Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 6/2024

15.07.2022 | Original Article

Characterization and pyrolysis kinetics study of hydrochar derived from turfgrass (Zoysia matrella) using hydrothermal carbonization

verfasst von: Sawat Poomsawat, Wijittra Poomsawat

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of grass for bioenergy is being promoted to provide energy security. This study investigated turfgrass (Zoysia matrella) treatment using the hydrothermal carbonization (HTC) process prior to pyrolysis. The treatment conditions consisted of temperatures of 180, 200, or 220 C for 30 min. The pyrolysis of turfgrass and its hydrochar was investigated at heating rates of 5, 10, 20, or 40 C min− 1 using thermogravimetric analysis. The experimental data were used to calculate kinetic parameters using the isoconversional models of Kissenger-Akahira-Sunose (KAS) and FlynnWall-Ozawa (FWO). The HTC process improved the H/C and O/C atomic ratios and the heating value of hydrochar derived from raw turfgrass. The average activation energies calculated for turfgrass using the KAS and FWO models for raw turfgrass were 168 and 178 kJ mol− 1, respectively, whereas the average activation energies for the turfgrass hydrochars were lower for both models. The differences in behavior between turfgrass and its hydrochar pyrolysis could have been due to the higher degree of carbonization obtained using HTC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Prochnow A, Heiermann M, Plöchl M, Linke B, Idler C, Amon T, Hobbs P (2009) Bioenergy from permanent grassland–a review: 1. biogas. Bioresource Technol 100(21):4931–4944CrossRef Prochnow A, Heiermann M, Plöchl M, Linke B, Idler C, Amon T, Hobbs P (2009) Bioenergy from permanent grassland–a review: 1. biogas. Bioresource Technol 100(21):4931–4944CrossRef
2.
Zurück zum Zitat Muir JP, Lambert BD, Greenwood A, Lee A, Riojas A (2010) Comparing repeated forage bermudagrass harvest data to single, accumulated bioenergy feedstock harvests. Bioresource Technol 101(1):200–206CrossRef Muir JP, Lambert BD, Greenwood A, Lee A, Riojas A (2010) Comparing repeated forage bermudagrass harvest data to single, accumulated bioenergy feedstock harvests. Bioresource Technol 101(1):200–206CrossRef
3.
Zurück zum Zitat Erlach B, Harder B, Tsatsaronis G (2012) Combined hydrothermal carbonization and gasification of biomass with carbon capture. Energy 45(1):329–338CrossRef Erlach B, Harder B, Tsatsaronis G (2012) Combined hydrothermal carbonization and gasification of biomass with carbon capture. Energy 45(1):329–338CrossRef
4.
Zurück zum Zitat Basso D, Patuzzi F, Castello D, Baratieri M, Rada EC, Weiss-Hortala E, Fiori L (2016) Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Management 47:114–121CrossRefPubMed Basso D, Patuzzi F, Castello D, Baratieri M, Rada EC, Weiss-Hortala E, Fiori L (2016) Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Management 47:114–121CrossRefPubMed
5.
Zurück zum Zitat Xu Z, Qi R, Xiong M, Zhang D, Gu H, Chen W (2021) Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: Mechanisms and combustion behaviors. Bioresour Technol 321:124450CrossRefPubMed Xu Z, Qi R, Xiong M, Zhang D, Gu H, Chen W (2021) Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: Mechanisms and combustion behaviors. Bioresour Technol 321:124450CrossRefPubMed
6.
Zurück zum Zitat Zhuang X, Song Y, Zhan H, Yin X, Wu C (2020) Influences of microstructural alternations and inorganic catalysis on the thermochemical conversion of biowaste-derived hydrochar. Fuel Process Technol 199:106304CrossRef Zhuang X, Song Y, Zhan H, Yin X, Wu C (2020) Influences of microstructural alternations and inorganic catalysis on the thermochemical conversion of biowaste-derived hydrochar. Fuel Process Technol 199:106304CrossRef
7.
Zurück zum Zitat Mazumder S, Saha P, Reza MT (2020) Co-hydrothermal carbonization of coal waste and food waste: Fuel characteristics. Biomass Conversion and Biorefinery, pp 1–11 Mazumder S, Saha P, Reza MT (2020) Co-hydrothermal carbonization of coal waste and food waste: Fuel characteristics. Biomass Conversion and Biorefinery, pp 1–11
8.
Zurück zum Zitat Pauline AL, Joseph K (2020) Hydrothermal carbonization of organic wastes to carbonaceous solid fuel–a review of mechanisms and process parameters. Fuel 279:118472CrossRef Pauline AL, Joseph K (2020) Hydrothermal carbonization of organic wastes to carbonaceous solid fuel–a review of mechanisms and process parameters. Fuel 279:118472CrossRef
9.
Zurück zum Zitat Atallah E, Kwapinski W, Ahmad MN, Leahy J, Ala’a H, Zeaiter J (2019) Hydrothermal carbonization of olive mill wastewater: Liquid phase product analysis. Journal of Environmental Chemical Engineering 7(1):102833CrossRef Atallah E, Kwapinski W, Ahmad MN, Leahy J, Ala’a H, Zeaiter J (2019) Hydrothermal carbonization of olive mill wastewater: Liquid phase product analysis. Journal of Environmental Chemical Engineering 7(1):102833CrossRef
10.
Zurück zum Zitat Poomsawat S, Poomsawat W (2021) Analysis of hydrochar fuel characterization and combustion behavior derived from aquatic biomass via hydrothermal carbonization process. Case Studies in Thermal Engineering 27:101255CrossRef Poomsawat S, Poomsawat W (2021) Analysis of hydrochar fuel characterization and combustion behavior derived from aquatic biomass via hydrothermal carbonization process. Case Studies in Thermal Engineering 27:101255CrossRef
11.
Zurück zum Zitat Broch A, Jena U, Hoekman SK, Langford J (2014) Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies 7(1):62–79CrossRef Broch A, Jena U, Hoekman SK, Langford J (2014) Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies 7(1):62–79CrossRef
12.
Zurück zum Zitat Qadi N, Takeno K, Mosqueda A, Kobayashi M, Motoyama Y, Yoshikawa K (2019) Effect of hydrothermal carbonization conditions on the physicochemical properties and gasification reactivity of energy grass. Energy & Fuels 33(7):6436–6443CrossRef Qadi N, Takeno K, Mosqueda A, Kobayashi M, Motoyama Y, Yoshikawa K (2019) Effect of hydrothermal carbonization conditions on the physicochemical properties and gasification reactivity of energy grass. Energy & Fuels 33(7):6436–6443CrossRef
13.
Zurück zum Zitat Smith AM, Whittaker C, Shield I, Ross AB (2018) The potential for production of high quality bio-coal from early harvested miscanthus by hydrothermal carbonisation. Fuel 220:546–557CrossRef Smith AM, Whittaker C, Shield I, Ross AB (2018) The potential for production of high quality bio-coal from early harvested miscanthus by hydrothermal carbonisation. Fuel 220:546–557CrossRef
14.
Zurück zum Zitat Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management 109:61–69CrossRefPubMed Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management 109:61–69CrossRefPubMed
15.
Zurück zum Zitat Guo S, Dong X, Liu K, Yu H, Zhu C (2015) Chemical, energetic, and structural characteristics of hydrothermal carbonization solid products for lawn grass. BioResources 10(3):4613–4625CrossRef Guo S, Dong X, Liu K, Yu H, Zhu C (2015) Chemical, energetic, and structural characteristics of hydrothermal carbonization solid products for lawn grass. BioResources 10(3):4613–4625CrossRef
16.
Zurück zum Zitat Mertens DR (2002) Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int 85(6):1217–1240PubMed Mertens DR (2002) Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int 85(6):1217–1240PubMed
17.
Zurück zum Zitat Poomsawat W, Tsalidis G, Tsekos C, de Jong W (2019) Experimental studies of furfural production from water hyacinth (eichhornia crassipes). Energy Sci Eng 7(5):2155–2164CrossRef Poomsawat W, Tsalidis G, Tsekos C, de Jong W (2019) Experimental studies of furfural production from water hyacinth (eichhornia crassipes). Energy Sci Eng 7(5):2155–2164CrossRef
18.
Zurück zum Zitat Nhuchhen DR (2016) Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 180:348–356CrossRef Nhuchhen DR (2016) Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 180:348–356CrossRef
19.
Zurück zum Zitat Siddiqui MTH, Nizamuddin S, Mubarak N, Shirin K, Aijaz M, Hussain M, Baloch HA (2019) Characterization and process optimization of biochar produced using novel biomass, waste pomegranate peel: a response surface methodology approach. Waste and Biomass Valorization 10(3):521–532CrossRef Siddiqui MTH, Nizamuddin S, Mubarak N, Shirin K, Aijaz M, Hussain M, Baloch HA (2019) Characterization and process optimization of biochar produced using novel biomass, waste pomegranate peel: a response surface methodology approach. Waste and Biomass Valorization 10(3):521–532CrossRef
20.
Zurück zum Zitat Akahira T (1971) Trans. joint convention of four electrical institutes. Res Rep Chiba Inst Technol 16:22–31 Akahira T (1971) Trans. joint convention of four electrical institutes. Res Rep Chiba Inst Technol 16:22–31
21.
Zurück zum Zitat Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters 4(5):323–328CrossRefADS Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters 4(5):323–328CrossRefADS
22.
Zurück zum Zitat Ozawa T (1965) A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38(11):1881–1886CrossRef Ozawa T (1965) A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38(11):1881–1886CrossRef
23.
Zurück zum Zitat Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22(2):178–183CrossRef Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22(2):178–183CrossRef
24.
Zurück zum Zitat Xu J, Wang Z, Cheng JJ (2011) Bermuda grass as feedstock for biofuel production: a review. Bioresource Technology 102(17):7613–7620CrossRefPubMed Xu J, Wang Z, Cheng JJ (2011) Bermuda grass as feedstock for biofuel production: a review. Bioresource Technology 102(17):7613–7620CrossRefPubMed
25.
Zurück zum Zitat Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13):1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13):1781–1788CrossRef
26.
Zurück zum Zitat Anca-Couce A, Scharler R (2017) Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes. Fuel 206:572–579CrossRef Anca-Couce A, Scharler R (2017) Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes. Fuel 206:572–579CrossRef
27.
Zurück zum Zitat Olszewski MP, Arauzo PJ, Maziarka PA, Ronsse F, Kruse A (2019) Pyrolysis kinetics of hydrochars produced from brewer’s spent grains. Catalysts 9(7):625CrossRef Olszewski MP, Arauzo PJ, Maziarka PA, Ronsse F, Kruse A (2019) Pyrolysis kinetics of hydrochars produced from brewer’s spent grains. Catalysts 9(7):625CrossRef
28.
Zurück zum Zitat Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management 41(6):633–646CrossRef Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management 41(6):633–646CrossRef
29.
Zurück zum Zitat Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy 35(1):232–242CrossRef Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy 35(1):232–242CrossRef
Metadaten
Titel
Characterization and pyrolysis kinetics study of hydrochar derived from turfgrass (Zoysia matrella) using hydrothermal carbonization
verfasst von
Sawat Poomsawat
Wijittra Poomsawat
Publikationsdatum
15.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 6/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02889-0

Weitere Artikel der Ausgabe 6/2024

Biomass Conversion and Biorefinery 6/2024 Zur Ausgabe