Skip to main content
Erschienen in: Cellulose 4/2023

07.01.2023 | Review Paper

Cellulose-based fibrous materials for self-powered wearable pressure sensor: a mini review

verfasst von: Miaomiao Zhu, Jichao Zhang, Wenxuan Xu, Ranhua Xiong, Chaobo Huang

Erschienen in: Cellulose | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapid development in wearable pressure sensors, self-powered pressure sensor based on piezoelectric and triboelectric effect have recently attracted great attention to overcome the limitation of conventional hard power sources. In consideration of sustainable development, environmentally friendly and biosafety, cellulose fibrous materials with good biocompatibility and biodegradability are becoming a promising versatile platform for designing and manufacturing self-powered pressure sensor. However, poor hydrophobicity, weak polarity, and insufficient functionalization on cellulose surface partly restricts the development of highly sensitive sensors to a certain extent. Much work is devoted to solving these problems. This minireview provides an overview of cellulose fibrous materials based piezoelectric and triboelectric self-powered pressure sensor. Following a brief introduction to the significance of the cellulose fibrous materials based self-powered pressure sensor, the self-powered sensing mechanism and cellulose based fibrous piezoelectric and triboelectric material for self-powered pressure sensor have been highlighted, including fabrication methods, sensing performance, and its applications. Furthermore, the challenges and future prospects of the cellulose fibrous materials based self-powered pressure sensors are also discussed. Finally, given that some advanced cellulose fibrous piezoelectric and triboelectric sensing materials exist for detecting external pressure, it is believed that these materials will make a significant contribution in intelligent wearable sensing field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aaryashree, Sahoo S, Walke P, Nayak SK, Rout CS, Late DJ (2021) Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res 14:3669–3689CrossRef Aaryashree, Sahoo S, Walke P, Nayak SK, Rout CS, Late DJ (2021) Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res 14:3669–3689CrossRef
Zurück zum Zitat Annamalai PK, Nanjundan AK, Dubal DP, Baek JB (2021) An overview of cellulose-based nanogenerators. Adv Mater Technol 6:2001164CrossRef Annamalai PK, Nanjundan AK, Dubal DP, Baek JB (2021) An overview of cellulose-based nanogenerators. Adv Mater Technol 6:2001164CrossRef
Zurück zum Zitat Azimi B, Milazzo M, Lazzeri A, Berrettini S, Uddin MJ, Qin Z, Buehler MJ, Danti S (2020) Electrospinning piezoelectric fibers for biocompatible devices. Adv Healthc Mater 9:e1901287PubMedCrossRef Azimi B, Milazzo M, Lazzeri A, Berrettini S, Uddin MJ, Qin Z, Buehler MJ, Danti S (2020) Electrospinning piezoelectric fibers for biocompatible devices. Adv Healthc Mater 9:e1901287PubMedCrossRef
Zurück zum Zitat Bairagi S, Ghosh S, Ali SW (2020) A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: electricity generation from pomelo fruit membrane. Sci Rep 10:12121PubMedPubMedCentralCrossRef Bairagi S, Ghosh S, Ali SW (2020) A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: electricity generation from pomelo fruit membrane. Sci Rep 10:12121PubMedPubMedCentralCrossRef
Zurück zum Zitat Bethke K, Palantöken S, Andrei V, Roß M, Raghuwanshi VS, Kettemann F, Greis K, Ingber TTK, Stückrath JB, Valiyaveettil S, Rademann K (2018) Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv Funct Mater 28:1800409CrossRef Bethke K, Palantöken S, Andrei V, Roß M, Raghuwanshi VS, Kettemann F, Greis K, Ingber TTK, Stückrath JB, Valiyaveettil S, Rademann K (2018) Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv Funct Mater 28:1800409CrossRef
Zurück zum Zitat Cao X, Xiong Y, Sun J, Zhu X, Sun Q, Wang ZL (2021) Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv Funct Mater 31:2102983CrossRef Cao X, Xiong Y, Sun J, Zhu X, Sun Q, Wang ZL (2021) Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv Funct Mater 31:2102983CrossRef
Zurück zum Zitat Chen S, Jiang J, Xu F, Gong S (2019) Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human–machine interaction. Nano Energy 61:69–77CrossRef Chen S, Jiang J, Xu F, Gong S (2019) Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human–machine interaction. Nano Energy 61:69–77CrossRef
Zurück zum Zitat Chen C, Zhao S, Pan C, Zi Y, Wang F, Yang C, Wang ZL (2022) A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal. Nat Commun 13:1391PubMedPubMedCentralCrossRef Chen C, Zhao S, Pan C, Zi Y, Wang F, Yang C, Wang ZL (2022) A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal. Nat Commun 13:1391PubMedPubMedCentralCrossRef
Zurück zum Zitat Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218PubMedCrossRef Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218PubMedCrossRef
Zurück zum Zitat Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870PubMedCrossRef Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870PubMedCrossRef
Zurück zum Zitat Dan L, Shi S, Chung H-J, Elias A (2019) Porous polydimethylsiloxane–silver nanowire devices for wearable pressure sensors. ACS Appl Nano Mater 2:4869–4878CrossRef Dan L, Shi S, Chung H-J, Elias A (2019) Porous polydimethylsiloxane–silver nanowire devices for wearable pressure sensors. ACS Appl Nano Mater 2:4869–4878CrossRef
Zurück zum Zitat Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrostat 62:277–290CrossRef Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrostat 62:277–290CrossRef
Zurück zum Zitat Fan F-R, Tian Z-Q, Wang L, Z (2012) Flexible triboelectric generator. Nano Energy 1:328–334CrossRef Fan F-R, Tian Z-Q, Wang L, Z (2012) Flexible triboelectric generator. Nano Energy 1:328–334CrossRef
Zurück zum Zitat Fan J, Zhang S, Li F, Yang Y, Du M (2020) Recent advances in cellulose-based membranes for their sensing applications. Cellulose (Lond) 27:9157–9179PubMedCrossRef Fan J, Zhang S, Li F, Yang Y, Du M (2020) Recent advances in cellulose-based membranes for their sensing applications. Cellulose (Lond) 27:9157–9179PubMedCrossRef
Zurück zum Zitat Fu R, Chen S, Lin Y, Zhang S, Jiang J, Li Q, Gu Y (2017) Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals. Mater Lett 187:86–88CrossRef Fu R, Chen S, Lin Y, Zhang S, Jiang J, Li Q, Gu Y (2017) Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals. Mater Lett 187:86–88CrossRef
Zurück zum Zitat Guan Y, Bai M, Li Q, Li W, Liu G, Liu C, Chen Y, Lin Y, Hui Y, Wei R (2022) A plantar wearable pressure sensor based on hybrid lead zirconate-titanate/microfibrillated cellulose piezoelectric composite films for human health monitoring. Lab Chip 22:2376–2391PubMedCrossRef Guan Y, Bai M, Li Q, Li W, Liu G, Liu C, Chen Y, Lin Y, Hui Y, Wei R (2022) A plantar wearable pressure sensor based on hybrid lead zirconate-titanate/microfibrillated cellulose piezoelectric composite films for human health monitoring. Lab Chip 22:2376–2391PubMedCrossRef
Zurück zum Zitat Hong C-H, Ki S-J, Jeon J-H, Che H-l, Park I-K, Kee C-D, Oh I-K (2013) Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Compos Sci Technol 87:135–141CrossRef Hong C-H, Ki S-J, Jeon J-H, Che H-l, Park I-K, Kee C-D, Oh I-K (2013) Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Compos Sci Technol 87:135–141CrossRef
Zurück zum Zitat Hosseini ES, Manjakkal L, Shakthivel D, Dahiya R (2020) Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces 12:9008–9016PubMedPubMedCentralCrossRef Hosseini ES, Manjakkal L, Shakthivel D, Dahiya R (2020) Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces 12:9008–9016PubMedPubMedCentralCrossRef
Zurück zum Zitat Huang J, Hao Y, Zhao M, Li W, Huang F, Wei Q (2021) All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl Mater Interfaces 13:24774–24784PubMedCrossRef Huang J, Hao Y, Zhao M, Li W, Huang F, Wei Q (2021) All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl Mater Interfaces 13:24774–24784PubMedCrossRef
Zurück zum Zitat Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q (2022) Integrated self-powered sensors based on 2D material devices. Adv Funct Mater 32:2206900CrossRef Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q (2022) Integrated self-powered sensors based on 2D material devices. Adv Funct Mater 32:2206900CrossRef
Zurück zum Zitat Kim J, Chou EF, Le J, Wong S, Chu M, Khine M (2019) Soft wearable pressure sensors for beat-to-beat blood pressure monitoring. Adv Healthc Mater 8:e1900109PubMedCrossRef Kim J, Chou EF, Le J, Wong S, Chu M, Khine M (2019) Soft wearable pressure sensors for beat-to-beat blood pressure monitoring. Adv Healthc Mater 8:e1900109PubMedCrossRef
Zurück zum Zitat Lai YC, Wu HM, Lin HC, Chang CL, Chou HH, Hsiao YC, Wu YC (2019) Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self‐powered electronic skins. Adv Funct Mater 29:1904626CrossRef Lai YC, Wu HM, Lin HC, Chang CL, Chou HH, Hsiao YC, Wu YC (2019) Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self‐powered electronic skins. Adv Funct Mater 29:1904626CrossRef
Zurück zum Zitat Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T (2015) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27:2433–2439PubMedCrossRef Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T (2015) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27:2433–2439PubMedCrossRef
Zurück zum Zitat Lei D, Liu N, Su T, Wang L, Su J, Zhang Z, Gao Y (2020) Research progress of MXenes-based wearable pressure sensors. APL Mater 8:110702CrossRef Lei D, Liu N, Su T, Wang L, Su J, Zhang Z, Gao Y (2020) Research progress of MXenes-based wearable pressure sensors. APL Mater 8:110702CrossRef
Zurück zum Zitat Lei H, Chen Y, Gao Z, Wen Z, Sun X (2021) Advances in self-powered triboelectric pressure sensors. J Mater Chem A 9:20100–20130CrossRef Lei H, Chen Y, Gao Z, Wen Z, Sun X (2021) Advances in self-powered triboelectric pressure sensors. J Mater Chem A 9:20100–20130CrossRef
Zurück zum Zitat Li Z, Zhu M, Qiu Q, Yu J, Ding B (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733CrossRef Li Z, Zhu M, Qiu Q, Yu J, Ding B (2018) Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53:726–733CrossRef
Zurück zum Zitat Li J, Chen S, Liu W, Fu R, Tu S, Zhao Y, Dong L, Yan B, Gu Y (2019a) High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly(vinylidene fluoride) composite membranes. J Phys Chem C 123:11378–11387CrossRef Li J, Chen S, Liu W, Fu R, Tu S, Zhao Y, Dong L, Yan B, Gu Y (2019a) High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly(vinylidene fluoride) composite membranes. J Phys Chem C 123:11378–11387CrossRef
Zurück zum Zitat Li M, Jie Y, Shao L-H, Guo Y, Cao X, Wang N, Wang ZL (2019b) All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res 12:1831–1835CrossRef Li M, Jie Y, Shao L-H, Guo Y, Cao X, Wang N, Wang ZL (2019b) All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res 12:1831–1835CrossRef
Zurück zum Zitat Li W, Yang T, Liu C, Huang Y, Chen C, Pan H, Xie G, Tai H, Jiang Y, Wu Y, Kang Z, Chen L, Su Y, Hong Z (2022) Optimizing piezoelectric nanocomposites by high-throughput phase-field simulation and machine learning. Adv Sci 9:2105550CrossRef Li W, Yang T, Liu C, Huang Y, Chen C, Pan H, Xie G, Tai H, Jiang Y, Wu Y, Kang Z, Chen L, Su Y, Hong Z (2022) Optimizing piezoelectric nanocomposites by high-throughput phase-field simulation and machine learning. Adv Sci 9:2105550CrossRef
Zurück zum Zitat Lin X, Xue H, Li F, Mei H, Zhao H, Zhang T (2022) All-nanofibrous ionic capacitive pressure sensor for wearable applications. ACS Appl Mater Interfaces 14:31385–31395PubMedCrossRef Lin X, Xue H, Li F, Mei H, Zhao H, Zhang T (2022) All-nanofibrous ionic capacitive pressure sensor for wearable applications. ACS Appl Mater Interfaces 14:31385–31395PubMedCrossRef
Zurück zum Zitat Liu B, Libanori A, Zhou Y, Xiao X, Xie G, Zhao X, Su Y, Wang S, Zhen Y, Duan Z, Liang J, Jiang Y, Tai H, Chen J (2022a) Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis. ACS Appl Mater Interfaces 14:7301–7310PubMedCrossRef Liu B, Libanori A, Zhou Y, Xiao X, Xie G, Zhao X, Su Y, Wang S, Zhen Y, Duan Z, Liang J, Jiang Y, Tai H, Chen J (2022a) Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis. ACS Appl Mater Interfaces 14:7301–7310PubMedCrossRef
Zurück zum Zitat Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022b) Cellulose nanopaper: fabrication, functionalization, and applications. Nanomicro Lett 14:104PubMedPubMedCentral Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022b) Cellulose nanopaper: fabrication, functionalization, and applications. Nanomicro Lett 14:104PubMedPubMedCentral
Zurück zum Zitat Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2947–2958CrossRef Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2947–2958CrossRef
Zurück zum Zitat Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B (2020) Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl Mater Interfaces 12:1597–1605PubMedCrossRef Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B (2020) Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl Mater Interfaces 12:1597–1605PubMedCrossRef
Zurück zum Zitat Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6:7547–7553PubMedCrossRef Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6:7547–7553PubMedCrossRef
Zurück zum Zitat McCarty LS, Whitesides GM (2008) Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew Chem Int Ed Engl 47:2188–2207PubMedCrossRef McCarty LS, Whitesides GM (2008) Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew Chem Int Ed Engl 47:2188–2207PubMedCrossRef
Zurück zum Zitat Meng K, Xiao X, Liu Z, Shen S, Tat T, Wang Z, Lu C, Ding W, He X, Yang J, Chen J (2022a) Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv Mater e2202478 Meng K, Xiao X, Liu Z, Shen S, Tat T, Wang Z, Lu C, Ding W, He X, Yang J, Chen J (2022a) Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv Mater e2202478
Zurück zum Zitat Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J (2022b) Wearable pressure sensors for pulse wave monitoring. Adv Mater 34:e2109357PubMedCrossRef Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J (2022b) Wearable pressure sensors for pulse wave monitoring. Adv Mater 34:e2109357PubMedCrossRef
Zurück zum Zitat Mishra S, Unnikrishnan L, Nayak SK, Mohanty S (2019) Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol Mater Eng 304:1800463CrossRef Mishra S, Unnikrishnan L, Nayak SK, Mohanty S (2019) Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol Mater Eng 304:1800463CrossRef
Zurück zum Zitat Miyashiro D, Hamano R, Umemura K (2020) A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials 10:186PubMedPubMedCentralCrossRef Miyashiro D, Hamano R, Umemura K (2020) A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials 10:186PubMedPubMedCentralCrossRef
Zurück zum Zitat Mo X, Zhou H, Li W, Xu Z, Duan J, Huang L, Hu B, Zhou J (2019) Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 65:104033CrossRef Mo X, Zhou H, Li W, Xu Z, Duan J, Huang L, Hu B, Zhou J (2019) Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 65:104033CrossRef
Zurück zum Zitat Nie S, Hao N, Zhang K, Xing C, Wang S (2020) Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose 27:4173–4187CrossRef Nie S, Hao N, Zhang K, Xing C, Wang S (2020) Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose 27:4173–4187CrossRef
Zurück zum Zitat Nie S, Fu Q, Lin X, Zhang C, Lu Y, Wang S (2021) Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem Eng J 404:126512CrossRef Nie S, Fu Q, Lin X, Zhang C, Lu Y, Wang S (2021) Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem Eng J 404:126512CrossRef
Zurück zum Zitat Niu Z, Cheng W, Cao M, Wang D, Wang Q, Han J, Long Y, Han G (2021) Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy 87:106175CrossRef Niu Z, Cheng W, Cao M, Wang D, Wang Q, Han J, Long Y, Han G (2021) Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy 87:106175CrossRef
Zurück zum Zitat Pan H, Lee TW (2021) Recent progress in development of wearable pressure sensors derived from Biological materials. Adv Healthc Mater 10:e2100460PubMedCrossRef Pan H, Lee TW (2021) Recent progress in development of wearable pressure sensors derived from Biological materials. Adv Healthc Mater 10:e2100460PubMedCrossRef
Zurück zum Zitat Pan R, Xuan W, Chen J, Dong S, Jin H, Wang X, Li H, Luo J (2018) Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45:193–202CrossRef Pan R, Xuan W, Chen J, Dong S, Jin H, Wang X, Li H, Luo J (2018) Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45:193–202CrossRef
Zurück zum Zitat Parandeh S, Kharaziha M, Karimzadeh F (2019) An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy 59:412–421CrossRef Parandeh S, Kharaziha M, Karimzadeh F (2019) An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy 59:412–421CrossRef
Zurück zum Zitat Peng Z, Zheng S, Zhang X, Yang J, Wu S, Ding C, Lei L, Chen L, Feng G (2022) Flexible wearable pressure sensor based on collagen fiber material. Micromachines 13:694PubMedPubMedCentralCrossRef Peng Z, Zheng S, Zhang X, Yang J, Wu S, Ding C, Lei L, Chen L, Feng G (2022) Flexible wearable pressure sensor based on collagen fiber material. Micromachines 13:694PubMedPubMedCentralCrossRef
Zurück zum Zitat Ponnamma D, Parangusan H, Tanvir A, AlMa’adeed MAA (2019) Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater Design 184:108176CrossRef Ponnamma D, Parangusan H, Tanvir A, AlMa’adeed MAA (2019) Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater Design 184:108176CrossRef
Zurück zum Zitat Rajabi-Abhari A, Kim JN, Lee J, Tabassian R, Mahato M, Youn HJ, Lee H, Oh IK (2021) Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl Mater Interfaces 13:219–232PubMedCrossRef Rajabi-Abhari A, Kim JN, Lee J, Tabassian R, Mahato M, Youn HJ, Lee H, Oh IK (2021) Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl Mater Interfaces 13:219–232PubMedCrossRef
Zurück zum Zitat Rajala S, Siponkoski T, Sarlin E, Mettanen M, Vuoriluoto M, Pammo A, Juuti J, Rojas OJ, Franssila S, Tuukkanen S (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8:15607–15614PubMedCrossRef Rajala S, Siponkoski T, Sarlin E, Mettanen M, Vuoriluoto M, Pammo A, Juuti J, Rojas OJ, Franssila S, Tuukkanen S (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8:15607–15614PubMedCrossRef
Zurück zum Zitat Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264CrossRef Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264CrossRef
Zurück zum Zitat Scheffler S, Poulin P (2022) Piezoelectric fibers: processing and challenges. ACS Appl Mater Interfaces 14:16961–16982PubMedCrossRef Scheffler S, Poulin P (2022) Piezoelectric fibers: processing and challenges. ACS Appl Mater Interfaces 14:16961–16982PubMedCrossRef
Zurück zum Zitat Sheng Z, Qiuxiao Z, Tingting W, Xuchong W, Xiaoping S, Yuhe W, Lianxin L (2022) Contact electrification property controlled by amino modification of cellulose fibers. Cellulose 29:3195–3208CrossRef Sheng Z, Qiuxiao Z, Tingting W, Xuchong W, Xiaoping S, Yuhe W, Lianxin L (2022) Contact electrification property controlled by amino modification of cellulose fibers. Cellulose 29:3195–3208CrossRef
Zurück zum Zitat Su Y, Li W, Li Y, Chen C, Pan H, Xie G, Conta G, Ferrier S, Zhao X, Chen G, Tai H, Jiang Y, Chen J (2021) Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 33:2101262 Su Y, Li W, Li Y, Chen C, Pan H, Xie G, Conta G, Ferrier S, Zhao X, Chen G, Tai H, Jiang Y, Chen J (2021) Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 33:2101262
Zurück zum Zitat Su Y, Li W, Cheng X, Zhou Y, Yang S, Zhang X, Chen C, Yang T, Pan H, Xie G, Chen G, Zhao X, Xiao X, Li B, Tai H, Jiang Y, Chen L, Li F, Chen J (2022) High performance piezoelectric composites via β phase programming. Nat Commun 13:4867PubMedPubMedCentralCrossRef Su Y, Li W, Cheng X, Zhou Y, Yang S, Zhang X, Chen C, Yang T, Pan H, Xie G, Chen G, Zhao X, Xiao X, Li B, Tai H, Jiang Y, Chen L, Li F, Chen J (2022) High performance piezoelectric composites via β phase programming. Nat Commun 13:4867PubMedPubMedCentralCrossRef
Zurück zum Zitat Sun B, Chao D, Wang C (2021) Piezoelectric nanogenerator based on electrospun cellulose acetate/nanocellulose crystal composite membranes for energy harvesting application. Chem Res Chin Univ 38:1005–1011CrossRef Sun B, Chao D, Wang C (2021) Piezoelectric nanogenerator based on electrospun cellulose acetate/nanocellulose crystal composite membranes for energy harvesting application. Chem Res Chin Univ 38:1005–1011CrossRef
Zurück zum Zitat Tan C, Dong Z, Li Y, Zhao H, Huang X, Zhou Z, Jiang JW, Long YZ, Jiang P, Zhang TY, Sun B (2020) A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat Commun 11:3530PubMedPubMedCentralCrossRef Tan C, Dong Z, Li Y, Zhao H, Huang X, Zhou Z, Jiang JW, Long YZ, Jiang P, Zhang TY, Sun B (2020) A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat Commun 11:3530PubMedPubMedCentralCrossRef
Zurück zum Zitat Tan Y, Yang K, Wang B, Li H, Wang L, Wang C (2021) High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res 14:3969–3976CrossRef Tan Y, Yang K, Wang B, Li H, Wang L, Wang C (2021) High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res 14:3969–3976CrossRef
Zurück zum Zitat Ullrich J, Eisenreich M, Zimmermann Y, Mayer D, Koehne N, Tschannett JF, Mahmud-Ali A, Bechtold T (2020) Piezo-sensitive fabrics from carbon black containing conductive cellulose fibres for flexible pressure sensors. Materials 13:5150PubMedPubMedCentralCrossRef Ullrich J, Eisenreich M, Zimmermann Y, Mayer D, Koehne N, Tschannett JF, Mahmud-Ali A, Bechtold T (2020) Piezo-sensitive fabrics from carbon black containing conductive cellulose fibres for flexible pressure sensors. Materials 13:5150PubMedPubMedCentralCrossRef
Zurück zum Zitat Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412CrossRef Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412CrossRef
Zurück zum Zitat Veeralingam S, Bharti DK, Badhulika S (2022) Lead-free PDMS/PPy based low-cost wearable piezoelectric nanogenerator for self-powered pulse pressure sensor application. Mater Res Bull 151:111815CrossRef Veeralingam S, Bharti DK, Badhulika S (2022) Lead-free PDMS/PPy based low-cost wearable piezoelectric nanogenerator for self-powered pulse pressure sensor application. Mater Res Bull 151:111815CrossRef
Zurück zum Zitat Wang X, Yu J, Cui Y, Li W (2021a) Research progress of flexible wearable pressure sensors. Sens Actuators A Phys 330:112838CrossRef Wang X, Yu J, Cui Y, Li W (2021a) Research progress of flexible wearable pressure sensors. Sens Actuators A Phys 330:112838CrossRef
Zurück zum Zitat Wang Z, Lee YH, Kim SW, Seo JY, Lee SY, Nyholm L (2021b) Why cellulose-based electrochemical energy storage devices? Adv Mater 33:e2000892PubMedCrossRef Wang Z, Lee YH, Kim SW, Seo JY, Lee SY, Nyholm L (2021b) Why cellulose-based electrochemical energy storage devices? Adv Mater 33:e2000892PubMedCrossRef
Zurück zum Zitat Wang L, Cheng T, Lian W, Zhang M, Lu B, Dong B, Tan K, Liu C, Shen C (2022) Flexible layered cotton cellulose-based nanofibrous membranes for piezoelectric energy harvesting and self-powered sensing. Carbohydr Polym 275:118740PubMedCrossRef Wang L, Cheng T, Lian W, Zhang M, Lu B, Dong B, Tan K, Liu C, Shen C (2022) Flexible layered cotton cellulose-based nanofibrous membranes for piezoelectric energy harvesting and self-powered sensing. Carbohydr Polym 275:118740PubMedCrossRef
Zurück zum Zitat Wei Q, Chen G, Pan H, Ye Z, Au C, Chen C, Zhao X, Zhou Y, Xiao X, Tai H, Jiang Y, Xie G, Su Y, Chen J (2021) MXene-Sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods 6:2101051CrossRef Wei Q, Chen G, Pan H, Ye Z, Au C, Chen C, Zhao X, Zhou Y, Xiao X, Tai H, Jiang Y, Xie G, Su Y, Chen J (2021) MXene-Sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods 6:2101051CrossRef
Zurück zum Zitat Xia K, Zhu Z, Zhang H, Du C, Xu Z, Wang R (2018) Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 50:571–580CrossRef Xia K, Zhu Z, Zhang H, Du C, Xu Z, Wang R (2018) Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 50:571–580CrossRef
Zurück zum Zitat Xu G, Leng G, Yang C, Qin Y, Wu Y, Chen H, Cong L, Ding Y (2017) Sodium nitrate–diatomite composite materials for thermal energy storage. Sol Energy 146:494–502CrossRef Xu G, Leng G, Yang C, Qin Y, Wu Y, Chen H, Cong L, Ding Y (2017) Sodium nitrate–diatomite composite materials for thermal energy storage. Sol Energy 146:494–502CrossRef
Zurück zum Zitat Ye L, Chen L, Yu J, Tu S, Yan B, Zhao Y, Bai X, Gu Y, Chen S (2021) High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite membranes for energy harvesting application. J Mater Sci Mater Electron 32:3966–3978 Ye L, Chen L, Yu J, Tu S, Yan B, Zhao Y, Bai X, Gu Y, Chen S (2021) High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite membranes for energy harvesting application. J Mater Sci Mater Electron 32:3966–3978
Zurück zum Zitat Yi Z, Liu Z, Li W, Ruan T, Chen X, Liu J, Yang B, Zhang W (2022) Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv Mater 34:e2110291PubMedCrossRef Yi Z, Liu Z, Li W, Ruan T, Chen X, Liu J, Yang B, Zhang W (2022) Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv Mater 34:e2110291PubMedCrossRef
Zurück zum Zitat Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336PubMedCrossRef Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336PubMedCrossRef
Zurück zum Zitat Zhang X-S, Su M, Brugger J, Kim B (2017) Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications. Nano Energy 33:393–401CrossRef Zhang X-S, Su M, Brugger J, Kim B (2017) Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications. Nano Energy 33:393–401CrossRef
Zurück zum Zitat Zhang G, Liao Q, Ma M, Gao F, Zhang Z, Kang Z, Zhang Y (2018) Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 52:501–509CrossRef Zhang G, Liao Q, Ma M, Gao F, Zhang Z, Kang Z, Zhang Y (2018) Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 52:501–509CrossRef
Zurück zum Zitat Zhang C, Lin X, Zhang N, Lu Y, Wu Z, Liu G, Nie S (2019) Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy 66:104126CrossRef Zhang C, Lin X, Zhang N, Lu Y, Wu Z, Liu G, Nie S (2019) Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy 66:104126CrossRef
Zurück zum Zitat Zhang C, Mo J, Fu Q, Liu Y, Wang S, Nie S (2021a) Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81:105637CrossRef Zhang C, Mo J, Fu Q, Liu Y, Wang S, Nie S (2021a) Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81:105637CrossRef
Zurück zum Zitat Zhang J, Hu S, Shi Z, Wang Y, Lei Y, Han J, Xiong Y, Sun J, Zheng L, Sun Q, Yang G, Wang ZL (2021b) Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 89:106354CrossRef Zhang J, Hu S, Shi Z, Wang Y, Lei Y, Han J, Xiong Y, Sun J, Zheng L, Sun Q, Yang G, Wang ZL (2021b) Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 89:106354CrossRef
Zurück zum Zitat Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021c) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884CrossRef Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021c) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884CrossRef
Zurück zum Zitat Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H (2021) Cellulose-based flexible functional materials for emerging Intelligent electronics. Adv Mater 33:e2000619PubMedCrossRef Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H (2021) Cellulose-based flexible functional materials for emerging Intelligent electronics. Adv Mater 33:e2000619PubMedCrossRef
Zurück zum Zitat Zhao C, Wang Y, Tang G, Ru J, Zhu Z, Li B, Guo CF, Li L, Zhu D (2022a) Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater 32:2110417CrossRef Zhao C, Wang Y, Tang G, Ru J, Zhu Z, Li B, Guo CF, Li L, Zhu D (2022a) Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv Funct Mater 32:2110417CrossRef
Zurück zum Zitat Zhao T, Fu Y, Sun C, Zhao X, Jiao C, Du A, Wang Q, Mao Y, Liu B (2022b) Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens Bioelectron 205:114115PubMedCrossRef Zhao T, Fu Y, Sun C, Zhao X, Jiao C, Du A, Wang Q, Mao Y, Liu B (2022b) Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens Bioelectron 205:114115PubMedCrossRef
Zurück zum Zitat Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q, Cheng H (2020) Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron 168:112569PubMedCrossRef Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q, Cheng H (2020) Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron 168:112569PubMedCrossRef
Zurück zum Zitat Zhu M, Lou M, Abdalla I, Yu J, Li Z, Ding B (2020a) Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 69:104429CrossRef Zhu M, Lou M, Abdalla I, Yu J, Li Z, Ding B (2020a) Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy 69:104429CrossRef
Zurück zum Zitat Zhu M, Lou M, Yu J, Li Z, Ding B (2020b) Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 78:105208CrossRef Zhu M, Lou M, Yu J, Li Z, Ding B (2020b) Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 78:105208CrossRef
Zurück zum Zitat Zhu M, Wang Y, Lou M, Yu J, Li Z, Ding B (2021) Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy 81:105669CrossRef Zhu M, Wang Y, Lou M, Yu J, Li Z, Ding B (2021) Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy 81:105669CrossRef
Zurück zum Zitat Zhu M, Li J, Yu J, Li Z, Ding B (2022a) Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Int Ed Engl 61:e202200226PubMed Zhu M, Li J, Yu J, Li Z, Ding B (2022a) Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Int Ed Engl 61:e202200226PubMed
Zurück zum Zitat Zhu M, Yu J, Li Z, Ding B (2022b) Self-healing fibrous membranes. Angew Chem Int Ed Engl 61:e202208949PubMedCrossRef Zhu M, Yu J, Li Z, Ding B (2022b) Self-healing fibrous membranes. Angew Chem Int Ed Engl 61:e202208949PubMedCrossRef
Metadaten
Titel
Cellulose-based fibrous materials for self-powered wearable pressure sensor: a mini review
verfasst von
Miaomiao Zhu
Jichao Zhang
Wenxuan Xu
Ranhua Xiong
Chaobo Huang
Publikationsdatum
07.01.2023
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2023
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-022-05023-5

Weitere Artikel der Ausgabe 4/2023

Cellulose 4/2023 Zur Ausgabe