Skip to main content
Erschienen in: Wireless Networks 4/2022

18.02.2022 | Original Paper

Interference management in NOMA-enabled virtualized wireless networks

verfasst von: Chengyi Liu, Yu Tao, Song Xing

Erschienen in: Wireless Networks | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we address the interference management problem in non-orthogonal multiple access (NOMA)-enabled virtualized wireless networks (VWNs) by using power allocation approaches. Specifically, the power resources of the base station (BS) are shared among different service providers (called the slices), where the maximum tolerant interference is considered for each slice to guarantee their interference isolation. The interference management (IM) problem is formulated aiming to maximize the sum-rate of the system subject to the slice interference isolation, the minimum required rates of the individual users, and the power budget constraints of the whole system. Then, an optimal interference management algorithm (IMA) is proposed to solve the IM problem in a centralized manner at the BS. In addition, a computational-complexity reduced IMA (CCRIMA) is proposed with the implementation in a semi-distributed manner within each slice to obtain a suboptimal IM solution. Simulation results show that the proposed optimal power allocation in IMA achieves a flexible interference management within each slice, while supporting the minimum rate requirements of all users by adjusting the maximum tolerant interference in the slice. Moreover, the proposed CCRIMA can approximate the optimal performance of IMA in terms of the sum-rate of the system with a little computational cost of the computational complexity in each slice.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.-H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communication Magazine, 55(8), 138–145.CrossRef Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.-H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communication Magazine, 55(8), 138–145.CrossRef
2.
Zurück zum Zitat Saad, W., Bennis, M., & Chen, M. (2020). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142.CrossRef Saad, W., Bennis, M., & Chen, M. (2020). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142.CrossRef
3.
Zurück zum Zitat Zhang, N., Liu, Y., Farmanbar, H., Chang, T., Hong, M., & Luo, Z. (2017). Network slicing for service-oriented networks under resource constraints. IEEE Journal on Selected Areas in Communications, 35(11), 2512–2521.CrossRef Zhang, N., Liu, Y., Farmanbar, H., Chang, T., Hong, M., & Luo, Z. (2017). Network slicing for service-oriented networks under resource constraints. IEEE Journal on Selected Areas in Communications, 35(11), 2512–2521.CrossRef
4.
Zurück zum Zitat Habiba, U., & Hossain, E. (2018). Auction mechanisms for virtualization in 5G cellular networks: basics, trends, and open challenges. IEEE Communications Surveys & Tutorials, 20(3), 2264–2293.CrossRef Habiba, U., & Hossain, E. (2018). Auction mechanisms for virtualization in 5G cellular networks: basics, trends, and open challenges. IEEE Communications Surveys & Tutorials, 20(3), 2264–2293.CrossRef
5.
Zurück zum Zitat Yang, K., Yang, N., Ye, N., Jia, M., Gao, Z., & Fan, R. (2019). Non-orthogonal multiple access: achieving sustainable future radio access. IEEE Communications Magazine, 57(2), 116–121.CrossRef Yang, K., Yang, N., Ye, N., Jia, M., Gao, Z., & Fan, R. (2019). Non-orthogonal multiple access: achieving sustainable future radio access. IEEE Communications Magazine, 57(2), 116–121.CrossRef
6.
Zurück zum Zitat Shahini, A., & Ansari, N. (2019). NOMA aided narrowband IoT for machine type communications with user clustering. IEEE Internet of Things Journal, 6(4), 7183–7191.CrossRef Shahini, A., & Ansari, N. (2019). NOMA aided narrowband IoT for machine type communications with user clustering. IEEE Internet of Things Journal, 6(4), 7183–7191.CrossRef
7.
Zurück zum Zitat Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343.
8.
Zurück zum Zitat Tang, S. Y., Ma, Z., Xiao, M., & Hao, L. (2020). Hybrid transceiver design for beamspace MIMO-NOMA in code-domain for MmWave communication using lens antenna array. IEEE Journal on Selected Areas in Communications, 38(9), 2118–2127.CrossRef Tang, S. Y., Ma, Z., Xiao, M., & Hao, L. (2020). Hybrid transceiver design for beamspace MIMO-NOMA in code-domain for MmWave communication using lens antenna array. IEEE Journal on Selected Areas in Communications, 38(9), 2118–2127.CrossRef
9.
Zurück zum Zitat Wang, K., Liang, W., Yuan, Y., Liu, Y., Ma, Z., & Ding, Z. (2019). User clustering and power allocation for hybrid non-orthogonal multiple access systems. IEEE Transactions on Vehicular Technology, 68(12), 12052–12065.CrossRef Wang, K., Liang, W., Yuan, Y., Liu, Y., Ma, Z., & Ding, Z. (2019). User clustering and power allocation for hybrid non-orthogonal multiple access systems. IEEE Transactions on Vehicular Technology, 68(12), 12052–12065.CrossRef
10.
Zurück zum Zitat Yang, Z., Xu, W., Pan, C., Pan, Y., & Chen, M. (2017). On the optimality of power allocation for NOMA downlinks with individual QoS constraints. IEEE Communications Letter, 21(7), 1649–1652.CrossRef Yang, Z., Xu, W., Pan, C., Pan, Y., & Chen, M. (2017). On the optimality of power allocation for NOMA downlinks with individual QoS constraints. IEEE Communications Letter, 21(7), 1649–1652.CrossRef
11.
Zurück zum Zitat Zhang, Y., Wang, H.-M., Zheng, T.-X., & Yang, Q. (2017). Energy-Efficient transmission design in non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(3), 2852–2857.CrossRef Zhang, Y., Wang, H.-M., Zheng, T.-X., & Yang, Q. (2017). Energy-Efficient transmission design in non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(3), 2852–2857.CrossRef
12.
Zurück zum Zitat Liang, C., & Yu, F. R. (2015). Wireless network virtualization: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 17(1), 358–380.CrossRef Liang, C., & Yu, F. R. (2015). Wireless network virtualization: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 17(1), 358–380.CrossRef
13.
Zurück zum Zitat Tun, Y. K., Ndikumana, A., Pandey, S. R., Han, Z., & Hong, C. S. (2020). Joint radio resource allocation and content caching in heterogeneous virtualized wireless networks. IEEE Access, 8, 36764–36775.CrossRef Tun, Y. K., Ndikumana, A., Pandey, S. R., Han, Z., & Hong, C. S. (2020). Joint radio resource allocation and content caching in heterogeneous virtualized wireless networks. IEEE Access, 8, 36764–36775.CrossRef
14.
Zurück zum Zitat Goswami, D., & Das, S. S. (2020). Iterative sub-band and power allocation in downlink multiband NOMA. IEEE Systems Journal, 14(4), 5199–5209.CrossRef Goswami, D., & Das, S. S. (2020). Iterative sub-band and power allocation in downlink multiband NOMA. IEEE Systems Journal, 14(4), 5199–5209.CrossRef
15.
Zurück zum Zitat Salaün, L., Coupechoux, M., & Chen, C. S. (2020). Joint subcarrier and power allocation in NOMA: optimal and approximate algorithms. IEEE Transactions on Signal Processing, 68, 2215–2230.MathSciNetCrossRef Salaün, L., Coupechoux, M., & Chen, C. S. (2020). Joint subcarrier and power allocation in NOMA: optimal and approximate algorithms. IEEE Transactions on Signal Processing, 68, 2215–2230.MathSciNetCrossRef
16.
Zurück zum Zitat Wang, X., Chen, R., Xu, Y., & Meng, Q. (2019). Low-complexity power allocation in NOMA systems With IMPERFECT SIC for maximizing weighted sum-rate. IEEE Access, 7, 94238–94253.CrossRef Wang, X., Chen, R., Xu, Y., & Meng, Q. (2019). Low-complexity power allocation in NOMA systems With IMPERFECT SIC for maximizing weighted sum-rate. IEEE Access, 7, 94238–94253.CrossRef
17.
Zurück zum Zitat Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal on Selected Areas in Communications, 35(12), 2744–2757. Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal on Selected Areas in Communications, 35(12), 2744–2757.
18.
Zurück zum Zitat Fang, F., Wang, K., Ding, Z., & Leung, V. C. M. (2021). Energy-efficient resource allocation for NOMA-MEC networks with imperfect CSI. IEEE Transactions on Communications, 69(5), 3436–3449.CrossRef Fang, F., Wang, K., Ding, Z., & Leung, V. C. M. (2021). Energy-efficient resource allocation for NOMA-MEC networks with imperfect CSI. IEEE Transactions on Communications, 69(5), 3436–3449.CrossRef
19.
Zurück zum Zitat Liu, B., Liu, C., & Peng, M. (2021). Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks. IEEE Journal on Selected Areas in Communications, 39(4), 1015–1027.CrossRef Liu, B., Liu, C., & Peng, M. (2021). Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks. IEEE Journal on Selected Areas in Communications, 39(4), 1015–1027.CrossRef
20.
Zurück zum Zitat Tun, Y. K., Tran, N. H., Ngo, D. T., Pandey, S. R., Han, Z., & Hong, C. S. (2019). Wireless network slicing: Generalized kelly mechanism-based resource allocation. IEEE Journal on Selected Areas in Communications, 37(8), 1794–1807.CrossRef Tun, Y. K., Tran, N. H., Ngo, D. T., Pandey, S. R., Han, Z., & Hong, C. S. (2019). Wireless network slicing: Generalized kelly mechanism-based resource allocation. IEEE Journal on Selected Areas in Communications, 37(8), 1794–1807.CrossRef
21.
Zurück zum Zitat Kim, D. H., Ahsan Kazmi, S. M., Ndikumana, A., Manzoor, A., Saad, W., & Hong, C. S. (2020). Distributed radio slice allocation in wireless network virtualization: matching theory meets auctions. IEEE Access, 8, 73494–73507.CrossRef Kim, D. H., Ahsan Kazmi, S. M., Ndikumana, A., Manzoor, A., Saad, W., & Hong, C. S. (2020). Distributed radio slice allocation in wireless network virtualization: matching theory meets auctions. IEEE Access, 8, 73494–73507.CrossRef
22.
Zurück zum Zitat Parsaeefard, S., Dawadi, R., Derakhshani, M., & Le-Ngoc, T. (2016). Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access, 4, 2738–2750.CrossRef Parsaeefard, S., Dawadi, R., Derakhshani, M., & Le-Ngoc, T. (2016). Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access, 4, 2738–2750.CrossRef
23.
Zurück zum Zitat Parsaeefard, S., Jumba, V., Derakhshani, M., & Le-Ngoc, T. (2015). Joint Resource Provisioning and Admission Control in Wireless Virtualized Networks. In 2015 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2020–2025). IEEE, New Orleans. Parsaeefard, S., Jumba, V., Derakhshani, M., & Le-Ngoc, T. (2015). Joint Resource Provisioning and Admission Control in Wireless Virtualized Networks. In 2015 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2020–2025). IEEE, New Orleans.
24.
Zurück zum Zitat Ho, T. M., Tran, N. H., Kazmi, S.M.A., & Hong, C. S. (2017). Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: A Stackelberg Game Approach. In 2017 IEEE International Conference on Information Networking (ICOIN) (pp. 429–434). IEEE, Da Nang. Ho, T. M., Tran, N. H., Kazmi, S.M.A., & Hong, C. S. (2017). Dynamic Pricing for Resource Allocation in Wireless Network Virtualization: A Stackelberg Game Approach. In 2017 IEEE International Conference on Information Networking (ICOIN) (pp. 429–434). IEEE, Da Nang.
25.
Zurück zum Zitat Tun, Y. K., Zaw, C. W., & Hong, C. S. (2017). Downlink power allocation in virtualized wireless networks. In 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 346–349). IEEE, Seoul. Tun, Y. K., Zaw, C. W., & Hong, C. S. (2017). Downlink power allocation in virtualized wireless networks. In 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 346–349). IEEE, Seoul.
26.
Zurück zum Zitat Chang, Z., & Chen, T. (2021). Virtual Resource Allocation for Wireless Virtualized Heterogeneous Network with Hybrid Energy Supply. IEEE Transactions on Wireless Communications, (Early Access). Chang, Z., & Chen, T. (2021). Virtual Resource Allocation for Wireless Virtualized Heterogeneous Network with Hybrid Energy Supply. IEEE Transactions on Wireless Communications, (Early Access).
27.
Zurück zum Zitat Tang, L., Shi, Y., Wang, C., & Chen, Q. (2018). Adaptive virtual resource allocation in 5G network slicing using constrained markov decision process. IEEE Access, 6, 61184–61195.CrossRef Tang, L., Shi, Y., Wang, C., & Chen, Q. (2018). Adaptive virtual resource allocation in 5G network slicing using constrained markov decision process. IEEE Access, 6, 61184–61195.CrossRef
28.
Zurück zum Zitat Rezvani, S., Parsaeefard, S., Mokari, N., Mokari, N., Mohammad, R., & Yanikomeroglu, H. (2019). Cooperative multi-bitrate video caching and transcoding in multicarrier NOMA-assisted heterogeneous virtualized MEC networks. IEEE Access, 7, 93511–93536.CrossRef Rezvani, S., Parsaeefard, S., Mokari, N., Mokari, N., Mohammad, R., & Yanikomeroglu, H. (2019). Cooperative multi-bitrate video caching and transcoding in multicarrier NOMA-assisted heterogeneous virtualized MEC networks. IEEE Access, 7, 93511–93536.CrossRef
29.
Zurück zum Zitat Tweed, D., Parsaeefard, S., Derakhshani, M., & Le-Ngoc, T. (2017). Dynamic resource allocation for MC-NOMA VWNs with imperfect SIC. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1–5). IEEE, Montreal. Tweed, D., Parsaeefard, S., Derakhshani, M., & Le-Ngoc, T. (2017). Dynamic resource allocation for MC-NOMA VWNs with imperfect SIC. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1–5). IEEE, Montreal.
30.
Zurück zum Zitat Tweed, D., & Le-Ngoc, T. (2018). Dynamic Resource Allocation for Uplink MIMO NOMA VWN with Imperfect SIC. In 2018 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE, Kansas. Tweed, D., & Le-Ngoc, T. (2018). Dynamic Resource Allocation for Uplink MIMO NOMA VWN with Imperfect SIC. In 2018 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE, Kansas.
31.
Zurück zum Zitat Mohammad, A., & Ansari, N. (2021). Energy aware latency minimization for network slicing enabled edge computing. IEEE Transactions on Green Communications and Networking, 5(4), 2150–2159.MathSciNetCrossRef Mohammad, A., & Ansari, N. (2021). Energy aware latency minimization for network slicing enabled edge computing. IEEE Transactions on Green Communications and Networking, 5(4), 2150–2159.MathSciNetCrossRef
32.
Zurück zum Zitat Mohammad, R., Mokhtari, F., & Ashtiani, F. (2019). Improving tradeoff among downlink rates of service providers in a VWN by using NOMA. IEEE Communication Letters, 23(1), 156–159.CrossRef Mohammad, R., Mokhtari, F., & Ashtiani, F. (2019). Improving tradeoff among downlink rates of service providers in a VWN by using NOMA. IEEE Communication Letters, 23(1), 156–159.CrossRef
33.
Zurück zum Zitat Souto, V., Montejo-Sanchez, S., Rebelatto, J., Souza, R., & Uchoa-Filho, B. (2021). IRS-aided physical layer network slicing for URLLC and eMBB. IEEE Access, 9, 163086–163098.CrossRef Souto, V., Montejo-Sanchez, S., Rebelatto, J., Souza, R., & Uchoa-Filho, B. (2021). IRS-aided physical layer network slicing for URLLC and eMBB. IEEE Access, 9, 163086–163098.CrossRef
34.
Zurück zum Zitat Wang, Z., Xu, T., Zhou, T., & Hu, H. (2020). Joint Tier Slicing and Power Control for a Novel Multicast System based on NOMA and D2D-Relay. In 2020 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE, Taipei. Wang, Z., Xu, T., Zhou, T., & Hu, H. (2020). Joint Tier Slicing and Power Control for a Novel Multicast System based on NOMA and D2D-Relay. In 2020 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE, Taipei.
35.
Zurück zum Zitat Tominaga, E., Alves, H., L´opez, O., Souza, R., & Luiz, J. (2021). Network Slicing for eMBB and mMTC with NOMA and Space Diversity Reception. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (pp. 1–6). IEEE, Helsinki. Tominaga, E., Alves, H., L´opez, O., Souza, R., & Luiz, J. (2021). Network Slicing for eMBB and mMTC with NOMA and Space Diversity Reception. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (pp. 1–6). IEEE, Helsinki.
36.
Zurück zum Zitat Mohammad, A., & Ansari, N. (2021). Network Slicing for NOMA-Enabled Edge Computing. IEEE Transactions on Cloud Computing, (Early Access). Mohammad, A., & Ansari, N. (2021). Network Slicing for NOMA-Enabled Edge Computing. IEEE Transactions on Cloud Computing, (Early Access).
37.
Zurück zum Zitat Mlika, Z., & Cherkaoui, S. (2021). Network slicing with MEC and deep reinforcement learning for the internet of vehicles. IEEE Network, 35(3), 132–138.CrossRef Mlika, Z., & Cherkaoui, S. (2021). Network slicing with MEC and deep reinforcement learning for the internet of vehicles. IEEE Network, 35(3), 132–138.CrossRef
38.
Zurück zum Zitat Tebe, P., Ntiamoah-Sarpong, K., Tian, W., Li, J., Huang, Y., & Wen, G. (2020). Using 5G network slicing and non-orthogonal multiple access to transmit medical data in a mobile hospital system. IEEE Access, 8, 189163–189178.CrossRef Tebe, P., Ntiamoah-Sarpong, K., Tian, W., Li, J., Huang, Y., & Wen, G. (2020). Using 5G network slicing and non-orthogonal multiple access to transmit medical data in a mobile hospital system. IEEE Access, 8, 189163–189178.CrossRef
39.
Zurück zum Zitat Sinaie, M., Ng, D. W. K., & Jorswieck, E. A. (2018). Resource allocation in NOMA virtualized wireless networks under statistical delay constraints. IEEE Wireless Communication Letters, 7(6), 954–957.CrossRef Sinaie, M., Ng, D. W. K., & Jorswieck, E. A. (2018). Resource allocation in NOMA virtualized wireless networks under statistical delay constraints. IEEE Wireless Communication Letters, 7(6), 954–957.CrossRef
40.
Zurück zum Zitat Dawadi, R., Parsaeefard, S., Derakhshani, M., & Le-Ngoc, T. (2016). Power-Efficient Resource Allocation in NOMA Virtualized Wireless Networks. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE, Washington. Dawadi, R., Parsaeefard, S., Derakhshani, M., & Le-Ngoc, T. (2016). Power-Efficient Resource Allocation in NOMA Virtualized Wireless Networks. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE, Washington.
41.
Zurück zum Zitat Ho, T. M., Tran, N. H., Kazmi, S.M A., Han, Z., & Hong, C. S. (2018). Wireless Network Virtualization with Non-Orthogonal Multiple Access. In 2018 IEEE/IFIP Network Operations and Management Symposium (NOMS) (pp. 1–6). IEEE, Taipei. Ho, T. M., Tran, N. H., Kazmi, S.M A., Han, Z., & Hong, C. S. (2018). Wireless Network Virtualization with Non-Orthogonal Multiple Access. In 2018 IEEE/IFIP Network Operations and Management Symposium (NOMS) (pp. 1–6). IEEE, Taipei.
42.
Zurück zum Zitat Rezvani, S., Yamchi, N. M., Javan, M. R., & Jorswieck, E. A. (2021). Resource allocation in virtualized CoMP-NOMA HetNets: multi-connectivity for joint transmission. IEEE Transactions on Communications, 69(6), 4172–4185.CrossRef Rezvani, S., Yamchi, N. M., Javan, M. R., & Jorswieck, E. A. (2021). Resource allocation in virtualized CoMP-NOMA HetNets: multi-connectivity for joint transmission. IEEE Transactions on Communications, 69(6), 4172–4185.CrossRef
43.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRef Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRef
Metadaten
Titel
Interference management in NOMA-enabled virtualized wireless networks
verfasst von
Chengyi Liu
Yu Tao
Song Xing
Publikationsdatum
18.02.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02911-3

Weitere Artikel der Ausgabe 4/2022

Wireless Networks 4/2022 Zur Ausgabe

Neuer Inhalt