Skip to main content

2015 | OriginalPaper | Buchkapitel

4. CMOS Implementations of Current Conveyors

verfasst von : Raj Senani, D. R. Bhaskar, A. K. Singh

Erschienen in: Current Conveyors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to make CC-based circuits compatible with CMOS digital circuits, a lot of attention has been given in the literature over the past two decades to evolve CMOS-based Current Conveyors. In this chapter, we bring out some of the important developments in this area.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sedra AS, Roberts GW, Gohh F (1990) The current conveyor: history, progress and new results. IEE Proc Circ Devices Syst 137:78–87CrossRef Sedra AS, Roberts GW, Gohh F (1990) The current conveyor: history, progress and new results. IEE Proc Circ Devices Syst 137:78–87CrossRef
2.
Zurück zum Zitat Liu SI, Tsao HW, Wu J, Lin TK (1990) MOSFET capacitor filters using unity gain CMOS current conveyors. Electron Lett 26:1430–1431CrossRef Liu SI, Tsao HW, Wu J, Lin TK (1990) MOSFET capacitor filters using unity gain CMOS current conveyors. Electron Lett 26:1430–1431CrossRef
3.
Zurück zum Zitat Liu SI, Tsao HW, Wu J (1991) CCII-based continuous-time filters with reduced gain-bandwidth sensitivity. IEE Proc Circ Devices Syst 138:210–216CrossRef Liu SI, Tsao HW, Wu J (1991) CCII-based continuous-time filters with reduced gain-bandwidth sensitivity. IEE Proc Circ Devices Syst 138:210–216CrossRef
4.
Zurück zum Zitat Chen JJ, Chen CC, Tsao HW, Liu SI (1991) Circuit-mode oscillators using single current follower. Electron Lett 27:2056–2059CrossRef Chen JJ, Chen CC, Tsao HW, Liu SI (1991) Circuit-mode oscillators using single current follower. Electron Lett 27:2056–2059CrossRef
5.
Zurück zum Zitat Surakampontorn W, Riewruja V, Cheevasuvit F (1991) Integrable CMOS-base realization of current conveyors. Int J Electron 71:793–798CrossRef Surakampontorn W, Riewruja V, Cheevasuvit F (1991) Integrable CMOS-base realization of current conveyors. Int J Electron 71:793–798CrossRef
6.
Zurück zum Zitat Surakampontorn W, Kumwachara K (1992) CMOS-based electronically tunable current conveyor. Electron Lett 28:1316–1317CrossRef Surakampontorn W, Kumwachara K (1992) CMOS-based electronically tunable current conveyor. Electron Lett 28:1316–1317CrossRef
7.
Zurück zum Zitat Laopoulos TH, Siskos S, Bafleur M, Givelin PH (1992) CMOS current conveyor. Electron Lett 28:2261–2262CrossRef Laopoulos TH, Siskos S, Bafleur M, Givelin PH (1992) CMOS current conveyor. Electron Lett 28:2261–2262CrossRef
8.
Zurück zum Zitat Bruun E (1993) CMOS high speed, high precision current conveyor and current feedback amplifier structures. Int J Electron 74:93–100CrossRef Bruun E (1993) CMOS high speed, high precision current conveyor and current feedback amplifier structures. Int J Electron 74:93–100CrossRef
9.
Zurück zum Zitat Cheng MCH, Toumazou C (1993) 3 V MOS current conveyor cell for VLSI technology. Electron Lett 29:317–318CrossRef Cheng MCH, Toumazou C (1993) 3 V MOS current conveyor cell for VLSI technology. Electron Lett 29:317–318CrossRef
10.
Zurück zum Zitat Brunn E (1995) Class AB CMOS first –generation current conveyor. Electron Lett 31:422–423CrossRef Brunn E (1995) Class AB CMOS first –generation current conveyor. Electron Lett 31:422–423CrossRef
11.
Zurück zum Zitat Bruun E (1995) A combined first-and second-generation current conveyor structure. Int J Electron 78:911–923CrossRef Bruun E (1995) A combined first-and second-generation current conveyor structure. Int J Electron 78:911–923CrossRef
12.
Zurück zum Zitat Piovaccari A (1995) CMOS integrated third-generation current conveyor. Electron Lett 31:1228–1229CrossRef Piovaccari A (1995) CMOS integrated third-generation current conveyor. Electron Lett 31:1228–1229CrossRef
13.
Zurück zum Zitat Cha HW, Watanabe K (1996) Wideband CMOS current conveyor. Electron Lett 32:1245–1246CrossRef Cha HW, Watanabe K (1996) Wideband CMOS current conveyor. Electron Lett 32:1245–1246CrossRef
14.
Zurück zum Zitat Oliaei O, Loumeau P (1996) Current-mode class AB design using floating voltage-source. Electron Lett 32:1526–1528CrossRef Oliaei O, Loumeau P (1996) Current-mode class AB design using floating voltage-source. Electron Lett 32:1526–1528CrossRef
15.
Zurück zum Zitat Bruun E (1996) Analysis of the noise properties for CMOS current conveyors. Analog Integr Circ Sig Process 12:71–78CrossRef Bruun E (1996) Analysis of the noise properties for CMOS current conveyors. Analog Integr Circ Sig Process 12:71–78CrossRef
16.
Zurück zum Zitat Hassan O, Elwan HO, Soliman AM (1996) A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI. IEEE Trans Circ Syst-II 43:663–670CrossRef Hassan O, Elwan HO, Soliman AM (1996) A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI. IEEE Trans Circ Syst-II 43:663–670CrossRef
17.
Zurück zum Zitat Oliaei O, Porte J (1997) Compound current conveyor (CCII+ and CCII−. Electron Lett 33:253–254CrossRef Oliaei O, Porte J (1997) Compound current conveyor (CCII+ and CCII−. Electron Lett 33:253–254CrossRef
18.
Zurück zum Zitat Elwan HO, Soliman AM (1997) Low-voltage low-power CMOS current conveyors. IEEE Trans Circ Syst-I 44:828–835CrossRef Elwan HO, Soliman AM (1997) Low-voltage low-power CMOS current conveyors. IEEE Trans Circ Syst-I 44:828–835CrossRef
19.
Zurück zum Zitat Arbel A (1997) Towards a perfect CMOC CCII. Analog Integr Circ Sig Process 12:119–132CrossRef Arbel A (1997) Towards a perfect CMOC CCII. Analog Integr Circ Sig Process 12:119–132CrossRef
20.
Zurück zum Zitat Cha HW, Ogawa S, Watanabe K (1998) Class A CMOS current conveyors. IEICE Trans Fundament E81-A:1164–1167 Cha HW, Ogawa S, Watanabe K (1998) Class A CMOS current conveyors. IEICE Trans Fundament E81-A:1164–1167
21.
Zurück zum Zitat Tarim N, Yenen B, Kuntman H (1998) Simple and accurate non-linear current conveyor macromodel suitable for simulation of active filters using CCIIs. Int J Circ Theor Appl 26:27–38CrossRef Tarim N, Yenen B, Kuntman H (1998) Simple and accurate non-linear current conveyor macromodel suitable for simulation of active filters using CCIIs. Int J Circ Theor Appl 26:27–38CrossRef
22.
Zurück zum Zitat Ismail AM, Soliman AM (1998) Wideband CMOS current conveyor. Electron Lett 34:2368–2369CrossRef Ismail AM, Soliman AM (1998) Wideband CMOS current conveyor. Electron Lett 34:2368–2369CrossRef
23.
Zurück zum Zitat Awad IA, Soliman AM (1999) New CMOS realization of the CCII-. IEEE Trans Circ Syst-II 46:460–463CrossRef Awad IA, Soliman AM (1999) New CMOS realization of the CCII-. IEEE Trans Circ Syst-II 46:460–463CrossRef
24.
Zurück zum Zitat Fabre A, Amrani H, Barthelemy H (1999) A novel class AB first generation current conveyor. IEEE Trans Circ Syst-II 46:96–98CrossRef Fabre A, Amrani H, Barthelemy H (1999) A novel class AB first generation current conveyor. IEEE Trans Circ Syst-II 46:96–98CrossRef
25.
Zurück zum Zitat Premont C, Abouchi N, Grisel R, Chante JP (1999) A BiCMOS current conveyor based four—quadrant analog multiplier. Analog Integr Circ Sig Process 19:159–162CrossRef Premont C, Abouchi N, Grisel R, Chante JP (1999) A BiCMOS current conveyor based four—quadrant analog multiplier. Analog Integr Circ Sig Process 19:159–162CrossRef
26.
Zurück zum Zitat Palmisano G, Palumbo G, Pennisi S (1999) Design strategies for class A CMOS CCIIs. Analog Integr Circ Sig Process 19:75–85CrossRef Palmisano G, Palumbo G, Pennisi S (1999) Design strategies for class A CMOS CCIIs. Analog Integr Circ Sig Process 19:75–85CrossRef
27.
Zurück zum Zitat Ismail AM, Soliman AM (2000) Low-power CMOS current conveyors. Electron Lett 36:7–8CrossRef Ismail AM, Soliman AM (2000) Low-power CMOS current conveyors. Electron Lett 36:7–8CrossRef
28.
Zurück zum Zitat Yodprasit U (2000) High-precision CMOS current conveyor. Electron Lett 36:609–610CrossRef Yodprasit U (2000) High-precision CMOS current conveyor. Electron Lett 36:609–610CrossRef
29.
Zurück zum Zitat Palumbo G, Pennisi S (2001) A high-performance CMOS CCII. Int J Circ Theor Appl 29:331–336CrossRefMATH Palumbo G, Pennisi S (2001) A high-performance CMOS CCII. Int J Circ Theor Appl 29:331–336CrossRefMATH
30.
Zurück zum Zitat Emami S, Wada K, Takagi S, Fujii N (2001) A novel design strategy for class A CMOS second generation current conveyors. IEICE Trans Fundament 84-A:552–558 Emami S, Wada K, Takagi S, Fujii N (2001) A novel design strategy for class A CMOS second generation current conveyors. IEICE Trans Fundament 84-A:552–558
31.
Zurück zum Zitat Ferri G, Laurentiis PD, Stochino G (2001) Current conveyors II. Analogue design. Electron World 300–302 Ferri G, Laurentiis PD, Stochino G (2001) Current conveyors II. Analogue design. Electron World 300–302
32.
Zurück zum Zitat Kurashina T, Ogawa S, Watanabe K (2002) A CMOS rail-to-rail current conveyor. IEICE Trans Fundament 85-A:2894–2900 Kurashina T, Ogawa S, Watanabe K (2002) A CMOS rail-to-rail current conveyor. IEICE Trans Fundament 85-A:2894–2900
33.
Zurück zum Zitat Nero AL, Aguiar Ruil L, Santos DM (2002) Bandwidth aspects in second generation current conveyors. Analog Integr Circ Sig Process 33:127–136CrossRef Nero AL, Aguiar Ruil L, Santos DM (2002) Bandwidth aspects in second generation current conveyors. Analog Integr Circ Sig Process 33:127–136CrossRef
34.
Zurück zum Zitat Cicekoglu O, Tarim N, Kuntman H (2002) Wide dynamic range high output impedance current-mode multifunction filters with dual-output current conveyors. Int J Electron Commun (AEU) 56:55–60CrossRef Cicekoglu O, Tarim N, Kuntman H (2002) Wide dynamic range high output impedance current-mode multifunction filters with dual-output current conveyors. Int J Electron Commun (AEU) 56:55–60CrossRef
35.
Zurück zum Zitat El-Adawy AA, Soliman AM, Elwan HO (2002) Low voltage digitally controlled CMOS current conveyor. Int J Electron Commun (AEU) 56:137–144CrossRef El-Adawy AA, Soliman AM, Elwan HO (2002) Low voltage digitally controlled CMOS current conveyor. Int J Electron Commun (AEU) 56:137–144CrossRef
36.
Zurück zum Zitat Calvo B, Celma S, Martinez PA, Sanz MT (2003) Novel high performance CMOS current conveyor. Microelectron Reliabil 43:955–961CrossRef Calvo B, Celma S, Martinez PA, Sanz MT (2003) Novel high performance CMOS current conveyor. Microelectron Reliabil 43:955–961CrossRef
37.
Zurück zum Zitat Kurashina T, Ogawa S, Watanabe K (2003) A CMOS rail-to-rail current conveyor and its applications to current-mode filters. IEICE Trans Fundament E86-A(6):1445–1450 Kurashina T, Ogawa S, Watanabe K (2003) A CMOS rail-to-rail current conveyor and its applications to current-mode filters. IEICE Trans Fundament E86-A(6):1445–1450
38.
Zurück zum Zitat Mita R, Palumbo G, Pennisi S (2003) 1.5-V CMOS CCII+ with high current-driving capability. IEEE Trans Circ Syst-II 50:187–190CrossRef Mita R, Palumbo G, Pennisi S (2003) 1.5-V CMOS CCII+ with high current-driving capability. IEEE Trans Circ Syst-II 50:187–190CrossRef
39.
Zurück zum Zitat Awad IA, Soliman AM (2004) High accuracy class AB CCII-. Int J Electron Commun (AEU) 58:237–243CrossRef Awad IA, Soliman AM (2004) High accuracy class AB CCII-. Int J Electron Commun (AEU) 58:237–243CrossRef
40.
Zurück zum Zitat Rajput SS, Jamuar SS (2004) Low voltage, low power and high performance current conveyors for low-voltage analog and mixed mode signal processing applications. Analog Integr Circ Sig Process 41:21–34CrossRef Rajput SS, Jamuar SS (2004) Low voltage, low power and high performance current conveyors for low-voltage analog and mixed mode signal processing applications. Analog Integr Circ Sig Process 41:21–34CrossRef
41.
Zurück zum Zitat Hassanein WS, Awad IA, Soliman AM (2004) New wide band low power CMOS current conveyors. Analog Integr Circ Sign Process 40:91–97CrossRef Hassanein WS, Awad IA, Soliman AM (2004) New wide band low power CMOS current conveyors. Analog Integr Circ Sign Process 40:91–97CrossRef
42.
Zurück zum Zitat Ferri G, Guerrini NC (2004) Noise determination of differential pair-based second generation current conveyors. Analog Integr Circ Sig Process 41:35–46CrossRef Ferri G, Guerrini NC (2004) Noise determination of differential pair-based second generation current conveyors. Analog Integr Circ Sig Process 41:35–46CrossRef
43.
Zurück zum Zitat Calvo B, Celma S, Martinez PA, Sanz MT (2003) High-speed high-precision CMOS current conveyor. Analog Integr Circ Sig Process 36:235–238CrossRef Calvo B, Celma S, Martinez PA, Sanz MT (2003) High-speed high-precision CMOS current conveyor. Analog Integr Circ Sig Process 36:235–238CrossRef
44.
Zurück zum Zitat Hassanein WS, Awad IA, Soliman AM (2005) New high accuracy CMOS current conveyors. Int J Electron Commun 59:384–391CrossRef Hassanein WS, Awad IA, Soliman AM (2005) New high accuracy CMOS current conveyors. Int J Electron Commun 59:384–391CrossRef
45.
Zurück zum Zitat Hassanein WS, Awad IA, Soliman AM (2005) Long tail pair based positive CMOS current conveyors: a review. Frequenz 59:186–194CrossRef Hassanein WS, Awad IA, Soliman AM (2005) Long tail pair based positive CMOS current conveyors: a review. Frequenz 59:186–194CrossRef
46.
Zurück zum Zitat Salem SB, Fakhfakh M, Masmoudi DS, Loulou M, Loumeau P, Masmoudi N (2006) A high performance CMOS CCII and high frequency applications. Analog Integ Circ Sig Process 49:71–78CrossRef Salem SB, Fakhfakh M, Masmoudi DS, Loulou M, Loumeau P, Masmoudi N (2006) A high performance CMOS CCII and high frequency applications. Analog Integ Circ Sig Process 49:71–78CrossRef
47.
Zurück zum Zitat Hassan HM, Soliman AM (2006) Novel accurate wideband CMOS current conveyor. Frequenz 60:234–236CrossRef Hassan HM, Soliman AM (2006) Novel accurate wideband CMOS current conveyor. Frequenz 60:234–236CrossRef
48.
Zurück zum Zitat Madian AH, Mahmoud SA, Soliman AM (2006) New 1.5-V CMOS second generation current conveyor based on wide range transconductor. Analog Integr Circ Sig Process 49:267–279CrossRef Madian AH, Mahmoud SA, Soliman AM (2006) New 1.5-V CMOS second generation current conveyor based on wide range transconductor. Analog Integr Circ Sig Process 49:267–279CrossRef
49.
Zurück zum Zitat Minaei S, Sayin OK, Kuntaman H (2006) A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Trans Circ Syst-I 53:1448–1457CrossRef Minaei S, Sayin OK, Kuntaman H (2006) A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Trans Circ Syst-I 53:1448–1457CrossRef
50.
Zurück zum Zitat Ferri G, Stornelli V, Fragnoli M (2006) An integrated improved CCII topology for resistive sensor application. Analog Integr Circ Sig Process 48:247–250CrossRef Ferri G, Stornelli V, Fragnoli M (2006) An integrated improved CCII topology for resistive sensor application. Analog Integr Circ Sig Process 48:247–250CrossRef
51.
Zurück zum Zitat Barthelemy H, Fillaud M, Bourdel S, Gaubert J (2007) CMOS inverters based positive type second generation current conveyor. Analog Integr Circ Sig Process 50:141–146CrossRef Barthelemy H, Fillaud M, Bourdel S, Gaubert J (2007) CMOS inverters based positive type second generation current conveyor. Analog Integr Circ Sig Process 50:141–146CrossRef
52.
Zurück zum Zitat Kasemsuwan V, Nakhlo W (2007) A simple 1.5 V rail-to-rail CMOS current conveyor. J Circ Syst Comput 16:627–639CrossRef Kasemsuwan V, Nakhlo W (2007) A simple 1.5 V rail-to-rail CMOS current conveyor. J Circ Syst Comput 16:627–639CrossRef
53.
Zurück zum Zitat Arcamone J, Misischi B, Graells FS, Boogaart MAFVD, Brugger J, Torres F, Abadal G, Barniol N, Murano FP (2008) Compact CMOS current conveyor for integrated NEMS resonators. IET Circ Devices Syst 2:317–323CrossRef Arcamone J, Misischi B, Graells FS, Boogaart MAFVD, Brugger J, Torres F, Abadal G, Barniol N, Murano FP (2008) Compact CMOS current conveyor for integrated NEMS resonators. IET Circ Devices Syst 2:317–323CrossRef
54.
Zurück zum Zitat Motlak HJ, Ahmed SN (2008) CMOS CCII-based on modified dual output-OTA for high frequency applications. Int J Electron 95:879–889CrossRef Motlak HJ, Ahmed SN (2008) CMOS CCII-based on modified dual output-OTA for high frequency applications. Int J Electron 95:879–889CrossRef
55.
Zurück zum Zitat Al-Absi MA (2009) A novel highly accurate current mirror. Int J Electron 96:781–786CrossRef Al-Absi MA (2009) A novel highly accurate current mirror. Int J Electron 96:781–786CrossRef
56.
Zurück zum Zitat Thankachan S, Pattanaik M, Rajput SS (2009) A ± 0.5 V BiCMOS class-A current conveyor. Int J Electr Electron Eng 3:607–610 Thankachan S, Pattanaik M, Rajput SS (2009) A ± 0.5 V BiCMOS class-A current conveyor. Int J Electr Electron Eng 3:607–610
57.
Zurück zum Zitat Mahmoodi A, Abrishamifar A (2010) A novel current conveyor with high functionality and optimized ports. IEICE Electron Express 7:1480–1485CrossRef Mahmoodi A, Abrishamifar A (2010) A novel current conveyor with high functionality and optimized ports. IEICE Electron Express 7:1480–1485CrossRef
58.
Zurück zum Zitat Chatterjee A, Fakhfakh M, Siarry P (2010) Design of second-generation current conveyor employing bacterial foraging optimization. Microelectron J 41:616–626CrossRef Chatterjee A, Fakhfakh M, Siarry P (2010) Design of second-generation current conveyor employing bacterial foraging optimization. Microelectron J 41:616–626CrossRef
59.
Zurück zum Zitat Motlak HJ, Ahmed SN (2010) Wide bandwidth CMOS CCII+ using resistive-compensation technique. J Active Passive Electron Devices 5:163–180 Motlak HJ, Ahmed SN (2010) Wide bandwidth CMOS CCII+ using resistive-compensation technique. J Active Passive Electron Devices 5:163–180
60.
Zurück zum Zitat Khateb F, Khatib N, Kubanek D (2011) Novel low-voltage low-power high-precision CC± based on bulk-driven folded cascode OTA. Microelectron J 42:622–631CrossRef Khateb F, Khatib N, Kubanek D (2011) Novel low-voltage low-power high-precision CC± based on bulk-driven folded cascode OTA. Microelectron J 42:622–631CrossRef
61.
Zurück zum Zitat Kapur G, Mittal S, Markan CM, Pyara VP (2012) Design of analog field programmable cmos current conveyor. Sci J Circ Syst Sig Process 1:9–21 Kapur G, Mittal S, Markan CM, Pyara VP (2012) Design of analog field programmable cmos current conveyor. Sci J Circ Syst Sig Process 1:9–21
62.
Zurück zum Zitat Ahmadpoor N, Mohamadzade S, Ahmadzadeh M (2012) A novel linear low voltage rail to rail second generation current conveyor for RF applications. J Basic Sci Res 2:12306–12310 Ahmadpoor N, Mohamadzade S, Ahmadzadeh M (2012) A novel linear low voltage rail to rail second generation current conveyor for RF applications. J Basic Sci Res 2:12306–12310
63.
Zurück zum Zitat Arslan E, Minaei S, Morgul A (2013) On the realization of high performance current conveyors and their applications. J Circ Syst Comput 22:23 pages Arslan E, Minaei S, Morgul A (2013) On the realization of high performance current conveyors and their applications. J Circ Syst Comput 22:23 pages
64.
Zurück zum Zitat Hwang YS, Ku YT, Chen JJ, Wang SF (2013) A low-voltage current conveyor using inverter-based error amplifier and its oscillator application. IEICE Electron Express 10:1–7CrossRef Hwang YS, Ku YT, Chen JJ, Wang SF (2013) A low-voltage current conveyor using inverter-based error amplifier and its oscillator application. IEICE Electron Express 10:1–7CrossRef
65.
Zurück zum Zitat Alzaher H, Tasadduq N, Al-Ees O, Al-Ammari (2013) A complementary metal-oxide semiconductor digitally programmable current conveyor. Int J Circ Theor Appl 41:69–81 Alzaher H, Tasadduq N, Al-Ees O, Al-Ammari (2013) A complementary metal-oxide semiconductor digitally programmable current conveyor. Int J Circ Theor Appl 41:69–81
66.
Zurück zum Zitat Hwang YS, Ku YT, Chen JJ, Yu CC (2013) Inverter-based low-voltage CCII-design and its filter application. Radioengineering 22:1026–1033 Hwang YS, Ku YT, Chen JJ, Yu CC (2013) Inverter-based low-voltage CCII-design and its filter application. Radioengineering 22:1026–1033
67.
Zurück zum Zitat Palumbo G (1999) 1.2 V CMOS output stage with improved drive capability. Electron Lett 35:358–359CrossRef Palumbo G (1999) 1.2 V CMOS output stage with improved drive capability. Electron Lett 35:358–359CrossRef
68.
Zurück zum Zitat Ferri G, Guerrini NC (2003) Low-voltage low-power CMOS current conveyors. Kluwer, Dordrecht Ferri G, Guerrini NC (2003) Low-voltage low-power CMOS current conveyors. Kluwer, Dordrecht
69.
Zurück zum Zitat Manhas PS, Pal K, Sharma S, Mangotra LK, Jamwal KKS (2009) New low-voltage class AB current conveyor II for analog applications. Ind J Pure Appl Phys 47:306–309 Manhas PS, Pal K, Sharma S, Mangotra LK, Jamwal KKS (2009) New low-voltage class AB current conveyor II for analog applications. Ind J Pure Appl Phys 47:306–309
Metadaten
Titel
CMOS Implementations of Current Conveyors
verfasst von
Raj Senani
D. R. Bhaskar
A. K. Singh
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-08684-2_4

Neuer Inhalt