Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2018

24.08.2018

Cellular Automaton Modeling of Dynamic Recrystallization of Nimonic 80A Superalloy Based on Inhomogeneous Distribution of Dislocations Inside Grains

verfasst von: Qianhong Xu, Chi Zhang, Liwen Zhang, Wenfei Shen, Qing Yang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A modified cellular automaton (CA) model in the time and space scale is developed to simulate the dynamic recrystallization (DRX) mechanism of Nimonic 80A nickel-base superalloy during hot deformation. Some necessary thermo-mechanical parameters used as input data in CA approach such as work hardening and softening coefficient are fitted according to the previous hot compression experiments. Based on the experimental results, nucleation kinetics is modified as a function of Zener-Holloman parameter. A dislocation density model at transient recrystallization boundary is proposed, in which the dislocation density is a function of temperature, strain rate and annealed dislocation density. The simulated results are in good agreement with experimental results, proving that the modified CA model is capable of predicting both flow behavior and microstructural evolution of Nimonic 80A during hot deformation. According to the experimental and simulated results, the DRX behavior is discussed in detail. It demonstrates that the flow stress and microstructural evolution of DRX have a relationship with the deformation temperature and strain rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.Z. Quan, J. Pan, X. Wang, Z.H. Zhang, L. Zhang, and T. Wang, Correspondence Between Grain Refinements and Flow Softening Behaviors at Nimonic 80A Superalloy Under Different Strain Rates, Temperatures and Strains, Mater. Sci. Eng., A, 2016, 679(2), p 358–371 G.Z. Quan, J. Pan, X. Wang, Z.H. Zhang, L. Zhang, and T. Wang, Correspondence Between Grain Refinements and Flow Softening Behaviors at Nimonic 80A Superalloy Under Different Strain Rates, Temperatures and Strains, Mater. Sci. Eng., A, 2016, 679(2), p 358–371
2.
Zurück zum Zitat N. Makuch, M. Kulka, and A. Piasecki, The Effects of Chemical Composition of Nimonic 80A-Alloy on the Microstructure and Properties of Gas-Borided Layer, Surf. Coat. Technol., 2015, 276(25), p 440–455CrossRef N. Makuch, M. Kulka, and A. Piasecki, The Effects of Chemical Composition of Nimonic 80A-Alloy on the Microstructure and Properties of Gas-Borided Layer, Surf. Coat. Technol., 2015, 276(25), p 440–455CrossRef
3.
Zurück zum Zitat P. Berthod and E. Conrath, Creep and Oxidation Kinetics at 1100 °C of Nickel-Base Alloys Reinforced by Hafnium Carbides, Mater. Des., 2016, 104(15), p 27–36CrossRef P. Berthod and E. Conrath, Creep and Oxidation Kinetics at 1100 °C of Nickel-Base Alloys Reinforced by Hafnium Carbides, Mater. Des., 2016, 104(15), p 27–36CrossRef
4.
Zurück zum Zitat Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97(5), p 13–24CrossRef Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97(5), p 13–24CrossRef
5.
Zurück zum Zitat K.K. Li, M.S. Chen, Y.C. Lin, and W.Q. Yuan, Microstructural Evolution of an Aged Ni-Based Superalloy Under Two-Stage Hot Compression with Different Strain Rates, Mater. Des., 2016, 111(5), p 344–352CrossRef K.K. Li, M.S. Chen, Y.C. Lin, and W.Q. Yuan, Microstructural Evolution of an Aged Ni-Based Superalloy Under Two-Stage Hot Compression with Different Strain Rates, Mater. Des., 2016, 111(5), p 344–352CrossRef
6.
Zurück zum Zitat Y.Q. Ning, Z.K. Yao, X.M. Liang, and Y.H. Liu, Flow Behavior and Constitutive Model for Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al Superalloy Compressed Below γ′-transus temperature, Mater. Sci. Eng., A, 2012, 551(15), p 7–12CrossRef Y.Q. Ning, Z.K. Yao, X.M. Liang, and Y.H. Liu, Flow Behavior and Constitutive Model for Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al Superalloy Compressed Below γ′-transus temperature, Mater. Sci. Eng., A, 2012, 551(15), p 7–12CrossRef
7.
Zurück zum Zitat O. Kwon, Technology for the Prediction and Control of Microstructural Changes and Mechanical Properties in Steel, ISIJ Int., 1992, 32(3), p 350–358CrossRef O. Kwon, Technology for the Prediction and Control of Microstructural Changes and Mechanical Properties in Steel, ISIJ Int., 1992, 32(3), p 350–358CrossRef
8.
Zurück zum Zitat I. Basu, M. Chen, M. Loeck, T. Al-Samman, and D.A. Molodov, Determination of Grain Boundary Mobility During Recrystallization by Statistical Evaluation of Electron Backscatter Diffraction Measurements, Mater. Charact., 2016, 117, p 99–112CrossRef I. Basu, M. Chen, M. Loeck, T. Al-Samman, and D.A. Molodov, Determination of Grain Boundary Mobility During Recrystallization by Statistical Evaluation of Electron Backscatter Diffraction Measurements, Mater. Charact., 2016, 117, p 99–112CrossRef
9.
Zurück zum Zitat C. Haase, M. Kuhbach, L.A. Barrales-Mora, L.W. Su, F. Roters, D.A. Molodov, and G. Gottstein, Recrystallization Behavior of a High-Manganese Steel: Experiments and Simulations, Acta Mater., 2015, 100(13), p 155–168CrossRef C. Haase, M. Kuhbach, L.A. Barrales-Mora, L.W. Su, F. Roters, D.A. Molodov, and G. Gottstein, Recrystallization Behavior of a High-Manganese Steel: Experiments and Simulations, Acta Mater., 2015, 100(13), p 155–168CrossRef
10.
Zurück zum Zitat F. Montheillet, O. Lurdos, and G. Damamme, A Grain Scale Approach for Modeling Steady-State Discontinuous Dynamic Recrystallization, Acta Mater., 2009, 57(5), p 1602–1612CrossRef F. Montheillet, O. Lurdos, and G. Damamme, A Grain Scale Approach for Modeling Steady-State Discontinuous Dynamic Recrystallization, Acta Mater., 2009, 57(5), p 1602–1612CrossRef
11.
Zurück zum Zitat C. Zhang, L.W. Zhang, Q.H. Xu, Y.N. Xia, and W.F. Shen, The Kinetics and Cellular Automaton Modeling of Dynamic Recrystallization Behavior of a Medium Carbon Cr-Ni-Mo Alloyed Steel in Hot Working Process, Mater. Sci. Eng., A, 2016, 678, p 33–43CrossRef C. Zhang, L.W. Zhang, Q.H. Xu, Y.N. Xia, and W.F. Shen, The Kinetics and Cellular Automaton Modeling of Dynamic Recrystallization Behavior of a Medium Carbon Cr-Ni-Mo Alloyed Steel in Hot Working Process, Mater. Sci. Eng., A, 2016, 678, p 33–43CrossRef
12.
Zurück zum Zitat K. Huang and R.E. Loge, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574CrossRef K. Huang and R.E. Loge, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574CrossRef
13.
Zurück zum Zitat D. Raabe, Computational Materials Science: The Simulation of Materials Microstructures and Properties, Wiley-VCH, 1998, p 3–44 D. Raabe, Computational Materials Science: The Simulation of Materials Microstructures and Properties, Wiley-VCH, 1998, p 3–44
14.
Zurück zum Zitat H.W. Lee and Y.T. Im, Numerical Modeling of Dynamic Recrystallization During Nonisothermal Hot Compression by Cellular Automata and Finite Element Analysis, Int. J. Mech. Sci., 2010, 52(10), p 1277–1289CrossRef H.W. Lee and Y.T. Im, Numerical Modeling of Dynamic Recrystallization During Nonisothermal Hot Compression by Cellular Automata and Finite Element Analysis, Int. J. Mech. Sci., 2010, 52(10), p 1277–1289CrossRef
15.
Zurück zum Zitat H.K. Park, J. Jung, and H.S. Kim, Three-Dimensional Microstructure Modeling of Particulate Composites Using Statistical Synthetic Structure and its Thermo-Mechanical Finite Element Analysis, Comput. Mater. Sci., 2017, 126, p 265–271CrossRef H.K. Park, J. Jung, and H.S. Kim, Three-Dimensional Microstructure Modeling of Particulate Composites Using Statistical Synthetic Structure and its Thermo-Mechanical Finite Element Analysis, Comput. Mater. Sci., 2017, 126, p 265–271CrossRef
16.
Zurück zum Zitat K. Wu, J.E. Morral, and Y. Wang, A phase Field Study of Microstructural Changes due to the Kirkendall Effect in Two-Phase Diffusion Couples, Acta Mater., 2001, 49(17), p 3401–3408CrossRef K. Wu, J.E. Morral, and Y. Wang, A phase Field Study of Microstructural Changes due to the Kirkendall Effect in Two-Phase Diffusion Couples, Acta Mater., 2001, 49(17), p 3401–3408CrossRef
17.
Zurück zum Zitat K. Chen, L.B. Wang, Y. Chen, and Q.W. Wang, Molecular Dynamics Simulation of Microstructure Evolution and Heat Dissipation of Nanoscale Friction, Int. J. Heat Mass Transfer, 2017, 109, p 293–301CrossRef K. Chen, L.B. Wang, Y. Chen, and Q.W. Wang, Molecular Dynamics Simulation of Microstructure Evolution and Heat Dissipation of Nanoscale Friction, Int. J. Heat Mass Transfer, 2017, 109, p 293–301CrossRef
18.
Zurück zum Zitat M. Nosonovsky and S.K. Esche, A Paradox of Decreasing Entropy in Multiscale Monte Carlo Grain Growth Simulations, Entropy, 2008, 10(2), p 49–54CrossRef M. Nosonovsky and S.K. Esche, A Paradox of Decreasing Entropy in Multiscale Monte Carlo Grain Growth Simulations, Entropy, 2008, 10(2), p 49–54CrossRef
19.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 1995, p 507–526 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 1995, p 507–526
20.
Zurück zum Zitat R. Ding and Z.X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization, Acta Mater., 2001, 49(16), p 3163–3175CrossRef R. Ding and Z.X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization, Acta Mater., 2001, 49(16), p 3163–3175CrossRef
21.
Zurück zum Zitat F. Chen, K. Qi, Z.S. Cui, and X.M. Lai, Modeling the Dynamic Recrystallization in Austenitic Stainless Steel Using Cellular Automaton Method, Comput. Mater. Sci., 2014, 83(2), p 331–340CrossRef F. Chen, K. Qi, Z.S. Cui, and X.M. Lai, Modeling the Dynamic Recrystallization in Austenitic Stainless Steel Using Cellular Automaton Method, Comput. Mater. Sci., 2014, 83(2), p 331–340CrossRef
22.
Zurück zum Zitat Y. Lou, W.H. Wu, and L.X. Li, Inverse Identification of the Dynamic Recrystallization Parameters for AZ31 Magnesium Alloy Using BP Neural Network, J. Mater. Eng. Perform., 2012, 21(7), p 1133–1140CrossRef Y. Lou, W.H. Wu, and L.X. Li, Inverse Identification of the Dynamic Recrystallization Parameters for AZ31 Magnesium Alloy Using BP Neural Network, J. Mater. Eng. Perform., 2012, 21(7), p 1133–1140CrossRef
23.
Zurück zum Zitat Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, and X.M. Chen, Study of Dynamic Recrystallization in a Ni-Based Superalloy by Experiments and Cellular Automaton Model, Mater. Sci. Eng., A, 2015, 626, p 432–440CrossRef Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, and X.M. Chen, Study of Dynamic Recrystallization in a Ni-Based Superalloy by Experiments and Cellular Automaton Model, Mater. Sci. Eng., A, 2015, 626, p 432–440CrossRef
24.
Zurück zum Zitat N.M. Xiao, C.W. Zheng, D.Z. Li, and Y.Y. Li, A Simulation of Dynamic Recrystallization by Coupling a Cellular Automaton Method with a Topology Deformation Technique, Comput. Mater. Sci., 2008, 41(3), p 366–374CrossRef N.M. Xiao, C.W. Zheng, D.Z. Li, and Y.Y. Li, A Simulation of Dynamic Recrystallization by Coupling a Cellular Automaton Method with a Topology Deformation Technique, Comput. Mater. Sci., 2008, 41(3), p 366–374CrossRef
25.
Zurück zum Zitat H. Hallberg, M. Wallin, and M. Ristinmaa, Simulation of Discontinuous Dynamic Recrystallization in Pure Cu Using a Probabilistic Cellular Automaton, Comput. Mater. Sci., 2010, 49(1), p 25–34CrossRef H. Hallberg, M. Wallin, and M. Ristinmaa, Simulation of Discontinuous Dynamic Recrystallization in Pure Cu Using a Probabilistic Cellular Automaton, Comput. Mater. Sci., 2010, 49(1), p 25–34CrossRef
26.
Zurück zum Zitat M. Sitko, M. Pietrzyk, and L. Madej, Time and Length Scale Issues in Numerical Modelling of Dynamic Recrystallization Based on the Multi Space Cellular Automata Method, J. Comput. Sci., 2016, 16, p 98–113CrossRef M. Sitko, M. Pietrzyk, and L. Madej, Time and Length Scale Issues in Numerical Modelling of Dynamic Recrystallization Based on the Multi Space Cellular Automata Method, J. Comput. Sci., 2016, 16, p 98–113CrossRef
27.
Zurück zum Zitat H. Xiao, H.B. Xie, Y.H. Yan, and J. Yanagimoto, Simulation of Dynamic Recrystallization Using Cellular Automaton Method, J. Iron. Steel Res. Int., 2004, 11(2), p 42–45 H. Xiao, H.B. Xie, Y.H. Yan, and J. Yanagimoto, Simulation of Dynamic Recrystallization Using Cellular Automaton Method, J. Iron. Steel Res. Int., 2004, 11(2), p 42–45
28.
Zurück zum Zitat Z.Y. Jin and Z.S. Cui, Investigation on Dynamic Recrystallization Using a Modified Cellular Automaton, Comput. Mater. Sci., 2012, 63, p 249–255CrossRef Z.Y. Jin and Z.S. Cui, Investigation on Dynamic Recrystallization Using a Modified Cellular Automaton, Comput. Mater. Sci., 2012, 63, p 249–255CrossRef
29.
Zurück zum Zitat Z.Y. Jin and Z.S. Cui, Investigation on Strain Dependence of Dynamic Recrystallization Behavior Using An Inverse Analysis Method, Mater. Sci. Eng., A, 2010, 527(13–14), p 3111–3119CrossRef Z.Y. Jin and Z.S. Cui, Investigation on Strain Dependence of Dynamic Recrystallization Behavior Using An Inverse Analysis Method, Mater. Sci. Eng., A, 2010, 527(13–14), p 3111–3119CrossRef
30.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60(1), p 130–207CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60(1), p 130–207CrossRef
31.
Zurück zum Zitat T. Sakai and M. Ohashi, Dislocation Substructures Developed During Dynamic Recrystallisation in Polycrystalline Nickel, Mater. Sci. Technol., 1990, 6(12), p 1251–1257CrossRef T. Sakai and M. Ohashi, Dislocation Substructures Developed During Dynamic Recrystallisation in Polycrystalline Nickel, Mater. Sci. Technol., 1990, 6(12), p 1251–1257CrossRef
32.
Zurück zum Zitat T. Sakai, Y. Nagao, M. Ohashi, and J.J. Jonas, Flow Stress and Substructural Change During Transient Dynamic Recrystallization of Nickel, Mater. Sci. Technol., 1986, 2(7), p 659–665CrossRef T. Sakai, Y. Nagao, M. Ohashi, and J.J. Jonas, Flow Stress and Substructural Change During Transient Dynamic Recrystallization of Nickel, Mater. Sci. Technol., 1986, 2(7), p 659–665CrossRef
33.
Zurück zum Zitat S.D. Gu, L.W. Zhang, C. Zhang, and W.F. Shen, Constitutive Modeling for Flow Stress Behavior of Nimonic 80A Superalloy During Hot Deformation Process, High Temp. Mater. Process., 2015, 35(3), p 327–336 S.D. Gu, L.W. Zhang, C. Zhang, and W.F. Shen, Constitutive Modeling for Flow Stress Behavior of Nimonic 80A Superalloy During Hot Deformation Process, High Temp. Mater. Process., 2015, 35(3), p 327–336
34.
Zurück zum Zitat Y.C. Lin, F. Wu, Q.W. Wang, D.D. Chen, and S.K. Singh, Microstructural Evolution of a Ni-Fe-Cr-Base Superalloy During Non-isothermal Two-stage Hot Deformation, Vacuum, 2018, 151, p 283–293CrossRef Y.C. Lin, F. Wu, Q.W. Wang, D.D. Chen, and S.K. Singh, Microstructural Evolution of a Ni-Fe-Cr-Base Superalloy During Non-isothermal Two-stage Hot Deformation, Vacuum, 2018, 151, p 283–293CrossRef
35.
Zurück zum Zitat C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci., 1979, 13(3–4), p 187–194CrossRef C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci., 1979, 13(3–4), p 187–194CrossRef
36.
Zurück zum Zitat Y.C. Lin, S.C. Luo, L.X. Yin, and J. Huang, Microstructural Evolution and High Temperature Flow Behaviors of a Homogenized Sr-Modified Al-Si-Mg Alloy, J. Alloys Compd., 2018, 739, p 590–599CrossRef Y.C. Lin, S.C. Luo, L.X. Yin, and J. Huang, Microstructural Evolution and High Temperature Flow Behaviors of a Homogenized Sr-Modified Al-Si-Mg Alloy, J. Alloys Compd., 2018, 739, p 590–599CrossRef
37.
Zurück zum Zitat L.X. Kong, P.D. Hodgson, and B. Wang, Development of Constitutive Models for Metal Forming with Cyclic Strain Softening, J. Mater. Process. Technol., 1999, 89–90(8), p 44–50CrossRef L.X. Kong, P.D. Hodgson, and B. Wang, Development of Constitutive Models for Metal Forming with Cyclic Strain Softening, J. Mater. Process. Technol., 1999, 89–90(8), p 44–50CrossRef
38.
Zurück zum Zitat H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29(11), p 1865–1875CrossRef H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29(11), p 1865–1875CrossRef
39.
Zurück zum Zitat H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, NY, 1982 H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, NY, 1982
40.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, A One-parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136CrossRef E.I. Poliak and J.J. Jonas, A One-parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136CrossRef
41.
Zurück zum Zitat H. Riedel and J. Svoboda, A Model for Strain Hardening, Recovery, Recrystallization and Grain Growth with Applications to Forming Processes of Nickel Base Alloys, Mater. Sci. Eng., A, 2016, 665, p 175–183CrossRef H. Riedel and J. Svoboda, A Model for Strain Hardening, Recovery, Recrystallization and Grain Growth with Applications to Forming Processes of Nickel Base Alloys, Mater. Sci. Eng., A, 2016, 665, p 175–183CrossRef
42.
Zurück zum Zitat H.P. Stuwe and B. Ortner, Recrystallization in Hot Working and Creep, Met. Sci., 1973, 8(1), p 161–167CrossRef H.P. Stuwe and B. Ortner, Recrystallization in Hot Working and Creep, Met. Sci., 1973, 8(1), p 161–167CrossRef
43.
Zurück zum Zitat W. Roberts and B. Ahlblom, A Nucleation Criterion for Dynamic Recrystallization During Hot Working, Acta Metall., 1978, 26(5), p 801–813CrossRef W. Roberts and B. Ahlblom, A Nucleation Criterion for Dynamic Recrystallization During Hot Working, Acta Metall., 1978, 26(5), p 801–813CrossRef
44.
Zurück zum Zitat H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng., A, 2004, 387–389, p 203–208CrossRef H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng., A, 2004, 387–389, p 203–208CrossRef
45.
Zurück zum Zitat R. Ding and Z.X. Guo, Microstructural Evolution of a Ti–6Al–4 V Alloy During β-phase Processing: Experimental and Simulative Investigations, Mater. Sci. Eng., A, 2004, 365(1), p 172–179CrossRef R. Ding and Z.X. Guo, Microstructural Evolution of a Ti–6Al–4 V Alloy During β-phase Processing: Experimental and Simulative Investigations, Mater. Sci. Eng., A, 2004, 365(1), p 172–179CrossRef
46.
Zurück zum Zitat H.P. Ji, L.G. Zhang, J. Liu, and T.Y. Wang, Cellular Automaton Modeling of Dynamic Recrystallisation Microstructure Evolution for 316LN Stainless Steel, Key Eng. Mater., 2016, 693, p 548–553CrossRef H.P. Ji, L.G. Zhang, J. Liu, and T.Y. Wang, Cellular Automaton Modeling of Dynamic Recrystallisation Microstructure Evolution for 316LN Stainless Steel, Key Eng. Mater., 2016, 693, p 548–553CrossRef
47.
Zurück zum Zitat Y.X. Liu, Y.C. Lin, and Y. Zhou, 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng., A, 2017, 691(13), p 88–99CrossRef Y.X. Liu, Y.C. Lin, and Y. Zhou, 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng., A, 2017, 691(13), p 88–99CrossRef
48.
Zurück zum Zitat Madej, M. Sitko, and M. Pietrzyk, Perceptive Comparison of Mean and Full Field Dynamic Recrystallization Models, Arch. Civil Mech. Eng., 2016, 16(4), p 569–589CrossRef Madej, M. Sitko, and M. Pietrzyk, Perceptive Comparison of Mean and Full Field Dynamic Recrystallization Models, Arch. Civil Mech. Eng., 2016, 16(4), p 569–589CrossRef
49.
Zurück zum Zitat R. Sandström and R. Lagneborg, A Controlling Factor for Dynamic Recrystallisation, Scr. Metall., 1975, 9(1), p 59–65CrossRef R. Sandström and R. Lagneborg, A Controlling Factor for Dynamic Recrystallisation, Scr. Metall., 1975, 9(1), p 59–65CrossRef
50.
Zurück zum Zitat H. Jiang, L. Yang, J. Dong, M. Zhang, and Z. Yao, The Recrystallization Model and Microstructure Prediction of Alloy 690 During Hot Deformation, Mater. Des., 2016, 104(15), p 162–173CrossRef H. Jiang, L. Yang, J. Dong, M. Zhang, and Z. Yao, The Recrystallization Model and Microstructure Prediction of Alloy 690 During Hot Deformation, Mater. Des., 2016, 104(15), p 162–173CrossRef
51.
Zurück zum Zitat W.F. Shen, L.W. Zhang, C. Zhang, Y.F. Xu, and X.H. Shi, Constitutive Analysis of Dynamic Recrystallization and Flow Behavior of a Medium Carbon Nb-V Microalloyed Steel, J. Mater. Eng. Perform., 2016, 25(5), p 2065–2073CrossRef W.F. Shen, L.W. Zhang, C. Zhang, Y.F. Xu, and X.H. Shi, Constitutive Analysis of Dynamic Recrystallization and Flow Behavior of a Medium Carbon Nb-V Microalloyed Steel, J. Mater. Eng. Perform., 2016, 25(5), p 2065–2073CrossRef
52.
Zurück zum Zitat Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng., A, 2008, 497(1–2), p 479–486CrossRef Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng., A, 2008, 497(1–2), p 479–486CrossRef
53.
Zurück zum Zitat T. Vershinina and M. Leont’Eva-Smirnova, Dislocation Density Evolution in the Process of High-Temperature Treatment and Creep of EK-181 Steel, Mater. Charact., 2017, 125, p 23–28CrossRef T. Vershinina and M. Leont’Eva-Smirnova, Dislocation Density Evolution in the Process of High-Temperature Treatment and Creep of EK-181 Steel, Mater. Charact., 2017, 125, p 23–28CrossRef
54.
Zurück zum Zitat S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N), Metall. Mater. Trans. A, 2014, 45(12), p 5645–5656CrossRef S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N), Metall. Mater. Trans. A, 2014, 45(12), p 5645–5656CrossRef
55.
Zurück zum Zitat J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, and G.D. Wang, Influence of Thermomechanical Control Process on the Evolution of Austenite Grain Size in a Low-Carbon Nb-Ti-Bearing Bainitic Steel, J. Mater. Eng. Perform., 2015, 24(10), p 1–10 J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, and G.D. Wang, Influence of Thermomechanical Control Process on the Evolution of Austenite Grain Size in a Low-Carbon Nb-Ti-Bearing Bainitic Steel, J. Mater. Eng. Perform., 2015, 24(10), p 1–10
56.
Zurück zum Zitat C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. Xia, and R.Q. Li, Study on Constitutive Modeling and Processing Maps for Hot Deformation of Medium Carbon Cr-Ni-Mo Alloyed Steel, Mater. Des., 2016, 90(15), p 804–814CrossRef C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. Xia, and R.Q. Li, Study on Constitutive Modeling and Processing Maps for Hot Deformation of Medium Carbon Cr-Ni-Mo Alloyed Steel, Mater. Des., 2016, 90(15), p 804–814CrossRef
57.
Zurück zum Zitat G.Z. Quan, J. Pan, and Z.H. Zhang, Phase Transformation and Recrystallization Kinetics in Space–Time Domain During Isothermal Compressions for Ti–6Al–4 V Analyzed by Multi-Field and Multi-Scale Coupling FEM, Mater. Des., 2016, 94(15), p 523–535CrossRef G.Z. Quan, J. Pan, and Z.H. Zhang, Phase Transformation and Recrystallization Kinetics in Space–Time Domain During Isothermal Compressions for Ti–6Al–4 V Analyzed by Multi-Field and Multi-Scale Coupling FEM, Mater. Des., 2016, 94(15), p 523–535CrossRef
58.
Zurück zum Zitat Y.C. Lin, Y.X. Liu, M.S. Chen, M.H. Huang, X. Ma, and Z.L. Long, Study of Static Recrystallization Behavior in Hot Deformed Ni-Based Superalloy Using Cellular Automaton Model, Mater. Des., 2016, 99, p 107–114CrossRef Y.C. Lin, Y.X. Liu, M.S. Chen, M.H. Huang, X. Ma, and Z.L. Long, Study of Static Recrystallization Behavior in Hot Deformed Ni-Based Superalloy Using Cellular Automaton Model, Mater. Des., 2016, 99, p 107–114CrossRef
59.
Zurück zum Zitat M.J. Luton and C.M. Sellars, Dynamic Recrystallization in Nickel and Nickel-Iron Alloys During High Temperature Deformation, Acta Metall., 1969, 17(8), p 1033–1043CrossRef M.J. Luton and C.M. Sellars, Dynamic Recrystallization in Nickel and Nickel-Iron Alloys During High Temperature Deformation, Acta Metall., 1969, 17(8), p 1033–1043CrossRef
60.
Zurück zum Zitat B. Derby, The Dependence of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1991, 39(5), p 955–962CrossRef B. Derby, The Dependence of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1991, 39(5), p 955–962CrossRef
61.
Zurück zum Zitat Z.L. Li, Q.Y. Xu, and B.H. Liu, Microstructure Simulation on Recrystallization of an As-cast Nickel Based Single Crystal Superalloy, Comput. Mater. Sci., 2015, 107, p 122–133CrossRef Z.L. Li, Q.Y. Xu, and B.H. Liu, Microstructure Simulation on Recrystallization of an As-cast Nickel Based Single Crystal Superalloy, Comput. Mater. Sci., 2015, 107, p 122–133CrossRef
Metadaten
Titel
Cellular Automaton Modeling of Dynamic Recrystallization of Nimonic 80A Superalloy Based on Inhomogeneous Distribution of Dislocations Inside Grains
verfasst von
Qianhong Xu
Chi Zhang
Liwen Zhang
Wenfei Shen
Qing Yang
Publikationsdatum
24.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3592-3

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Engineering and Performance 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.