Skip to main content
Erschienen in: Neural Computing and Applications 11/2020

04.10.2018 | S.I. : Multi-Source Data Understanding (MSDU)

Color–depth multi-task learning for object detection in haze

verfasst von: Zhe Chen, Xin Wang, Tanghuai Fan, Lizhong Xu

Erschienen in: Neural Computing and Applications | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Haze environments pose serious challenges for object detection, making existing methods difficult to generate satisfied results. However, there is no escape from haze environments in real-world applications, especially in water and bad weather. Hence, it is necessary to enable object detection methods to conquer the difficulties caused by the haze effect. In spite of the diversity between various conditions, haze environments share a common characteristic that the haze concentration is changed with the scene depth. Hence, this haze concentration feature can be used as a representation of the scene depth. This provides us a novel cue available for object detection in haze that the object-background depth contrast can be identified. In this paper, we propose a multi-task learning-based object detection method by jointly using the color and depth features. A pair of background models is built separately with the color and depth features, forming two streams of our multi-task learning framework. The final object detection results are generated by fusing the results given by color and depth features. In contrast to existing object detection methods, the novelty of our method lies in the combination of the color and depth features under a unified multi-task learning mechanism, which is experimentally demonstrated to be robust against challenging haze environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gazzah S, Mhalla A, Amara NEB (2017) Vehicle detection on a video traffic scene: Review and new perspectives. In: 2017 International conference on information and digital technologies (IDT). IEEE, pp 448–454 Gazzah S, Mhalla A, Amara NEB (2017) Vehicle detection on a video traffic scene: Review and new perspectives. In: 2017 International conference on information and digital technologies (IDT). IEEE, pp 448–454
2.
Zurück zum Zitat Tu Z, Zheng A, Yang E, Luo B, Hussain A (2015) A biologically inspired vision-based approach for detecting multiple moving objects in complex outdoor scenes. Cogn Comput 7(5):539–551CrossRef Tu Z, Zheng A, Yang E, Luo B, Hussain A (2015) A biologically inspired vision-based approach for detecting multiple moving objects in complex outdoor scenes. Cogn Comput 7(5):539–551CrossRef
4.
Zurück zum Zitat Angelopoulou A, Rodriguez JG, Orts-Escolano S, Gupta G, Psarrou A (2018) Fast 2D/3D object representation with growing neural gas. Neural Comput Appl 29(10):903–919CrossRef Angelopoulou A, Rodriguez JG, Orts-Escolano S, Gupta G, Psarrou A (2018) Fast 2D/3D object representation with growing neural gas. Neural Comput Appl 29(10):903–919CrossRef
5.
Zurück zum Zitat Wang Y, Jodoin PM, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) CDnet 2014: an expanded change detection benchmark dataset. In: , 2014 IEEE conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 393–400 Wang Y, Jodoin PM, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) CDnet 2014: an expanded change detection benchmark dataset. In: , 2014 IEEE conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 393–400
6.
Zurück zum Zitat Zhu Y, Chang L, Dai J, Zheng H, Zheng B (2016) Automatic object detection and segmentation from underwater images via saliency-based region merging. In OCEANS 2016-Shanghai. IEEE, pp 1–4 Zhu Y, Chang L, Dai J, Zheng H, Zheng B (2016) Automatic object detection and segmentation from underwater images via saliency-based region merging. In OCEANS 2016-Shanghai. IEEE, pp 1–4
7.
Zurück zum Zitat Wang N, Zheng B, Zheng H, Yu Z (2017) Feeble object detection of underwater images through LSR with delay loop. Opt Express 25(19):22490–22498CrossRef Wang N, Zheng B, Zheng H, Yu Z (2017) Feeble object detection of underwater images through LSR with delay loop. Opt Express 25(19):22490–22498CrossRef
8.
Zurück zum Zitat Li X, Yang Z, Shang M, Hao J (2016) Underwater image enhancement via dark channel prior and luminance adjustment. In: OCEANS 2016-Shanghai. IEEE, pp 1–5 Li X, Yang Z, Shang M, Hao J (2016) Underwater image enhancement via dark channel prior and luminance adjustment. In: OCEANS 2016-Shanghai. IEEE, pp 1–5
9.
Zurück zum Zitat Wang JB, He N, Zhang LL, Lu K (2015) Single image dehazing with a physical model and dark channel prior. Neurocomputing 149:718–728CrossRef Wang JB, He N, Zhang LL, Lu K (2015) Single image dehazing with a physical model and dark channel prior. Neurocomputing 149:718–728CrossRef
10.
Zurück zum Zitat Lee S, Yun S, Nam JH, Won CS, Jung SW (2016) A review on dark channel prior based image dehazing algorithms. EURASIP J Image Video Process 2016(1):1–4CrossRef Lee S, Yun S, Nam JH, Won CS, Jung SW (2016) A review on dark channel prior based image dehazing algorithms. EURASIP J Image Video Process 2016(1):1–4CrossRef
11.
Zurück zum Zitat Li CY, Guo JC, Cong RM, Pang YW, Wang B (2016) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process 25(12):5664–5677MathSciNetMATHCrossRef Li CY, Guo JC, Cong RM, Pang YW, Wang B (2016) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process 25(12):5664–5677MathSciNetMATHCrossRef
12.
Zurück zum Zitat Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: The proceedings of the seventh IEEE international conference on computer vision, vol 2. IEEE, pp 820–827 Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: The proceedings of the seventh IEEE international conference on computer vision, vol 2. IEEE, pp 820–827
13.
Zurück zum Zitat Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724CrossRef Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724CrossRef
14.
Zurück zum Zitat Song H et al (2017) Modeling of a dynamic dual-input dual-output fast steeringmirror system. Front Inf Technol Electronic Eng 18(10):1488–1498CrossRef Song H et al (2017) Modeling of a dynamic dual-input dual-output fast steeringmirror system. Front Inf Technol Electronic Eng 18(10):1488–1498CrossRef
15.
Zurück zum Zitat Tan RT (2008) Visibility in bad weather from a single image. In: IEEE conference on computer vision and pattern recognition. CVPR 2008. IEEE, pp 1–8 Tan RT (2008) Visibility in bad weather from a single image. In: IEEE conference on computer vision and pattern recognition. CVPR 2008. IEEE, pp 1–8
16.
Zurück zum Zitat Fattal R (2008) Single image dehazing. ACM Trans Graph (TOG) 27(3):72–78CrossRef Fattal R (2008) Single image dehazing. ACM Trans Graph (TOG) 27(3):72–78CrossRef
17.
Zurück zum Zitat Chen JKBNB, Cohen-Or MCD, Deussen O, Lischinski MUD (2008) Deep photo: model-based photograph enhancement and viewing. ACM Trans Graph 27(5):32–39CrossRef Chen JKBNB, Cohen-Or MCD, Deussen O, Lischinski MUD (2008) Deep photo: model-based photograph enhancement and viewing. ACM Trans Graph 27(5):32–39CrossRef
18.
Zurück zum Zitat Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 2201–2208 Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 2201–2208
20.
Zurück zum Zitat Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: 2013 IEEE international conference on computer vision (ICCV). IEEE, pp 617–624 Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: 2013 IEEE international conference on computer vision (ICCV). IEEE, pp 617–624
21.
Zurück zum Zitat He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353CrossRef He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353CrossRef
22.
Zurück zum Zitat Cai B, Xu X, Tao D (2016) Real-time video dehazing based on spatio-temporal mrf. In: Pacific rim conference on multimedia. Springer, Cham, pp 315–325 Cai B, Xu X, Tao D (2016) Real-time video dehazing based on spatio-temporal mrf. In: Pacific rim conference on multimedia. Springer, Cham, pp 315–325
23.
Zurück zum Zitat Wang G, Ren G, Jiang L, Quan T (2013) Single image dehazing algorithm based on sky region segmentation. Inf Technol J 12(6):1168–1175CrossRef Wang G, Ren G, Jiang L, Quan T (2013) Single image dehazing algorithm based on sky region segmentation. Inf Technol J 12(6):1168–1175CrossRef
24.
Zurück zum Zitat Yu F, Qing C, Xu X, Cai B (2016) Image and video dehazing using view-based cluster segmentation. In: Visual communications and image processing (VCIP). IEEE, pp 1–4 Yu F, Qing C, Xu X, Cai B (2016) Image and video dehazing using view-based cluster segmentation. In: Visual communications and image processing (VCIP). IEEE, pp 1–4
25.
Zurück zum Zitat Yoon I, Jeong S, Jeong J, Seo D, Paik J (2015) Wavelength-adaptive dehazing using histogram merging-based classification for UAV images. Sensors 15(3):6633–6651CrossRef Yoon I, Jeong S, Jeong J, Seo D, Paik J (2015) Wavelength-adaptive dehazing using histogram merging-based classification for UAV images. Sensors 15(3):6633–6651CrossRef
26.
Zurück zum Zitat Zhu Y, Tang G, Zhang X, Jiang J, Tian Q (2018) Haze removal method for natural restoration of images with sky. Neurocomputing 275:499–510CrossRef Zhu Y, Tang G, Zhang X, Jiang J, Tian Q (2018) Haze removal method for natural restoration of images with sky. Neurocomputing 275:499–510CrossRef
27.
Zurück zum Zitat Chao L, Wang M (2010) Removal of water scattering. In: Proceedings of the IEEE international conference on computing engineering and technology (ICCET), pp V2-35–V2-39 Chao L, Wang M (2010) Removal of water scattering. In: Proceedings of the IEEE international conference on computing engineering and technology (ICCET), pp V2-35–V2-39
28.
Zurück zum Zitat Chiang JY, Chen YC (2012) Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process 21(4):1756–1769MathSciNetMATHCrossRef Chiang JY, Chen YC (2012) Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process 21(4):1756–1769MathSciNetMATHCrossRef
29.
Zurück zum Zitat Galdran A, Pardo D, Picón A, Alvarez-Gila A (2015) Automatic red-channel underwater image restoration. J Vis Commun Image Represent 26:132–145CrossRef Galdran A, Pardo D, Picón A, Alvarez-Gila A (2015) Automatic red-channel underwater image restoration. J Vis Commun Image Represent 26:132–145CrossRef
30.
Zurück zum Zitat Li C, Guo J, Chen S, Tang Y, Pang Y, Wang J (2016) Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 1993–1997 Li C, Guo J, Chen S, Tang Y, Pang Y, Wang J (2016) Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 1993–1997
31.
Zurück zum Zitat Oreifej O, Li X, Shah M (2013) Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans Pattern Anal Mach Intell 35(2):450–462CrossRef Oreifej O, Li X, Shah M (2013) Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans Pattern Anal Mach Intell 35(2):450–462CrossRef
32.
Zurück zum Zitat Gilles J, Alvarez F, Ferrante N, Fortman M, Tahir L, Tarter A, von Seeger A (2018) Detection of moving objects through turbulent media. Decomposition of oscillatory vs non-oscillatory spatio-temporal vector fields. Image Vis Comput 73:40–55CrossRef Gilles J, Alvarez F, Ferrante N, Fortman M, Tahir L, Tarter A, von Seeger A (2018) Detection of moving objects through turbulent media. Decomposition of oscillatory vs non-oscillatory spatio-temporal vector fields. Image Vis Comput 73:40–55CrossRef
33.
Zurück zum Zitat Lee D, Kim G, Kim D, Myung H, Choi HT (2012) Vision-based object detection and tracking for autonomous navigation of underwater robots. Ocean Eng 48:59–68CrossRef Lee D, Kim G, Kim D, Myung H, Choi HT (2012) Vision-based object detection and tracking for autonomous navigation of underwater robots. Ocean Eng 48:59–68CrossRef
34.
Zurück zum Zitat Edgington DR, Salamy KA, Risi M, Sherlock RE, Walther D, Koch C (2003) Automated event detection in underwater video. In: OCEANS 2003. Proceedings, vol 5. IEEE, pp P2749–P2753 Edgington DR, Salamy KA, Risi M, Sherlock RE, Walther D, Koch C (2003) Automated event detection in underwater video. In: OCEANS 2003. Proceedings, vol 5. IEEE, pp P2749–P2753
35.
Zurück zum Zitat Rizzini DL, Kallasi F, Oleari F, Caselli S (2015) Investigation of vision-based underwater object detection with multiple datasets. Int J Adv Robot Syst 12(6):77–89CrossRef Rizzini DL, Kallasi F, Oleari F, Caselli S (2015) Investigation of vision-based underwater object detection with multiple datasets. Int J Adv Robot Syst 12(6):77–89CrossRef
36.
Zurück zum Zitat Chuang MC, Hwang JN, Williams K (2016) A feature learning and object recognition framework for underwater fish images. IEEE Trans Image Process 25(4):1862–1872MathSciNetMATH Chuang MC, Hwang JN, Williams K (2016) A feature learning and object recognition framework for underwater fish images. IEEE Trans Image Process 25(4):1862–1872MathSciNetMATH
37.
Zurück zum Zitat Zhu Y, Chang L, Dai J, Zheng H, Zheng B (2016) Automatic object detection and segmentation from underwater images via saliency-based region merging. In: OCEANS 2016-Shanghai. IEEE, pp 1–4 Zhu Y, Chang L, Dai J, Zheng H, Zheng B (2016) Automatic object detection and segmentation from underwater images via saliency-based region merging. In: OCEANS 2016-Shanghai. IEEE, pp 1–4
38.
Zurück zum Zitat Zhang Y, Yang Q (2017) An overview of multi-task learning. Natl Sci Rev 5(1):30–43CrossRef Zhang Y, Yang Q (2017) An overview of multi-task learning. Natl Sci Rev 5(1):30–43CrossRef
39.
Zurück zum Zitat Zhu Xiaofeng, Zhang Shichao, Rongyao Hu, Zhu Yonghua, Song Jingkuan (2018) Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans Knowl Data Eng 30(3):517–529CrossRef Zhu Xiaofeng, Zhang Shichao, Rongyao Hu, Zhu Yonghua, Song Jingkuan (2018) Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans Knowl Data Eng 30(3):517–529CrossRef
41.
Zurück zum Zitat Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: European conference on computer vision. Springer, Berlin, pp 751–767 Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: European conference on computer vision. Springer, Berlin, pp 751–767
48.
Zurück zum Zitat Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338CrossRef Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338CrossRef
49.
Zurück zum Zitat Smeulders AW, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468CrossRef Smeulders AW, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468CrossRef
50.
Zurück zum Zitat Xu M, Sun Q, Huang C, Shi J (2017) Object motion detection and data processing in large-scale particle image velocimetry. Intell Autom Soft Comput 23(4):653–660CrossRef Xu M, Sun Q, Huang C, Shi J (2017) Object motion detection and data processing in large-scale particle image velocimetry. Intell Autom Soft Comput 23(4):653–660CrossRef
51.
Zurück zum Zitat Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc IEEE 90(7):1151–1163CrossRef Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc IEEE 90(7):1151–1163CrossRef
52.
Zurück zum Zitat Babacan SD, Pappas TN (2007) Spatiotemporal algorithm for background subtraction. In: IEEE international conference on acoustics, speech and signal processing. ICASSP 2007, vol 1. IEEE, , p I-1065 Babacan SD, Pappas TN (2007) Spatiotemporal algorithm for background subtraction. In: IEEE international conference on acoustics, speech and signal processing. ICASSP 2007, vol 1. IEEE, , p I-1065
53.
Zurück zum Zitat Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724MathSciNetMATHCrossRef Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724MathSciNetMATHCrossRef
54.
Zurück zum Zitat Zhou X, Yang C, Yu W (2013) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610CrossRef Zhou X, Yang C, Yu W (2013) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610CrossRef
55.
Zurück zum Zitat Tu Z, Abel A, Zhang L, Luo B, Hussain A (2016) A new spatio-temporal saliency-based video object segmentation. Cogn Comput 8(4):629–647CrossRef Tu Z, Abel A, Zhang L, Luo B, Hussain A (2016) A new spatio-temporal saliency-based video object segmentation. Cogn Comput 8(4):629–647CrossRef
Metadaten
Titel
Color–depth multi-task learning for object detection in haze
verfasst von
Zhe Chen
Xin Wang
Tanghuai Fan
Lizhong Xu
Publikationsdatum
04.10.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 11/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3732-6

Weitere Artikel der Ausgabe 11/2020

Neural Computing and Applications 11/2020 Zur Ausgabe

Premium Partner