Skip to main content
Erschienen in:
Buchtitelbild

2022 | OriginalPaper | Buchkapitel

1. Carbon Nanotubes for Flexible Fiber Batteries

verfasst von : Ye Zhang, Tingting Ye, Luhe Li, Huisheng Peng

Erschienen in: Nanoporous Carbons for Soft and Flexible Energy Devices

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of various wearable flexible electronic devices has become an important trend of modern electronics. Fiber batteries are seen as one of the most promising power supplies for powering these wearable electronics due to their flexible, lightweight, breathable, and weavable features. The key to achieving flexible fiber batteries lies in constructing flexible electrodes. Among many promising materials, carbon nanotubes, which have the merits of lightweight, flexible, conductive as well as large specific surface area, are widely used to produce fiber electrodes for flexible fiber batteries. In this chapter, the preparation and the properties of carbon nanotube fibers are firstly described. Subsequently, the application of carbon nanotube fiber for flexible fiber lithium-ion batteries, lithium-metal batteries, aqueous-metal batteries, and other batteries are summarized from the aspects of working principle, fabrication process, and electrochemical properties. Finally, the issues of flexible fiber battery need to be conquered also have been discussed for future development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354(6348), 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354(6348), 56–58 (1991)CrossRef
2.
Zurück zum Zitat Dai, H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)CrossRef Dai, H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)CrossRef
3.
Zurück zum Zitat Ebbesen, T.W., Lezec, H.J., Hiura, H., et al.: Electrical conductivity of individual carbon nanotubes. Nature. 382(6586), 54–56 (1996)CrossRef Ebbesen, T.W., Lezec, H.J., Hiura, H., et al.: Electrical conductivity of individual carbon nanotubes. Nature. 382(6586), 54–56 (1996)CrossRef
4.
Zurück zum Zitat Yu, M.F., Files, B.S., Arepalli, S., et al.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)CrossRef Yu, M.F., Files, B.S., Arepalli, S., et al.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)CrossRef
5.
Zurück zum Zitat Kim, P., Shi, L., Majumdar, A., et al.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 1–4 (2001)CrossRef Kim, P., Shi, L., Majumdar, A., et al.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 1–4 (2001)CrossRef
6.
Zurück zum Zitat Liao, M., Sun, H., Tao, X., et al.: Alignment of thermally conducting nanotubes making high-performance light-driving motors. ACS Appl. Mater. Interfaces. 10(31), 26765–26771 (2018)CrossRef Liao, M., Sun, H., Tao, X., et al.: Alignment of thermally conducting nanotubes making high-performance light-driving motors. ACS Appl. Mater. Interfaces. 10(31), 26765–26771 (2018)CrossRef
7.
Zurück zum Zitat Jiang, K., Li, Q., Fan, S.: Nanotechnology: spinning continuous carbon nanotube yarns. Nature. 419(6909), 801 (2002)CrossRef Jiang, K., Li, Q., Fan, S.: Nanotechnology: spinning continuous carbon nanotube yarns. Nature. 419(6909), 801 (2002)CrossRef
8.
Zurück zum Zitat Li, Y.L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004)CrossRef Li, Y.L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004)CrossRef
9.
Zurück zum Zitat Vigolo, B., Penicaud, A., Coulon, C., et al.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 290(5495), 1331–1334 (2000)CrossRef Vigolo, B., Penicaud, A., Coulon, C., et al.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 290(5495), 1331–1334 (2000)CrossRef
10.
Zurück zum Zitat Yoon, Y.H., Song, J.W., Kim, D., et al.: Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 19(23), 4284–4287 (2007)CrossRef Yoon, Y.H., Song, J.W., Kim, D., et al.: Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 19(23), 4284–4287 (2007)CrossRef
11.
Zurück zum Zitat Amama, P.B., Pint, C.L., Kim, S.M., et al.: Influence of alumina type on the evolution and activity of alumina-supported fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano. 4(2), 895–904 (2010)CrossRef Amama, P.B., Pint, C.L., Kim, S.M., et al.: Influence of alumina type on the evolution and activity of alumina-supported fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano. 4(2), 895–904 (2010)CrossRef
12.
Zurück zum Zitat Jia, J.J., Zhao, J.N., Xu, G., et al.: A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon. 49(4), 1333–1339 (2011)CrossRef Jia, J.J., Zhao, J.N., Xu, G., et al.: A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon. 49(4), 1333–1339 (2011)CrossRef
13.
Zurück zum Zitat Zhang, Y.Y., Zou, G.F., Doorn, S.K., et al.: Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano. 3(8), 2157–2162 (2009)CrossRef Zhang, Y.Y., Zou, G.F., Doorn, S.K., et al.: Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano. 3(8), 2157–2162 (2009)CrossRef
14.
Zurück zum Zitat Li, Q.W., Zhang, X.F., DePaula, R.F., et al.: Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006)CrossRef Li, Q.W., Zhang, X.F., DePaula, R.F., et al.: Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006)CrossRef
15.
Zurück zum Zitat Hata, K., Futaba, D.N., Mizuno, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306(5700), 1362–1364 (2004)CrossRef Hata, K., Futaba, D.N., Mizuno, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306(5700), 1362–1364 (2004)CrossRef
16.
Zurück zum Zitat Zhang, S., Zhu, L., Minus, M.L., et al.: Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. J. Mater. Sci. 43(13), 4356–4362 (2008)CrossRef Zhang, S., Zhu, L., Minus, M.L., et al.: Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. J. Mater. Sci. 43(13), 4356–4362 (2008)CrossRef
17.
Zurück zum Zitat Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon. 48(4), 1105–1115 (2010)CrossRef Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon. 48(4), 1105–1115 (2010)CrossRef
18.
Zurück zum Zitat Kuznetsov, A.A., Fonseca, A.F., Baughman, R.H., et al.: Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano. 5(2), 985–993 (2011)CrossRef Kuznetsov, A.A., Fonseca, A.F., Baughman, R.H., et al.: Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano. 5(2), 985–993 (2011)CrossRef
19.
Zurück zum Zitat Peng, H., Jai, M., Li, Q., et al.: Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 130, 1130–1131 (2008)CrossRef Peng, H., Jai, M., Li, Q., et al.: Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 130, 1130–1131 (2008)CrossRef
20.
Zurück zum Zitat Wang, L., Xie, S., Wang, Z., et al.: Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4(2), 159–171 (2020)CrossRef Wang, L., Xie, S., Wang, Z., et al.: Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4(2), 159–171 (2020)CrossRef
21.
Zurück zum Zitat Xu, X., Xie, S., Zhang, Y., et al.: The rise of fiber electronics. Angew. Chem. Int. Ed. 58(39), 13643–13653 (2019)CrossRef Xu, X., Xie, S., Zhang, Y., et al.: The rise of fiber electronics. Angew. Chem. Int. Ed. 58(39), 13643–13653 (2019)CrossRef
22.
Zurück zum Zitat Chen, P., Xu, Y., He, S., et al.: Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10(12), 1077–1083 (2015)CrossRef Chen, P., Xu, Y., He, S., et al.: Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10(12), 1077–1083 (2015)CrossRef
23.
Zurück zum Zitat Ren, J., Li, L., Chen, C., et al.: Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)CrossRef Ren, J., Li, L., Chen, C., et al.: Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)CrossRef
24.
Zurück zum Zitat Li, L., Wu, Z., Yuan, S., et al.: Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014)CrossRef Li, L., Wu, Z., Yuan, S., et al.: Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014)CrossRef
25.
Zurück zum Zitat Ren, J., Zhang, Y., Bai, W., et al.: Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 53(30), 7864–7869 (2014)CrossRef Ren, J., Zhang, Y., Bai, W., et al.: Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 53(30), 7864–7869 (2014)CrossRef
26.
Zurück zum Zitat Zhang, Y., Zhao, Y., Cheng, X., et al.: Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew. Chem. Int. Ed. 54(38), 11177–11182 (2015)CrossRef Zhang, Y., Zhao, Y., Cheng, X., et al.: Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew. Chem. Int. Ed. 54(38), 11177–11182 (2015)CrossRef
27.
Zurück zum Zitat Zhang, Y., Bai, W., Ren, J., et al.: Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A. 2(29), 11054–11059 (2014)CrossRef Zhang, Y., Bai, W., Ren, J., et al.: Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A. 2(29), 11054–11059 (2014)CrossRef
28.
Zurück zum Zitat Xu, Y., Zhao, Y., Ren, J., et al.: An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem. Int. Ed. 55(28), 7979–7982 (2016)CrossRef Xu, Y., Zhao, Y., Ren, J., et al.: An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem. Int. Ed. 55(28), 7979–7982 (2016)CrossRef
29.
Zurück zum Zitat Xu, Y., Zhang, Y., Guo, Z., et al.: Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed. 54(51), 15390–15394 (2015)CrossRef Xu, Y., Zhang, Y., Guo, Z., et al.: Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed. 54(51), 15390–15394 (2015)CrossRef
30.
Zurück zum Zitat Miao, M., McDonnell, J., Vuckovic, L., et al.: Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon. 48(10), 2802–2811 (2010)CrossRef Miao, M., McDonnell, J., Vuckovic, L., et al.: Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon. 48(10), 2802–2811 (2010)CrossRef
31.
Zurück zum Zitat Weng, W., Sun, Q., Zhang, Y., et al.: Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 14(6), 3432–3438 (2014)CrossRef Weng, W., Sun, Q., Zhang, Y., et al.: Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 14(6), 3432–3438 (2014)CrossRef
32.
Zurück zum Zitat Zhang, Y., Bai, W., Cheng, X., et al.: Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 53(52), 14564–14568 (2014)CrossRef Zhang, Y., Bai, W., Cheng, X., et al.: Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 53(52), 14564–14568 (2014)CrossRef
33.
Zurück zum Zitat Zhang, Y., Wang, Y., Wang, L., et al.: A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A. 4(23), 9002–9008 (2016)CrossRef Zhang, Y., Wang, Y., Wang, L., et al.: A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A. 4(23), 9002–9008 (2016)CrossRef
34.
Zurück zum Zitat Fang, X., Peng, H.: A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small. 11(13), 1488–1511 (2015)CrossRef Fang, X., Peng, H.: A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small. 11(13), 1488–1511 (2015)CrossRef
35.
Zurück zum Zitat Fang, X., Weng, W., Ren, J., et al.: A cable-shaped lithium sulfur battery. Adv. Mater. 28(3), 491–496 (2016)CrossRef Fang, X., Weng, W., Ren, J., et al.: A cable-shaped lithium sulfur battery. Adv. Mater. 28(3), 491–496 (2016)CrossRef
36.
Zurück zum Zitat Wang, L., Pan, J., Zhang, Y., et al.: A Li–air battery with ultralong cycle life in ambient air. Adv. Mater. 30(3), 1704378–1704376 (2017)CrossRef Wang, L., Pan, J., Zhang, Y., et al.: A Li–air battery with ultralong cycle life in ambient air. Adv. Mater. 30(3), 1704378–1704376 (2017)CrossRef
37.
Zurück zum Zitat Zhang, Y., Wang, L., Guo, Z., et al.: High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem. Int. Ed. 55(14), 4487–4491 (2016)CrossRef Zhang, Y., Wang, L., Guo, Z., et al.: High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem. Int. Ed. 55(14), 4487–4491 (2016)CrossRef
38.
Zurück zum Zitat Ye, L., Hong, Y., Liao, M., et al.: Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 28, 364–374 (2020)CrossRef Ye, L., Hong, Y., Liao, M., et al.: Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 28, 364–374 (2020)CrossRef
39.
Zurück zum Zitat Ma, L., Chen, S., Wang, D., et al.: Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9(12), 1803046 (2019)CrossRef Ma, L., Chen, S., Wang, D., et al.: Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9(12), 1803046 (2019)CrossRef
40.
Zurück zum Zitat Guo, Z., Zhao, Y., Ding, Y., et al.: Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem. 3(2), 348–362 (2017)CrossRef Guo, Z., Zhao, Y., Ding, Y., et al.: Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem. 3(2), 348–362 (2017)CrossRef
41.
Zurück zum Zitat Wang, M., Xie, S., Tang, C., et al.: Making fiber-shaped Ni//bi battery simultaneously with high energy density, power density, and safety. Adv. Funct. Mater. 30(3), 1905971 (2019)CrossRef Wang, M., Xie, S., Tang, C., et al.: Making fiber-shaped Ni//bi battery simultaneously with high energy density, power density, and safety. Adv. Funct. Mater. 30(3), 1905971 (2019)CrossRef
42.
Zurück zum Zitat Pan, J., Li, H., Sun, H., et al.: A lithium-air battery stably working at high temperature with high rate performance. Small. 14(6), 1703454 (2018)CrossRef Pan, J., Li, H., Sun, H., et al.: A lithium-air battery stably working at high temperature with high rate performance. Small. 14(6), 1703454 (2018)CrossRef
Metadaten
Titel
Carbon Nanotubes for Flexible Fiber Batteries
verfasst von
Ye Zhang
Tingting Ye
Luhe Li
Huisheng Peng
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-81827-2_1