Skip to main content
Erschienen in: Cellulose 9/2018

11.07.2018 | Original Paper

Carbon black enhanced conductivity, carbon yield and dye adsorption of sustainable cellulose derived carbon nanofibers

verfasst von: Hamdam Gaminian, Majid Montazer

Erschienen in: Cellulose | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new carbon nanofibrous mat with necklace-like structures have been prepared by carbonization of cellulose/carbon black (CB) nanofibers through electrospinning of cellulose acetate/CB blend solution followed by deacetylation. The effect of carbon black on the thermal stability of the precursor and morphology of the CNFs were investigated using thermogravimetric analysis, field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy. The FE-SEM images showed that cellulose derived CNFs form matrix for accomplishing necklace-like fibers containing spherical CB nanoparticles with diameter between 30 and 60 nm after heating of cellulose/CB nanofibers. It is demonstrated that the incorporation of CB particles increases the electrical conductivity from 1.4 to 16 mS and carbon yield from 12 to 30%. Carbon nanofibers based on cellulose/CB was evaluated as a suitable adsorbent for removal of methylene blue (MB) from water. The final dye removal was found to be 97% at the initial MB concentration of 20 mg L−1. This study suggests a new carbon nanofiber structure that will be potentially useful for energy applications and water treatment.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brennan LJ, Byrne MT, Bari M, Gun YK (2011) Carbon nanomaterials for dye-sensitized solar cell applications: a bright future. Adv Energy Mater 1:472–485CrossRef Brennan LJ, Byrne MT, Bari M, Gun YK (2011) Carbon nanomaterials for dye-sensitized solar cell applications: a bright future. Adv Energy Mater 1:472–485CrossRef
Zurück zum Zitat Chae HG, Choi YH, Minus ML, Kumar S (2009) Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos Sci Technol 69:406–413CrossRef Chae HG, Choi YH, Minus ML, Kumar S (2009) Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos Sci Technol 69:406–413CrossRef
Zurück zum Zitat Chand S (2000) Carbon fibers for composites. J Mater Sci 35:1303–1313CrossRef Chand S (2000) Carbon fibers for composites. J Mater Sci 35:1303–1313CrossRef
Zurück zum Zitat Deng L, Young RJ, Kinloch IA, Abdelkader AM, Holmes SM, De Haro-Del R, David A, Eichhorn SJ (2013a) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interfaces 5:9983–9990CrossRefPubMedPubMedCentral Deng L, Young RJ, Kinloch IA, Abdelkader AM, Holmes SM, De Haro-Del R, David A, Eichhorn SJ (2013a) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interfaces 5:9983–9990CrossRefPubMedPubMedCentral
Zurück zum Zitat Deng L, Young RJ, Kinloch IA, Zhu Y, Eichhorn SJ (2013b) Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon 58:66–75CrossRef Deng L, Young RJ, Kinloch IA, Zhu Y, Eichhorn SJ (2013b) Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon 58:66–75CrossRef
Zurück zum Zitat Dumanli AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250CrossRef Dumanli AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250CrossRef
Zurück zum Zitat Ekrami E, Dadashian F, Soleimani M (2014) Waste cotton fibers based activated carbon: optimization of process and product characterization. Fibers Polym 15:1855–1864CrossRef Ekrami E, Dadashian F, Soleimani M (2014) Waste cotton fibers based activated carbon: optimization of process and product characterization. Fibers Polym 15:1855–1864CrossRef
Zurück zum Zitat Frank E, Hermanutz F, Buchmeiser MR (2012) Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng 297:493–501CrossRef Frank E, Hermanutz F, Buchmeiser MR (2012) Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng 297:493–501CrossRef
Zurück zum Zitat Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391CrossRef Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391CrossRef
Zurück zum Zitat Gaminian H, Montazer M (2017) Decorating silver nanoparticles on electrospun cellulose nanofibers through a facile method by dopamine and ultraviolet irradiation. Cellulose 24:3179–3190CrossRef Gaminian H, Montazer M (2017) Decorating silver nanoparticles on electrospun cellulose nanofibers through a facile method by dopamine and ultraviolet irradiation. Cellulose 24:3179–3190CrossRef
Zurück zum Zitat Guo Q, Zhou X, Li X, Chen S, Seema A (2009) Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 19:2810–2816CrossRef Guo Q, Zhou X, Li X, Chen S, Seema A (2009) Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 19:2810–2816CrossRef
Zurück zum Zitat Gupta VK (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342CrossRefPubMed Gupta VK (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342CrossRefPubMed
Zurück zum Zitat Hwang J, Muth J, Ghosh T (2006) Electrical and mechanical properties of carbon-black-filled, electrospun nanocomposite fiber webs. J Appl Polym Sci 104:2410–2417CrossRef Hwang J, Muth J, Ghosh T (2006) Electrical and mechanical properties of carbon-black-filled, electrospun nanocomposite fiber webs. J Appl Polym Sci 104:2410–2417CrossRef
Zurück zum Zitat Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commerically available carbon black material. Carbon 33:1561–1565CrossRef Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commerically available carbon black material. Carbon 33:1561–1565CrossRef
Zurück zum Zitat Jazaeri E, Zhang L, Wang X, Tsuzuki T (2011) Fabrication of carbon nanofiber by pyrolysis of freeze-dried cellulose nanofiber. Cellulose 18:1481–1485CrossRef Jazaeri E, Zhang L, Wang X, Tsuzuki T (2011) Fabrication of carbon nanofiber by pyrolysis of freeze-dried cellulose nanofiber. Cellulose 18:1481–1485CrossRef
Zurück zum Zitat Kilzer FJ, Broido A (1965) Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2:151–163 Kilzer FJ, Broido A (1965) Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2:151–163
Zurück zum Zitat Kuzmenko V, Naboka O, Gatenholm P, Enoksson P (2014) Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon N Y 67:694–703CrossRef Kuzmenko V, Naboka O, Gatenholm P, Enoksson P (2014) Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon N Y 67:694–703CrossRef
Zurück zum Zitat Kuzmenko V, Naboka O, Haque N, Staaf H, Goransson G, Gatenholm P, Peter Enoksson P (2015) Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Mater Chem Phys 160:59–65CrossRef Kuzmenko V, Naboka O, Haque N, Staaf H, Goransson G, Gatenholm P, Peter Enoksson P (2015) Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Mater Chem Phys 160:59–65CrossRef
Zurück zum Zitat Lau AC, Furlong DN, Healy TW, Grieser F (1986) The electrokinetic properties of carbon black and graphitized carbon black aqueous colloids. Colloids Surf 18:93–104CrossRef Lau AC, Furlong DN, Healy TW, Grieser F (1986) The electrokinetic properties of carbon black and graphitized carbon black aqueous colloids. Colloids Surf 18:93–104CrossRef
Zurück zum Zitat Liu Y, Qin W, Wang Q, Liu R, Liu H (2015) Glassy carbon nanofibers from electrospun cellulose nanofiber. J Mater Sci 50:563–569CrossRef Liu Y, Qin W, Wang Q, Liu R, Liu H (2015) Glassy carbon nanofibers from electrospun cellulose nanofiber. J Mater Sci 50:563–569CrossRef
Zurück zum Zitat Park SJ (2014) Carbon fibers. Springer, Berlin Park SJ (2014) Carbon fibers. Springer, Berlin
Zurück zum Zitat Patil SA, Chigome S, Hägerhäll C, Torto N, Gorton L (2013) Bioresource technology electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis. Bioresour Technol 132:121–126CrossRefPubMed Patil SA, Chigome S, Hägerhäll C, Torto N, Gorton L (2013) Bioresource technology electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis. Bioresour Technol 132:121–126CrossRefPubMed
Zurück zum Zitat Peter KT, Vargo JD, Rupasinghe TP, De Jesus A, Tivanski AV, Sander EA, Myung NV, Cwiertny DM (2016) Synthesis, optimization, and performance demonstration of electrospun carbon nanofiber–carbon nanotube composite sorbents for point-of-use water treatment. ACS Appl Mater Interfaces 8:11431–11440CrossRefPubMed Peter KT, Vargo JD, Rupasinghe TP, De Jesus A, Tivanski AV, Sander EA, Myung NV, Cwiertny DM (2016) Synthesis, optimization, and performance demonstration of electrospun carbon nanofiber–carbon nanotube composite sorbents for point-of-use water treatment. ACS Appl Mater Interfaces 8:11431–11440CrossRefPubMed
Zurück zum Zitat Rodriguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19:1583–1598CrossRef Rodriguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19:1583–1598CrossRef
Zurück zum Zitat Soares BG, Calheiros LF, Barra GMO (2016) Effect of double percolation on the electrical properties and electromagnetic interference shielding effectiveness of carbon-black- loaded polystyrene/ethylene vinyl acetate copolymer blends. J Appl Polym Sci 133:1–10CrossRef Soares BG, Calheiros LF, Barra GMO (2016) Effect of double percolation on the electrical properties and electromagnetic interference shielding effectiveness of carbon-black- loaded polystyrene/ethylene vinyl acetate copolymer blends. J Appl Polym Sci 133:1–10CrossRef
Zurück zum Zitat Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271CrossRef Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271CrossRef
Zurück zum Zitat Sun J, Chang S, Lee S, Lee Y (2010) Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon 48:2573–2581CrossRef Sun J, Chang S, Lee S, Lee Y (2010) Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon 48:2573–2581CrossRef
Zurück zum Zitat Suzuki M (1994) Activated carbon fiber: fundamentals and applications. Carbon 32:577–586CrossRef Suzuki M (1994) Activated carbon fiber: fundamentals and applications. Carbon 32:577–586CrossRef
Zurück zum Zitat Tai Z, Yan X, Lang J, Xue Q (2012) Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 199:373–378CrossRef Tai Z, Yan X, Lang J, Xue Q (2012) Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 199:373–378CrossRef
Zurück zum Zitat Tarasova E, Byzova A, Savest N, Viirsalu M, Gudkova V, Märtson T, Krumme A (2014) Influence of preparation process on morphology and conductivity of carbon black-based electrospun nanofibers. Fuller Nanotub Carbon Nanostruct 23:695–700CrossRef Tarasova E, Byzova A, Savest N, Viirsalu M, Gudkova V, Märtson T, Krumme A (2014) Influence of preparation process on morphology and conductivity of carbon black-based electrospun nanofibers. Fuller Nanotub Carbon Nanostruct 23:695–700CrossRef
Zurück zum Zitat Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575CrossRef Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575CrossRef
Zurück zum Zitat Xie H, Yang Q, Sun X, Yang J, Huang Y (2006) Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sens Actuators B Chem 113:887–891CrossRef Xie H, Yang Q, Sun X, Yang J, Huang Y (2006) Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sens Actuators B Chem 113:887–891CrossRef
Zurück zum Zitat Yu Y, Gu L, Wang C, Dhanabalan A, Aken PV, Maier J (2009) Encapsulation of Sn@ carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48:6485–6489CrossRef Yu Y, Gu L, Wang C, Dhanabalan A, Aken PV, Maier J (2009) Encapsulation of Sn@ carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48:6485–6489CrossRef
Zurück zum Zitat Zhu L, Lu Y, Wang Y, Zhang L, Wang W (2012) Preparation and characterization of dopamine-decorated hydrophilic carbon black. Appl Surf Sci 258:5387–5393CrossRef Zhu L, Lu Y, Wang Y, Zhang L, Wang W (2012) Preparation and characterization of dopamine-decorated hydrophilic carbon black. Appl Surf Sci 258:5387–5393CrossRef
Metadaten
Titel
Carbon black enhanced conductivity, carbon yield and dye adsorption of sustainable cellulose derived carbon nanofibers
verfasst von
Hamdam Gaminian
Majid Montazer
Publikationsdatum
11.07.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 9/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1929-6

Weitere Artikel der Ausgabe 9/2018

Cellulose 9/2018 Zur Ausgabe