Skip to main content

2015 | OriginalPaper | Buchkapitel

5. Carbon Nanomaterials for Environmental Applications

verfasst von : Fernando Machado Machado, Éder Cláudio Lima, Iuri Medeiros Jauris, Matthew Ayorinde Adebayo

Erschienen in: Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The qualities of waters are constantly diminishing due to release of toxic components into the environment. It is very important to treat wastewater in order to remove pollutants and improve water quality. Generally, adsorption technology has proven to be one of the most effective techniques in the separation and removal of a wide variety of organic and inorganic pollutants from wastewater. Recently, carbon nanomaterials such as fullerene, carbon nanotubes (CNT) and graphene-family have become promising adsorbents for water treatment. This chapter compiles relevant knowledge about the experimental and theoretical adsorption activities of fullerene, CNT and graphene-family as nanoadsorbents for removal of organic and inorganic environmental pollutants.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843CrossRef Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843CrossRef
2.
Zurück zum Zitat Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRef Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRef
3.
Zurück zum Zitat Pan B, Lin D, Mashayekhi H, Xing B (2008) Adsorption and hysteresis of bisphenol A and 17r-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 42:5480–5485CrossRef Pan B, Lin D, Mashayekhi H, Xing B (2008) Adsorption and hysteresis of bisphenol A and 17r-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 42:5480–5485CrossRef
4.
Zurück zum Zitat Yang Y, Nakada N, Tanaka H (2013) Adsorption of fullerene nC60 on activated sludge: kinetics, equilibrium and influencing factors. Chem Eng J 225:365–371CrossRef Yang Y, Nakada N, Tanaka H (2013) Adsorption of fullerene nC60 on activated sludge: kinetics, equilibrium and influencing factors. Chem Eng J 225:365–371CrossRef
5.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
6.
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef
7.
Zurück zum Zitat Bethune DS, Klang CH, De Vries MS et al (2003) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRef Bethune DS, Klang CH, De Vries MS et al (2003) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRef
8.
Zurück zum Zitat Machado FM, Bergmann CP, Fernandes THM et al (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131CrossRef Machado FM, Bergmann CP, Fernandes THM et al (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131CrossRef
9.
Zurück zum Zitat Machado FM, Bergmann CP, Lima EC et al (2012) Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Phys Chem Chem Phys 14:11139–11153CrossRef Machado FM, Bergmann CP, Lima EC et al (2012) Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Phys Chem Chem Phys 14:11139–11153CrossRef
10.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
11.
Zurück zum Zitat Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277CrossRef Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277CrossRef
12.
Zurück zum Zitat Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56CrossRef Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56CrossRef
13.
Zurück zum Zitat Salam MA, Al-Zhrani G, Kosa SA (2014) Removal of heavy metallic ions from aqueous solution by multi-walled carbon nanotubes modified with 8-hydroxyquinoline: kinetic study. J Ind Eng Chem 20:572–580CrossRef Salam MA, Al-Zhrani G, Kosa SA (2014) Removal of heavy metallic ions from aqueous solution by multi-walled carbon nanotubes modified with 8-hydroxyquinoline: kinetic study. J Ind Eng Chem 20:572–580CrossRef
14.
Zurück zum Zitat Ren X, Li J, Tan X, Wang X (2013) Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans 42:5266–5274CrossRef Ren X, Li J, Tan X, Wang X (2013) Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans 42:5266–5274CrossRef
15.
Zurück zum Zitat Lu CS, Chiu HS (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145CrossRef Lu CS, Chiu HS (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145CrossRef
16.
Zurück zum Zitat Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39:605–609CrossRef Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39:605–609CrossRef
17.
Zurück zum Zitat Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094CrossRef Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094CrossRef
18.
Zurück zum Zitat Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubos. Carbon 41:1057–1062CrossRef Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubos. Carbon 41:1057–1062CrossRef
19.
Zurück zum Zitat Rao GP, Lu C, Su F (2007) Sorption of divalent metallic ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231CrossRef Rao GP, Lu C, Su F (2007) Sorption of divalent metallic ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231CrossRef
20.
Zurück zum Zitat Salam MA (2013) Removal of heavy metallic ions from aqueous solutions with multi-walled carbon nanotubes: kinetic and thermodynamic studies. Int J Environ Sci Technol 10:677–688CrossRef Salam MA (2013) Removal of heavy metallic ions from aqueous solutions with multi-walled carbon nanotubes: kinetic and thermodynamic studies. Int J Environ Sci Technol 10:677–688CrossRef
21.
Zurück zum Zitat Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubos. J Chem Technol Biotechnol 81:1932–1940CrossRef Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubos. J Chem Technol Biotechnol 81:1932–1940CrossRef
22.
Zurück zum Zitat Bayazit ȘS, Inci I (2013) Adsorption of Pb(II) ions from aqueous solutions by carbon nanotubes oxidized different methods. J Ind Eng Chem 19:2064–2071CrossRef Bayazit ȘS, Inci I (2013) Adsorption of Pb(II) ions from aqueous solutions by carbon nanotubes oxidized different methods. J Ind Eng Chem 19:2064–2071CrossRef
23.
Zurück zum Zitat Kuo CY (2009) Water purification of removal aqueous copper(II) by as-grown and modified multi-walled carbon nanotubes. Desalination 249:781–785CrossRef Kuo CY (2009) Water purification of removal aqueous copper(II) by as-grown and modified multi-walled carbon nanotubes. Desalination 249:781–785CrossRef
24.
Zurück zum Zitat Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550CrossRef Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550CrossRef
25.
Zurück zum Zitat Pillaya K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166:1067–1075CrossRef Pillaya K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166:1067–1075CrossRef
26.
Zurück zum Zitat Leng Y, Guo W, Su S, Yi C, Xing L (2012) Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem Eng J 211–212(15):406–411CrossRef Leng Y, Guo W, Su S, Yi C, Xing L (2012) Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem Eng J 211–212(15):406–411CrossRef
27.
Zurück zum Zitat Huang Z-H, Zheng X, Lv W, Wang M, Yang Q-H, Kang F (2011) Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562CrossRef Huang Z-H, Zheng X, Lv W, Wang M, Yang Q-H, Kang F (2011) Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562CrossRef
28.
Zurück zum Zitat Yang S, Li L, Peia Z (2014) Adsorption kinetics, isotherms and thermodynamics of Cr(III) on graphene oxide. Colloids Surf A 457:100–106CrossRef Yang S, Li L, Peia Z (2014) Adsorption kinetics, isotherms and thermodynamics of Cr(III) on graphene oxide. Colloids Surf A 457:100–106CrossRef
29.
Zurück zum Zitat Wu W, Yang Y, Zhou H et al (2013) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224:1372–1375CrossRef Wu W, Yang Y, Zhou H et al (2013) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224:1372–1375CrossRef
30.
Zurück zum Zitat Sitko R, Turek E, Zawisz B et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689CrossRef Sitko R, Turek E, Zawisz B et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689CrossRef
31.
Zurück zum Zitat Pan N, Deng J, Guan D, Jin Y, Xia C (2013) Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions. Appl Surf Sci 287:478–483CrossRef Pan N, Deng J, Guan D, Jin Y, Xia C (2013) Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions. Appl Surf Sci 287:478–483CrossRef
32.
Zurück zum Zitat Alencar WS, Lima EC, Royer B et al (2012) Application of aqai stalks as biosorbents for the removal of the dye Procion Blue MX-R from aqueous solution. Sep Sci Technol 47:513–526CrossRef Alencar WS, Lima EC, Royer B et al (2012) Application of aqai stalks as biosorbents for the removal of the dye Procion Blue MX-R from aqueous solution. Sep Sci Technol 47:513–526CrossRef
33.
Zurück zum Zitat Hessel C, Allegre C, Maisseu M, Charbit F, Moulin P (2007) Guidelines and legislation for dye house effluents. J Environ Manage 83:171–180CrossRef Hessel C, Allegre C, Maisseu M, Charbit F, Moulin P (2007) Guidelines and legislation for dye house effluents. J Environ Manage 83:171–180CrossRef
34.
Zurück zum Zitat Cardoso NF, Lima EC, Royer B et al (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241–242:146–153CrossRef Cardoso NF, Lima EC, Royer B et al (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241–242:146–153CrossRef
35.
Zurück zum Zitat Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes. J Hazard Mater 174(1–3):694–699CrossRef Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes. J Hazard Mater 174(1–3):694–699CrossRef
36.
Zurück zum Zitat Prola LDT, Acayanka E, Lima EC et al (2013) Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution. Ind Crop Prod 46:328–340CrossRef Prola LDT, Acayanka E, Lima EC et al (2013) Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution. Ind Crop Prod 46:328–340CrossRef
37.
Zurück zum Zitat Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368CrossRef Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368CrossRef
38.
Zurück zum Zitat Chatterjee S, Chatterjee T, Lim SR, Woo SH (2011) Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core–shell beads on adsorption of Congo red from aqueous solution. Bioresour Technol 102:4402–4409CrossRef Chatterjee S, Chatterjee T, Lim SR, Woo SH (2011) Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core–shell beads on adsorption of Congo red from aqueous solution. Bioresour Technol 102:4402–4409CrossRef
39.
Zurück zum Zitat Mishra AK, Arockiadoss T, Ramaprabhu S (2010) Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem Eng J 162:1026–1034CrossRef Mishra AK, Arockiadoss T, Ramaprabhu S (2010) Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem Eng J 162:1026–1034CrossRef
40.
Zurück zum Zitat Wang S, Ng CW, Wang W, Li Q, Hao Z (2012) Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chem Eng J 197:34–40CrossRef Wang S, Ng CW, Wang W, Li Q, Hao Z (2012) Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chem Eng J 197:34–40CrossRef
41.
Zurück zum Zitat Kuo CY, Wu CH, Wuc JY (2008) Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci 327:308–315CrossRef Kuo CY, Wu CH, Wuc JY (2008) Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci 327:308–315CrossRef
42.
Zurück zum Zitat Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101:3040–3046CrossRef Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101:3040–3046CrossRef
43.
Zurück zum Zitat Wu CH (2007) Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater 144:93–100CrossRef Wu CH (2007) Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater 144:93–100CrossRef
44.
Zurück zum Zitat Prola LDT, Machado FM, Bergmann CP et al (2013) Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J Environ Manage 130:166–175CrossRef Prola LDT, Machado FM, Bergmann CP et al (2013) Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J Environ Manage 130:166–175CrossRef
45.
Zurück zum Zitat Zhao D, Zhang W, Chen C, Wang X (2013) Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environ Sci 18:890–895CrossRef Zhao D, Zhang W, Chen C, Wang X (2013) Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environ Sci 18:890–895CrossRef
46.
Zurück zum Zitat Wang S, Ng CW, Wang W, Li Q, Li L (2012) A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J Chem Eng Data 57:1563–1569CrossRef Wang S, Ng CW, Wang W, Li Q, Li L (2012) A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J Chem Eng Data 57:1563–1569CrossRef
47.
Zurück zum Zitat Wu T, Cai C, Tan S, Li H, Liu J, Yang W (2011) Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem Eng J 173:144–149CrossRef Wu T, Cai C, Tan S, Li H, Liu J, Yang W (2011) Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem Eng J 173:144–149CrossRef
48.
Zurück zum Zitat Yu J-G, Zhao X-H, Yang H et al (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483:241–251CrossRef Yu J-G, Zhao X-H, Yang H et al (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483:241–251CrossRef
49.
Zurück zum Zitat Gebhardt W, Schröder HF (2007) Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation. J Chromatogr A 1160:34–43CrossRef Gebhardt W, Schröder HF (2007) Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation. J Chromatogr A 1160:34–43CrossRef
50.
Zurück zum Zitat Cho H-H, Huang H, Schwab K (2011) Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27:12960–12967CrossRef Cho H-H, Huang H, Schwab K (2011) Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27:12960–12967CrossRef
51.
Zurück zum Zitat Kim H, Hwang YS, Sharma VK (2014) Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem Eng J 255:23–27CrossRef Kim H, Hwang YS, Sharma VK (2014) Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem Eng J 255:23–27CrossRef
52.
Zurück zum Zitat Wang Y, Yang S-T, Wang Y, Liu Y, Wang H (2012) Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surf B 97:62–69CrossRef Wang Y, Yang S-T, Wang Y, Liu Y, Wang H (2012) Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surf B 97:62–69CrossRef
53.
Zurück zum Zitat Joseph L, Zaib Q, Khan IA et al (2011) Removal of bisphenol A and 17alpha-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes. Water Res 45:4056–4068CrossRef Joseph L, Zaib Q, Khan IA et al (2011) Removal of bisphenol A and 17alpha-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes. Water Res 45:4056–4068CrossRef
54.
Zurück zum Zitat Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28:8418–8425CrossRef Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28:8418–8425CrossRef
55.
Zurück zum Zitat Zaib Q, Khan IA, Saleh NB, Flora JRV, Park Y-G, Yoon Y (2012) Removal of bisphenol A and 17β-estradiol by single-walled carbon nanotubes in aqueous solution: adsorption and molecular modeling. Water Air Soil Pollut 223:3281–3293CrossRef Zaib Q, Khan IA, Saleh NB, Flora JRV, Park Y-G, Yoon Y (2012) Removal of bisphenol A and 17β-estradiol by single-walled carbon nanotubes in aqueous solution: adsorption and molecular modeling. Water Air Soil Pollut 223:3281–3293CrossRef
56.
Zurück zum Zitat Zhang MH, Zhao QL, Bai X, Ye ZF (2010) Adsorption of organic pollutants from coking wastewater by activated coke. Colloids Surf A 362:140–146CrossRef Zhang MH, Zhao QL, Bai X, Ye ZF (2010) Adsorption of organic pollutants from coking wastewater by activated coke. Colloids Surf A 362:140–146CrossRef
57.
Zurück zum Zitat Al-khalid T, El-naas MH (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Env Sci Technol 42:1631–1690CrossRef Al-khalid T, El-naas MH (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Env Sci Technol 42:1631–1690CrossRef
58.
Zurück zum Zitat Delval F, Crini G, Vebrel J (2006) Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product. Bioresour Technol 97:2173–2181CrossRef Delval F, Crini G, Vebrel J (2006) Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product. Bioresour Technol 97:2173–2181CrossRef
59.
Zurück zum Zitat Pei Z, Li L, Sun L et al (2013) Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51:156–163CrossRef Pei Z, Li L, Sun L et al (2013) Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51:156–163CrossRef
60.
Zurück zum Zitat Smith EA, Oehme FW (1992) The biological activity of glyphosate to plants and animals: a literature review. Vet Hum Toxicol 34:531–543 Smith EA, Oehme FW (1992) The biological activity of glyphosate to plants and animals: a literature review. Vet Hum Toxicol 34:531–543
61.
Zurück zum Zitat Samsel A, Seneff S (2013) Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 34:1416–1463CrossRef Samsel A, Seneff S (2013) Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 34:1416–1463CrossRef
62.
Zurück zum Zitat Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–1413CrossRef Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–1413CrossRef
63.
Zurück zum Zitat Deng J, Shao Y, Gao N et al (2012) Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chem Eng J 193–194:339–347CrossRef Deng J, Shao Y, Gao N et al (2012) Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chem Eng J 193–194:339–347CrossRef
64.
Zurück zum Zitat Maliyekkal SM, Sreeprasad TS, Krishnan D et al (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9(2):273–283CrossRef Maliyekkal SM, Sreeprasad TS, Krishnan D et al (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9(2):273–283CrossRef
65.
Zurück zum Zitat Fakhri A (2013) Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: kinetics, thermodynamics and mechanism studies. J Saudi Chem Soc. doi:10.1016/j.jscs.2013.10.002 Fakhri A (2013) Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: kinetics, thermodynamics and mechanism studies. J Saudi Chem Soc. doi:10.​1016/​j.​jscs.​2013.​10.​002
66.
Zurück zum Zitat Mkhoyan KA, Contryman AW, Silcox J et al (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9(3):1058–1063CrossRef Mkhoyan KA, Contryman AW, Silcox J et al (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9(3):1058–1063CrossRef
Metadaten
Titel
Carbon Nanomaterials for Environmental Applications
verfasst von
Fernando Machado Machado
Éder Cláudio Lima
Iuri Medeiros Jauris
Matthew Ayorinde Adebayo
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-18875-1_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.