum management strategies in real-time. Computer Communications, 79, 37–52.CrossRef
7.
Zurück zum Zitat Angrisani, L., Capriglione, D., Ferrigno, L., & Miele, G. (2016). Frequency agility in cognitive radios: A new measurement algorithm for optimal operative frequency selection. Measurement, 82, 26–36.CrossRef Angrisani, L., Capriglione, D., Ferrigno, L., & Miele, G. (2016). Frequency agility in cognitive radios: A new measurement algorithm for optimal operative frequency selection. Measurement, 82, 26–36.CrossRef
8.
Zurück zum Zitat Premarathne, U. S., Khalil, I., & Atiquzzaman, M. (2016). Trust based reliable transmissions strategies for smart home energy consumption management in cognitive radio based smart grid. Ad Hoc Networks, 41, 15–29.CrossRef Premarathne, U. S., Khalil, I., & Atiquzzaman, M. (2016). Trust based reliable transmissions strategies for smart home energy consumption management in cognitive radio based smart grid. Ad Hoc Networks, 41, 15–29.CrossRef
9.
Zurück zum Zitat Clement, J. C., & Emmanuel, D. S. (2016). Enhancing the throughput of cognitive radio networks through malevolent presence. Computers & Electrical Engineering, 52, 240–252.CrossRef Clement, J. C., & Emmanuel, D. S. (2016). Enhancing the throughput of cognitive radio networks through malevolent presence. Computers & Electrical Engineering, 52, 240–252.CrossRef
10.
Zurück zum Zitat Manasseh, E., Ohno, S., & Nakamoto, M. (2013). Pilot symbol assisted channel estimation for OFDM-based cognitive radio systems. EURASIP Journal on Advances in Signal Processing, 51, 1–11. Manasseh, E., Ohno, S., & Nakamoto, M. (2013). Pilot symbol assisted channel estimation for OFDM-based cognitive radio systems. EURASIP Journal on Advances in Signal Processing, 51, 1–11.
11.
Zurück zum Zitat Alfa, A. S., Pla, V., Martinez-Bauset, J., & Casares-Giner, V. (2016). Discrete time analysis of cognitive radio networks with imperfect sensing and saturated source of secondary users. Computer Communications, 79, 53–65.CrossRef Alfa, A. S., Pla, V., Martinez-Bauset, J., & Casares-Giner, V. (2016). Discrete time analysis of cognitive radio networks with imperfect sensing and saturated source of secondary users. Computer Communications, 79, 53–65.CrossRef
12.
Zurück zum Zitat Bhaskar, V., & Dutta, B. (2014). Ergodic and outage capacity maximization of cognitive radio networks in cooperative relay environment using optimal power allocation. Annals of Telecommunications, 69, 621–632.CrossRef Bhaskar, V., & Dutta, B. (2014). Ergodic and outage capacity maximization of cognitive radio networks in cooperative relay environment using optimal power allocation. Annals of Telecommunications, 69, 621–632.CrossRef
13.
Zurück zum Zitat Rehan, W., Fischer, S., Chughtai, O., Rehan, M., Hail, M., & Saleem, S. (2020). A novel dynamic confidence interval based secure channel prediction approach for stream-based multichannel wireless sensor networks. Ad Hoc Networks, 108, 102212.CrossRef Rehan, W., Fischer, S., Chughtai, O., Rehan, M., Hail, M., & Saleem, S. (2020). A novel dynamic confidence interval based secure channel prediction approach for stream-based multichannel wireless sensor networks. Ad Hoc Networks, 108, 102212.CrossRef
14.
Zurück zum Zitat Al-Kofahi, O. M., Almasaeid, H. M., & Al-Mefleh, H. (2020). Efficient on-demand spectrum sensing in sensor-aided cognitive radio networks. Computer Communications, 156, 11–24.CrossRef Al-Kofahi, O. M., Almasaeid, H. M., & Al-Mefleh, H. (2020). Efficient on-demand spectrum sensing in sensor-aided cognitive radio networks. Computer Communications, 156, 11–24.CrossRef
15.
Zurück zum Zitat Kang, X., Liang, Y.-C., Nallanathan, A., Garg, H. K., & Zhang, R. (2009). Optimal power allocation for fading channels in cognitive radio networks: ergodic capacity and outage capacity. IEEE Transactions on Wireless Communications, 8(2), 940–950.CrossRef Kang, X., Liang, Y.-C., Nallanathan, A., Garg, H. K., & Zhang, R. (2009). Optimal power allocation for fading channels in cognitive radio networks: ergodic capacity and outage capacity. IEEE Transactions on Wireless Communications, 8(2), 940–950.CrossRef
16.
Zurück zum Zitat Joshi, G. P., Nam, S. Y., & Kim, S. W. (2013). Cognitive radio wireless sensor networks: applications, challenges and research trends. Sensors, 13(9), 11196–11228.CrossRef Joshi, G. P., Nam, S. Y., & Kim, S. W. (2013). Cognitive radio wireless sensor networks: applications, challenges and research trends. Sensors, 13(9), 11196–11228.CrossRef
17.
Zurück zum Zitat Xu, H., Gao, H., Zhou, C., Duan, R., & Zhou, X. (2019). Resource allocation in cognitive radio wireless sensor networks with energy harvesting. Sensors, 19(23), 5115.CrossRef Xu, H., Gao, H., Zhou, C., Duan, R., & Zhou, X. (2019). Resource allocation in cognitive radio wireless sensor networks with energy harvesting. Sensors, 19(23), 5115.CrossRef
18.
Zurück zum Zitat Musavian, L., & Aïssa, S. (2009). Capacity and power allocation for spectrum-sharing communications in fading channels. IEEE Transactions on Wireless Communications, 8(1), 148–156.CrossRef Musavian, L., & Aïssa, S. (2009). Capacity and power allocation for spectrum-sharing communications in fading channels. IEEE Transactions on Wireless Communications, 8(1), 148–156.CrossRef
19.
Zurück zum Zitat Musavian, L., & Aïssa, S. (2009). Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information. IEEE Transactions on Communications, 57(11), 3472–3480.CrossRef Musavian, L., & Aïssa, S. (2009). Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information. IEEE Transactions on Communications, 57(11), 3472–3480.CrossRef
20.
Zurück zum Zitat Saroja, T. V., Ragha, L. L., & Sharma, S. K. (2019). Hybrid spectrum access model using game theory approach for multichannel heterogeneous mobile cognitive radio wireless sensor network. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 116–126.CrossRef Saroja, T. V., Ragha, L. L., & Sharma, S. K. (2019). Hybrid spectrum access model using game theory approach for multichannel heterogeneous mobile cognitive radio wireless sensor network. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 116–126.CrossRef
21.
Zurück zum Zitat Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59(4), 1811–1822.CrossRef Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59(4), 1811–1822.CrossRef
22.
Zurück zum Zitat Kalimuthu, K., & Kumar, R. (2013). Capacity maximization in spectrum sensing for cognitive radio networks thru outage probability. International Journal of Electronics and Communications (AEÜ), 67(1), 35–39.CrossRef Kalimuthu, K., & Kumar, R. (2013). Capacity maximization in spectrum sensing for cognitive radio networks thru outage probability. International Journal of Electronics and Communications (AEÜ), 67(1), 35–39.CrossRef
23.
Zurück zum Zitat Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, Alan., & Zwillinger, Daniel. (2007). Table of Integrals, Series, and Products. Elsevier, Seventh Edition, ISBN-13: 978-0-12-373637-6 Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, Alan., & Zwillinger, Daniel. (2007). Table of Integrals, Series, and Products. Elsevier, Seventh Edition, ISBN-13: 978-0-12-373637-6
24.
Zurück zum Zitat Asghari, V., & Aïssa, S. (2012). Spectrum sharing in cognitive radio systems: service-oriented capacity and power allocation. IET communications, 6(8), 889–899.MathSciNetCrossRef Asghari, V., & Aïssa, S. (2012). Spectrum sharing in cognitive radio systems: service-oriented capacity and power allocation. IET communications, 6(8), 889–899.MathSciNetCrossRef
25.
Zurück zum Zitat Smith, P. J., Dmochowski, P. A., Suraweera, H. A., & Shafi, M. (2013). The effects of limited channel knowledge on cognitive radio system capacity. IEEE Transactions on Vehicular Technology, 62(2), 927–933.CrossRef Smith, P. J., Dmochowski, P. A., Suraweera, H. A., & Shafi, M. (2013). The effects of limited channel knowledge on cognitive radio system capacity. IEEE Transactions on Vehicular Technology, 62(2), 927–933.CrossRef
26.
Zurück zum Zitat Kang, X. (2013). Optimal power allocation for bi-directional cognitive radio networks with fading channels. IEEE Wireless Communications Letters, 2(5), 567–570.CrossRef Kang, X. (2013). Optimal power allocation for bi-directional cognitive radio networks with fading channels. IEEE Wireless Communications Letters, 2(5), 567–570.CrossRef
27.
Zurück zum Zitat Asaduzzaman, H. Y. (2011). Kong, “Ergodic and outage capacity of interference temperature-limited cognitive radio multi-input multi-output channel.” IET Communications, 5(5), 652–659.CrossRef Asaduzzaman, H. Y. (2011). Kong, “Ergodic and outage capacity of interference temperature-limited cognitive radio multi-input multi-output channel.” IET Communications, 5(5), 652–659.CrossRef
28.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRef Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRef
Metadaten
Titel
Capacity analysis of cognitive radio wireless sensor network under optimal power allocation in imperfect channel
verfasst von
Mohamed S. El Tokhy
Publikationsdatum
23.03.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02944-8

Weitere Artikel der Ausgabe 4/2022

Wireless Networks 4/2022 Zur Ausgabe

Neuer Inhalt