Skip to main content
Erschienen in: Cellulose 7/2022

17.03.2022 | Original Research

Cellulose nanofibrils with a three-dimensional interpenetrating network structure for recycled paper enhancement

verfasst von: Jinlong Wang, Yiting Wu, Wei Chen, Haiqi Wang, Tengteng Dong, Feitian Bai, Xusheng Li

Erschienen in: Cellulose | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical strength degradation of recycled paper (RP) caused by the keratinization of recycled fibers is a basic problem to be solved urgently in the waste paper recycling industry. Compensating RP strength in a sustainable pathway is imperative and challenging. Cellulose nanofibrils with a three-dimensional interpenetrating network structure (3DIPN-CNFs) developed as a new family of strength additives for RP were demonstrated herein. The 3DIPN-CNFs were obtained from bagasse in a single bath treatment with H3PO4 and H2O2 under mild aqueous conditions. The tensile index and tear index of the RP with 3DIPN-CNFs were increased by 78% and 39%, respectively. 3DIPN-CNFs are less expensive and easier to obtain than Isolated-CNFs because homogenizing mechanical treatment is not required and are expected to become a sustainable strength additive for RP.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97:725–730PubMedCrossRef Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97:725–730PubMedCrossRef
Zurück zum Zitat Alexander LE (1979) X-ray diffraction methods in polymer science. Robert E Kreiger Publishing Co, Humington, New York, pp 423–424 Alexander LE (1979) X-ray diffraction methods in polymer science. Robert E Kreiger Publishing Co, Humington, New York, pp 423–424
Zurück zum Zitat Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 2. Acidic Solvents Carbohydr Polym 151:707–715PubMedCrossRef Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 2. Acidic Solvents Carbohydr Polym 151:707–715PubMedCrossRef
Zurück zum Zitat Arminen H, Hujala M, Puumalainen K, Tuppura A, Toppinen A (2013) An update on inter-country differences in recovery and utilization of recycled paper. Resour Conserv Recycl 78:124–135CrossRef Arminen H, Hujala M, Puumalainen K, Tuppura A, Toppinen A (2013) An update on inter-country differences in recovery and utilization of recycled paper. Resour Conserv Recycl 78:124–135CrossRef
Zurück zum Zitat Boufi S, González I, Delgado-Aguilar M, Tarrès Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166PubMedCrossRef Boufi S, González I, Delgado-Aguilar M, Tarrès Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166PubMedCrossRef
Zurück zum Zitat Brodin FW, Eriksen Ø (2015) Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties. Nord Pulp Paper Res J 30:443–451CrossRef Brodin FW, Eriksen Ø (2015) Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties. Nord Pulp Paper Res J 30:443–451CrossRef
Zurück zum Zitat Cai C, Luo B, Liu Y, Fu Q, Liu T, Wang S, Nie S (2021) Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater Today, In press. Cai C, Luo B, Liu Y, Fu Q, Liu T, Wang S, Nie S (2021) Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater Today, In press.
Zurück zum Zitat Campano C, Merayo N, Negro C, Blanco Á (2018) Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int J Biol Macromol 114:1077–1083PubMedCrossRef Campano C, Merayo N, Negro C, Blanco Á (2018) Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int J Biol Macromol 114:1077–1083PubMedCrossRef
Zurück zum Zitat Charani PR, Dehghani-Firouzabadi M, Afra E, Blademo Å, Naderi A, Lindström T (2013) Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose 20:2559–2567CrossRef Charani PR, Dehghani-Firouzabadi M, Afra E, Blademo Å, Naderi A, Lindström T (2013) Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose 20:2559–2567CrossRef
Zurück zum Zitat China Technical Association of Paper Industry (2010) Almanac of China paper industry. China Light Industry Press, Beijing China Technical Association of Paper Industry (2010) Almanac of China paper industry. China Light Industry Press, Beijing
Zurück zum Zitat Delgado-Aguilar M, González I, Pèlach M, De La Fuente E, Negro C, Mutjé P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802CrossRef Delgado-Aguilar M, González I, Pèlach M, De La Fuente E, Negro C, Mutjé P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802CrossRef
Zurück zum Zitat Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Paper Res J 23:299–304CrossRef Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Paper Res J 23:299–304CrossRef
Zurück zum Zitat Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814CrossRef Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814CrossRef
Zurück zum Zitat Fu Q, Liu Y, Mo J, Lu Y, Cai C et al. (2021) Improved capture and removal efficiency of gaseous acetaldehyde by a self-powered photocatalytic system with an external electric field. ACS nano Fu Q, Liu Y, Mo J, Lu Y, Cai C et al. (2021) Improved capture and removal efficiency of gaseous acetaldehyde by a self-powered photocatalytic system with an external electric field. ACS nano
Zurück zum Zitat Hai LV, Zhai L, Kim HC, Panicker PS, Pham DH, Kim J (2020) Chitosan nanofiber and cellulose nanofiber blended composite applicable for active food packaging. Nanomaterials 10:1752PubMedCentralCrossRef Hai LV, Zhai L, Kim HC, Panicker PS, Pham DH, Kim J (2020) Chitosan nanofiber and cellulose nanofiber blended composite applicable for active food packaging. Nanomaterials 10:1752PubMedCentralCrossRef
Zurück zum Zitat Hassan EA, Hassan ML, Oksman K (2011) Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci 43:76–82 Hassan EA, Hassan ML, Oksman K (2011) Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci 43:76–82
Zurück zum Zitat Hassan ML, Bras J, Mauret E, Fadel SM, Hassan EA, El-Wakil NA (2015) Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Ind Crop Prod 64:9–15CrossRef Hassan ML, Bras J, Mauret E, Fadel SM, Hassan EA, El-Wakil NA (2015) Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Ind Crop Prod 64:9–15CrossRef
Zurück zum Zitat Hassan EA, Hassan ML, Abou-Zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crop Prod 93:219–226CrossRef Hassan EA, Hassan ML, Abou-Zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crop Prod 93:219–226CrossRef
Zurück zum Zitat Hollertz R, Durán VL, Larsson PA, Wågberg L (2017) Chemically modified cellulose micro-and nanofibrils as paper-strength additives. Cellulose 24:3883–3899CrossRef Hollertz R, Durán VL, Larsson PA, Wågberg L (2017) Chemically modified cellulose micro-and nanofibrils as paper-strength additives. Cellulose 24:3883–3899CrossRef
Zurück zum Zitat Hubbe MA (2014) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763 Hubbe MA (2014) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85PubMedCrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85PubMedCrossRef
Zurück zum Zitat Jiang Y, Wang Z, Liu X, Yang Q, Huang Q et al (2020) Highly transparent, UV-shielding, and water-resistant lignocellulose nanopaper from agro-industrial waste for green optoelectronics. ACS Sustain Chem Eng 8:17508–17519CrossRef Jiang Y, Wang Z, Liu X, Yang Q, Huang Q et al (2020) Highly transparent, UV-shielding, and water-resistant lignocellulose nanopaper from agro-industrial waste for green optoelectronics. ACS Sustain Chem Eng 8:17508–17519CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50:5438–5466CrossRef
Zurück zum Zitat Li X, Wang J, Yan D, Yin Y, Wang S (2020) Influence of sodium carbonate addition on weight loss of bagasse alkaline black liquor during pyrolysis. BioResources 15:2428–2441CrossRef Li X, Wang J, Yan D, Yin Y, Wang S (2020) Influence of sodium carbonate addition on weight loss of bagasse alkaline black liquor during pyrolysis. BioResources 15:2428–2441CrossRef
Zurück zum Zitat Lin X, Wu Z, Zhang C, Liu S, Nie S (2018) Enzymatic pulping of lignocellulosic biomass. Ind Crop Prod 120:16–24CrossRef Lin X, Wu Z, Zhang C, Liu S, Nie S (2018) Enzymatic pulping of lignocellulosic biomass. Ind Crop Prod 120:16–24CrossRef
Zurück zum Zitat Lindman B, Medronho B, Alves L, Norgren M, Nordenskiöld L (2021) Hydrophobic interactions control the self-assembly of DNA and cellulose. Q Rev Biophys 54. Lindman B, Medronho B, Alves L, Norgren M, Nordenskiöld L (2021) Hydrophobic interactions control the self-assembly of DNA and cellulose. Q Rev Biophys 54.
Zurück zum Zitat Liu X, Jiang Y, Song X, Qin C, Wang S, Li K (2019) A bio-mechanical process for cellulose nanofiber production–towards a greener and energy conservation solution. Carbohydr Polym 208:191–199PubMedCrossRef Liu X, Jiang Y, Song X, Qin C, Wang S, Li K (2019) A bio-mechanical process for cellulose nanofiber production–towards a greener and energy conservation solution. Carbohydr Polym 208:191–199PubMedCrossRef
Zurück zum Zitat Liu Y, Mo J, Fu Q, Lu Y, Zhang N, Wang S, Nie S (2020) Enhancement of triboelectric charge density by chemical functionalization. Adv Func Mater 30:2004714CrossRef Liu Y, Mo J, Fu Q, Lu Y, Zhang N, Wang S, Nie S (2020) Enhancement of triboelectric charge density by chemical functionalization. Adv Func Mater 30:2004714CrossRef
Zurück zum Zitat Liu Y, Fu Q, Mo J, Lu Y, Cai C, Luo B, Nie S (2021) Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy 89:106369CrossRef Liu Y, Fu Q, Mo J, Lu Y, Cai C, Luo B, Nie S (2021) Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy 89:106369CrossRef
Zurück zum Zitat Mo J, Zhang C, Lu Y, Liu Y, Zhang N, Wang S, Nie S (2020) Radial piston triboelectric nanogenerator-enhanced cellulose fiber air filter for self-powered particulate matter removal. Nano Energy 78:105357CrossRef Mo J, Zhang C, Lu Y, Liu Y, Zhang N, Wang S, Nie S (2020) Radial piston triboelectric nanogenerator-enhanced cellulose fiber air filter for self-powered particulate matter removal. Nano Energy 78:105357CrossRef
Zurück zum Zitat Mourdikoudis S, Pallares RM, Thanh NT (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934PubMedCrossRef Mourdikoudis S, Pallares RM, Thanh NT (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934PubMedCrossRef
Zurück zum Zitat Nazhad MM, Paszner L (1994) Fundamentals of strength loss in recycled paper. Tappi J 77. Nazhad MM, Paszner L (1994) Fundamentals of strength loss in recycled paper. Tappi J 77.
Zurück zum Zitat Nie S, Wang S, Qin C, Yao S, Ebonka JF, Song X, Li K (2015) Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp. Bioresour Technol 196:413–417PubMedCrossRef Nie S, Wang S, Qin C, Yao S, Ebonka JF, Song X, Li K (2015) Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp. Bioresour Technol 196:413–417PubMedCrossRef
Zurück zum Zitat Nie S, Zhang C, Zhang Q, Zhang K, Zhang Y, Tao P, Wang S (2018a) Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. Ind Crop Prod 124:435–441CrossRef Nie S, Zhang C, Zhang Q, Zhang K, Zhang Y, Tao P, Wang S (2018a) Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. Ind Crop Prod 124:435–441CrossRef
Zurück zum Zitat Nie S, Zhang K, Lin X, Zhang C, Yan D, Liang H, Wang S (2018b) Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr Polym 181:1136–1142PubMedCrossRef Nie S, Zhang K, Lin X, Zhang C, Yan D, Liang H, Wang S (2018b) Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr Polym 181:1136–1142PubMedCrossRef
Zurück zum Zitat Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87:1131–1138CrossRef Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87:1131–1138CrossRef
Zurück zum Zitat Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod 23:1–8CrossRef Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod 23:1–8CrossRef
Zurück zum Zitat Salam A, Lucia LA, Jameel H (2013) A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain Chem Eng 1:1584–1592CrossRef Salam A, Lucia LA, Jameel H (2013) A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain Chem Eng 1:1584–1592CrossRef
Zurück zum Zitat Sehaqui H, Allais M, Zhou Q, Berglund LA (2011) Wood cellulose biocomposites with fibrous structures at micro-and nanoscale. Compos Sci Technol 71:382–387CrossRef Sehaqui H, Allais M, Zhou Q, Berglund LA (2011) Wood cellulose biocomposites with fibrous structures at micro-and nanoscale. Compos Sci Technol 71:382–387CrossRef
Zurück zum Zitat Su J, Mosse WK, Sharman S, Batchelor WJ, Garnier G (2013) Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites. Cellulose 20:1925–1935CrossRef Su J, Mosse WK, Sharman S, Batchelor WJ, Garnier G (2013) Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites. Cellulose 20:1925–1935CrossRef
Zurück zum Zitat Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRef Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRef
Zurück zum Zitat Tajik M, Torshizi HJ, Resalati H, Hamzeh Y (2018) Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp. Carbohydr Polym 194:1–8PubMedCrossRef Tajik M, Torshizi HJ, Resalati H, Hamzeh Y (2018) Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp. Carbohydr Polym 194:1–8PubMedCrossRef
Zurück zum Zitat Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366PubMedCrossRef Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366PubMedCrossRef
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 9:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 9:815–827
Zurück zum Zitat Wang Y, Yuan B, Ji Y, Li H (2013) Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid. Carbohydr Polym 97:518–522PubMedCrossRef Wang Y, Yuan B, Ji Y, Li H (2013) Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid. Carbohydr Polym 97:518–522PubMedCrossRef
Zurück zum Zitat Wang J, Li X, Song J, Wu K, Xue Y, Wu Y, Wang S (2020a) Direct preparation of cellulose nanofibers from bamboo by nitric acid and hydrogen peroxide enables fibrillation via a cooperative mechanism. Nanomaterials 10:943PubMedCentralCrossRef Wang J, Li X, Song J, Wu K, Xue Y, Wu Y, Wang S (2020a) Direct preparation of cellulose nanofibers from bamboo by nitric acid and hydrogen peroxide enables fibrillation via a cooperative mechanism. Nanomaterials 10:943PubMedCentralCrossRef
Zurück zum Zitat Wang J, Wang Q, Wu Y, Bai F, Wang H et al (2020b) Preparation of cellulose nanofibers from bagasse by phosphoric acid and hydrogen peroxide enables fibrillation via a swelling, hydrolysis, and oxidation cooperative mechanism. Nanomaterials 10:2227PubMedCentralCrossRef Wang J, Wang Q, Wu Y, Bai F, Wang H et al (2020b) Preparation of cellulose nanofibers from bagasse by phosphoric acid and hydrogen peroxide enables fibrillation via a swelling, hydrolysis, and oxidation cooperative mechanism. Nanomaterials 10:2227PubMedCentralCrossRef
Zurück zum Zitat Wang J, Chen W, Dong T, Wang H, Si S, Li X (2021b) Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chem 23:10062–10070CrossRef Wang J, Chen W, Dong T, Wang H, Si S, Li X (2021b) Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chem 23:10062–10070CrossRef
Zurück zum Zitat Wang H, Wang J, Si S, Wang Q, Li X, Wang S (2021a) Residual-lignin-endowed molded pulp lunchbox with a sustained wet support strength. Ind Crop Prod 170:113756CrossRef Wang H, Wang J, Si S, Wang Q, Li X, Wang S (2021a) Residual-lignin-endowed molded pulp lunchbox with a sustained wet support strength. Ind Crop Prod 170:113756CrossRef
Zurück zum Zitat Xu Y, Yang S, Zhao P, Wu M, Song X, Ragauskas AJ (2021) Effect of endoglucanase and high-pressure homogenization post-treatments on mechanically grinded cellulose nanofibrils and their film performance. Carbohydr Polym 253:117253PubMedCrossRef Xu Y, Yang S, Zhao P, Wu M, Song X, Ragauskas AJ (2021) Effect of endoglucanase and high-pressure homogenization post-treatments on mechanically grinded cellulose nanofibrils and their film performance. Carbohydr Polym 253:117253PubMedCrossRef
Zurück zum Zitat Yang X, Berglund LA (2019) Recycling without fiber degradation—strong paper structures for 3d forming based on nanostructurally tailored wood holocellulose fibers. ACS Sustain Chem Eng 8:1146–1154CrossRef Yang X, Berglund LA (2019) Recycling without fiber degradation—strong paper structures for 3d forming based on nanostructurally tailored wood holocellulose fibers. ACS Sustain Chem Eng 8:1146–1154CrossRef
Zurück zum Zitat Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crop Prod 76:355–363CrossRef Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crop Prod 76:355–363CrossRef
Zurück zum Zitat Zhang Y-HP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromol 7:644–648CrossRef Zhang Y-HP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromol 7:644–648CrossRef
Zurück zum Zitat Zhang C, Mo J, Fu Q, Liu Y, Wang S, Nie S (2021) Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81:105637CrossRef Zhang C, Mo J, Fu Q, Liu Y, Wang S, Nie S (2021) Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81:105637CrossRef
Metadaten
Titel
Cellulose nanofibrils with a three-dimensional interpenetrating network structure for recycled paper enhancement
verfasst von
Jinlong Wang
Yiting Wu
Wei Chen
Haiqi Wang
Tengteng Dong
Feitian Bai
Xusheng Li
Publikationsdatum
17.03.2022
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 7/2022
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-022-04496-8

Weitere Artikel der Ausgabe 7/2022

Cellulose 7/2022 Zur Ausgabe