Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2021

11.01.2021

Compaction and Densification Characteristics of Iron Powder/Coal Fly Ash Mixtures Processed by Powder Metallurgy Technique

verfasst von: Amarjit Singh, Jarnail Singh, Manoj Kumar Sinha, Ravi Kumar, Vikram Verma

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work elucidates the compaction and the densification behavior of iron powder and coal fly ash (CFA) mixtures during powder metallurgy (P/M) processing. The flowability and the compressibility characteristics of the starting materials were exhibited through Hausner ratio and Carr’s index. Morphological, elemental and crystallographic characterizations of the starting materials were carried out using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy and x-ray diffraction investigations, respectively. The CFA of 0, 5, 10 and 15 wt.% was mixed with the iron powder through ball milling. Further, the cold compaction of the mixtures containing iron/CFA was performed in the hardened steel die using a uniaxial hydraulic press at pressures of 91 MPa, 138 MPa and 185 MPa, respectively. Subsequently, the preforms were sintered at 950, 1050 and 1150 °C in a tubular furnace under an inert atmosphere. The density of the preforms and the sintered pallets was estimated using weight to volume ratio and Archimedes method, respectively. The obtained mineralogy, morphology and physio-mechanical properties of the CFA are in good agreement with the ASTM standards. Further, the flowability and the compressibility characteristics of the starting materials rendered them suitable for processing through the P/M process. SEM analysis of the sintered pallets exhibited uniform distribution of CFA particulates in the iron matrix with clear and strong interfaces. An inverse effect of an increased amount of CFA inclusion has been observed on the green and sintered density of the composite. However, a linear influence of increased compacting pressure and sintering temperature has been observed on green and sintered densities, respectively. The magnitude of the green density achieved during cold compaction is considerably higher than that achieved during the sintering process. The obtained compaction data were successfully fitted using the Ge compaction equation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Malakar, V. Pancholi, and V.V. Dabhade, Recrystallization and Strengthening Mechanism in Friction-Stir-Processed Al Powder Compacts, J. Mater. Eng. Perform., 2020, 29(5), p 3243–3252CrossRef A. Malakar, V. Pancholi, and V.V. Dabhade, Recrystallization and Strengthening Mechanism in Friction-Stir-Processed Al Powder Compacts, J. Mater. Eng. Perform., 2020, 29(5), p 3243–3252CrossRef
2.
Zurück zum Zitat G.H. Majzoobi and K. Rahmani, Mechanical Characterization of Mg-B4C Nanocomposite Fabricated at Different Strain Rates, Int. J. Miner. Metall. Mater., 2020, 27(2), p 252–263CrossRef G.H. Majzoobi and K. Rahmani, Mechanical Characterization of Mg-B4C Nanocomposite Fabricated at Different Strain Rates, Int. J. Miner. Metall. Mater., 2020, 27(2), p 252–263CrossRef
3.
Zurück zum Zitat K.S. Narasimhan, Sintering of Powder Mixtures and the Growth of Ferrous Powder Metallurgy, Mater. Chem. Phys., 2001, 67(1–3), p 56–65CrossRef K.S. Narasimhan, Sintering of Powder Mixtures and the Growth of Ferrous Powder Metallurgy, Mater. Chem. Phys., 2001, 67(1–3), p 56–65CrossRef
4.
Zurück zum Zitat S.S. Razavi-Tousi, R. Yazdani-Rad, and S.A. Manafi, Effect of Volume Fraction and Particle Size of Alumina Reinforcement on Compaction and Densification Behavior of Al-Al2O3 Nanocomposites, Mater. Sci. Eng., A, 2011, 528(3), p 1105–1110CrossRef S.S. Razavi-Tousi, R. Yazdani-Rad, and S.A. Manafi, Effect of Volume Fraction and Particle Size of Alumina Reinforcement on Compaction and Densification Behavior of Al-Al2O3 Nanocomposites, Mater. Sci. Eng., A, 2011, 528(3), p 1105–1110CrossRef
5.
Zurück zum Zitat A.R. Kannan, K.S. Pandey, and S. Shanmugam, Some Investigation on the Cold Deformation Behaviour of Sintered Iron-0.8% Carbon Alloy Powder Preforms, J. Mater. Process. Technol., 2008, 203(1–3), p 542–547CrossRef A.R. Kannan, K.S. Pandey, and S. Shanmugam, Some Investigation on the Cold Deformation Behaviour of Sintered Iron-0.8% Carbon Alloy Powder Preforms, J. Mater. Process. Technol., 2008, 203(1–3), p 542–547CrossRef
6.
Zurück zum Zitat S. Tiwari, P. Rajput, and S. Srivastava, Densification Behaviour in the Fabrication of Al-Fe Metal Matrix Composite Using Powder Metallurgy Route, Int. Sch. Res. Notices, 2012, 2012, p 1–8 S. Tiwari, P. Rajput, and S. Srivastava, Densification Behaviour in the Fabrication of Al-Fe Metal Matrix Composite Using Powder Metallurgy Route, Int. Sch. Res. Notices, 2012, 2012, p 1–8
7.
Zurück zum Zitat J.M. Montes, F.G. Cuevas, J. Cintas, and Y. Torres, Powder Compaction Law for Cold Die Pressing, Granul. Matter, 2010, 12(6), p 617–627CrossRef J.M. Montes, F.G. Cuevas, J. Cintas, and Y. Torres, Powder Compaction Law for Cold Die Pressing, Granul. Matter, 2010, 12(6), p 617–627CrossRef
8.
Zurück zum Zitat S. Huo, L. Xie, J. Xiang, S. Pang, F. Hu, and U. Umer, Atomic-Level Study on Mechanical Properties and Strengthening Mechanisms of Al/SiC Nano-Composites, Appl. Phys. A Mater. Sci. Process., 2018, 124(2), p 1–12CrossRef S. Huo, L. Xie, J. Xiang, S. Pang, F. Hu, and U. Umer, Atomic-Level Study on Mechanical Properties and Strengthening Mechanisms of Al/SiC Nano-Composites, Appl. Phys. A Mater. Sci. Process., 2018, 124(2), p 1–12CrossRef
9.
Zurück zum Zitat U.R. Kanth, P.S. Rao, and M.G. Krishna, Mechanical Behaviour of Fly Ash/SiC Particles Reinforced Al-Zn Alloy-Based Metal Matrix Composites Fabricated by Stir Casting Method, J. Mater. Res. Technol. Braz. Metall. Mater. Min. Assoc., 2019, 8(1), p 737–744 U.R. Kanth, P.S. Rao, and M.G. Krishna, Mechanical Behaviour of Fly Ash/SiC Particles Reinforced Al-Zn Alloy-Based Metal Matrix Composites Fabricated by Stir Casting Method, J. Mater. Res. Technol. Braz. Metall. Mater. Min. Assoc., 2019, 8(1), p 737–744
10.
Zurück zum Zitat F.A.R. Rozhbiany and S.R. Jalal, Influence of Reinforcement and Processing on Aluminum Matrix Composites Modified by Stir Casting Route, Adv. Compos. Lett., 2019, 28, p 1–8CrossRef F.A.R. Rozhbiany and S.R. Jalal, Influence of Reinforcement and Processing on Aluminum Matrix Composites Modified by Stir Casting Route, Adv. Compos. Lett., 2019, 28, p 1–8CrossRef
11.
Zurück zum Zitat N.K. Bhoi, H. Singh, and S. Pratap, Developments in the Aluminum Metal Matrix Composites Reinforced by Micro/Nano Particles—A Review, J. Compos. Mater., 2020, 54(6), p 813–833CrossRef N.K. Bhoi, H. Singh, and S. Pratap, Developments in the Aluminum Metal Matrix Composites Reinforced by Micro/Nano Particles—A Review, J. Compos. Mater., 2020, 54(6), p 813–833CrossRef
12.
Zurück zum Zitat A. Trivedi and V.K. Sud, Grain Characteristics and Engineering Properties of Coal Ash, Granul. Matter, 2002, 4(3), p 93–101CrossRef A. Trivedi and V.K. Sud, Grain Characteristics and Engineering Properties of Coal Ash, Granul. Matter, 2002, 4(3), p 93–101CrossRef
13.
Zurück zum Zitat R. Manimaran, I. Jayakumar, R. Mohammad Giyahudeen, and L. Narayanan, Mechanical Properties of Fly Ash Composites—A Review, Energy Sources Part A Recovery Util. Environ. Eff., 2018, 40(8), p 887–893CrossRef R. Manimaran, I. Jayakumar, R. Mohammad Giyahudeen, and L. Narayanan, Mechanical Properties of Fly Ash Composites—A Review, Energy Sources Part A Recovery Util. Environ. Eff., 2018, 40(8), p 887–893CrossRef
14.
Zurück zum Zitat M. Ahmaruzzaman, A Review on the Utilization of Fly Ash, Prog. Energy Combust. Sci., 2010, 36(3), p 327–363CrossRef M. Ahmaruzzaman, A Review on the Utilization of Fly Ash, Prog. Energy Combust. Sci., 2010, 36(3), p 327–363CrossRef
15.
Zurück zum Zitat R.Q. Guo, P.K. Rohatgi, and D. Nath, Compacting Characteristics of Aluminium-Fly Ash Powder Mixtures, J. Mater. Sci., 1996, 31, p 5513–5519CrossRef R.Q. Guo, P.K. Rohatgi, and D. Nath, Compacting Characteristics of Aluminium-Fly Ash Powder Mixtures, J. Mater. Sci., 1996, 31, p 5513–5519CrossRef
16.
Zurück zum Zitat A.K. Kasar, N. Gupta, P.K. Rohatgi, and P.L. Menezes, A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties, JOM, 2020, 72(6), p 2340–2351CrossRef A.K. Kasar, N. Gupta, P.K. Rohatgi, and P.L. Menezes, A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties, JOM, 2020, 72(6), p 2340–2351CrossRef
17.
Zurück zum Zitat J.J. Biernacki, A.K. Vazrala, and H.W. Leimer, Sintering of a Class F Fly Ash, Fuel, 2008, 87, p 782–792CrossRef J.J. Biernacki, A.K. Vazrala, and H.W. Leimer, Sintering of a Class F Fly Ash, Fuel, 2008, 87, p 782–792CrossRef
18.
Zurück zum Zitat R.Q. Guo and P.K. Rohatgi, Preparation of Aluminium-Fly Ash Particulate Composite by Powder Metallurgy Technique, J. Mater. Sci., 1997, 2(32), p 3971–3974CrossRef R.Q. Guo and P.K. Rohatgi, Preparation of Aluminium-Fly Ash Particulate Composite by Powder Metallurgy Technique, J. Mater. Sci., 1997, 2(32), p 3971–3974CrossRef
19.
Zurück zum Zitat Y.Z. Zhu, Z.M. Yin, Z.D. Xiang, and Z. Zhe, Cold Densification Behaviour of Multiple Alloy Powder Containing Fe-Cr and Fe-Mo Hard Particles, Powder Metall., 2008, 51(2), p 143–149CrossRef Y.Z. Zhu, Z.M. Yin, Z.D. Xiang, and Z. Zhe, Cold Densification Behaviour of Multiple Alloy Powder Containing Fe-Cr and Fe-Mo Hard Particles, Powder Metall., 2008, 51(2), p 143–149CrossRef
20.
Zurück zum Zitat D. Bouvard, Densification Behaviour of Mixtures of Hard and Soft Powders under Pressure, Powder Technol., 2000, 111(3), p 231–239CrossRef D. Bouvard, Densification Behaviour of Mixtures of Hard and Soft Powders under Pressure, Powder Technol., 2000, 111(3), p 231–239CrossRef
21.
Zurück zum Zitat G. Sethi, N.S. Myers, and R.M. German, An Overview of Dynamic Compaction in Powder Metallurgy, Int. Mater. Rev., 2008, 53(4), p 219–234CrossRef G. Sethi, N.S. Myers, and R.M. German, An Overview of Dynamic Compaction in Powder Metallurgy, Int. Mater. Rev., 2008, 53(4), p 219–234CrossRef
22.
Zurück zum Zitat U.J. Prasanna Kumar, P. Gupta, A.K. Jha, and D. Kumar, Closed Die Deformation Behavior of Cylindrical Iron-Alumina Metal Matrix Composites During Cold Sinter Forging, J. Inst. Eng. (India) Ser. D, 2016, 97(2), p 135–151CrossRef U.J. Prasanna Kumar, P. Gupta, A.K. Jha, and D. Kumar, Closed Die Deformation Behavior of Cylindrical Iron-Alumina Metal Matrix Composites During Cold Sinter Forging, J. Inst. Eng. (India) Ser. D, 2016, 97(2), p 135–151CrossRef
23.
Zurück zum Zitat S. Narayan and A. Rajeshkannan, Densification Behaviour in Forming of Sintered Iron-03.5% Carbon Powder Metallurgy Preform during Cold Upsetting, Mater. Des., 2011, 32(2), p 1006–1013CrossRef S. Narayan and A. Rajeshkannan, Densification Behaviour in Forming of Sintered Iron-03.5% Carbon Powder Metallurgy Preform during Cold Upsetting, Mater. Des., 2011, 32(2), p 1006–1013CrossRef
24.
Zurück zum Zitat R. Raj and D.G. Thakur, Qualitative and Quantitative Assessment of Microstructure in Al-B4C Metal Matrix Composite Processed by Modified Stir Casting Technique, Arch. Civ. Mech. Eng., 2016, 16(4), p 949–960CrossRef R. Raj and D.G. Thakur, Qualitative and Quantitative Assessment of Microstructure in Al-B4C Metal Matrix Composite Processed by Modified Stir Casting Technique, Arch. Civ. Mech. Eng., 2016, 16(4), p 949–960CrossRef
25.
Zurück zum Zitat M. Marin and F. B. Marin, Quantitative Image Analysis in Some Iron Powder Metallurgy Materials. in IOP Conference Series: Materials Science and Engineering, 2019 M. Marin and F. B. Marin, Quantitative Image Analysis in Some Iron Powder Metallurgy Materials. in IOP Conference Series: Materials Science and Engineering, 2019
26.
Zurück zum Zitat S.L.G. Petroni, PM Compaction Equations Applied for the Modelling of Titanium Hydride Powders Compressibility Data, Powder Metall., 2020, 63(1), p 35–42CrossRef S.L.G. Petroni, PM Compaction Equations Applied for the Modelling of Titanium Hydride Powders Compressibility Data, Powder Metall., 2020, 63(1), p 35–42CrossRef
27.
Zurück zum Zitat N.M. Abbas, X. Deng, and A.P. Reynolds, Compaction of Machining Chips: Extended Experiments and Modeling, Mech. Mater., 2020, 141, p 103249CrossRef N.M. Abbas, X. Deng, and A.P. Reynolds, Compaction of Machining Chips: Extended Experiments and Modeling, Mech. Mater., 2020, 141, p 103249CrossRef
28.
Zurück zum Zitat F. Güner, Ö.N. Cora, and H. Sofuoğlu, Numerical Modeling of Cold Powder Compaction Using Multi Particle and Continuum Media Approaches, Powder Technol., 2015, 271, p 238–247CrossRef F. Güner, Ö.N. Cora, and H. Sofuoğlu, Numerical Modeling of Cold Powder Compaction Using Multi Particle and Continuum Media Approaches, Powder Technol., 2015, 271, p 238–247CrossRef
29.
Zurück zum Zitat A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino, An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy, J. Mater. Eng. Perform., 2017, 26(3), p 993–999CrossRef A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino, An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy, J. Mater. Eng. Perform., 2017, 26(3), p 993–999CrossRef
30.
Zurück zum Zitat R. Machaka and H.K. Chikwanda, Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-Model Comparison Study of Compaction Equations, Metall. Mater. Trans. A, 2015, 46(9), p 4286–4297CrossRef R. Machaka and H.K. Chikwanda, Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-Model Comparison Study of Compaction Equations, Metall. Mater. Trans. A, 2015, 46(9), p 4286–4297CrossRef
31.
Zurück zum Zitat T.J. Griffiths and A. Ghanizadeh, Determination of Elastic Constants for Porous Sintered Iron Powder Compacts, Powder Metall., 1986, 29(2), p 129–133CrossRef T.J. Griffiths and A. Ghanizadeh, Determination of Elastic Constants for Porous Sintered Iron Powder Compacts, Powder Metall., 1986, 29(2), p 129–133CrossRef
32.
Zurück zum Zitat A. Singh, J. Singh, M.K. Sinha, R. Kumar, and V. Verma, Investigations on Microstructural and Microhardness Developments in Sintered Iron–Coal Fly Ash Composites, Sādhanā, 2020, 45, p 1–13CrossRef A. Singh, J. Singh, M.K. Sinha, R. Kumar, and V. Verma, Investigations on Microstructural and Microhardness Developments in Sintered Iron–Coal Fly Ash Composites, Sādhanā, 2020, 45, p 1–13CrossRef
33.
Zurück zum Zitat C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor, and S.R. Methuku, Shape Identification and Particles Size Distribution from Basic Shape Parameters Using ImageJ, Comput. Electron. Agric., 2008, 63(2), p 168–182CrossRef C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor, and S.R. Methuku, Shape Identification and Particles Size Distribution from Basic Shape Parameters Using ImageJ, Comput. Electron. Agric., 2008, 63(2), p 168–182CrossRef
34.
Zurück zum Zitat P. Verma, R. Saha, and D. Chaira, Waste Steel Scrap to Nanostructured Powder and Superior Compact through Powder Metallurgy: Powder Generation, Process. Charact. Powder Technol., 2018, 326, p 159–167CrossRef P. Verma, R. Saha, and D. Chaira, Waste Steel Scrap to Nanostructured Powder and Superior Compact through Powder Metallurgy: Powder Generation, Process. Charact. Powder Technol., 2018, 326, p 159–167CrossRef
35.
Zurück zum Zitat A. Saker, M.G. Cares-Pacheco, P. Marchal, and V. Falk, Powders Flowability Assessment in Granular Compaction: What about the Consistency of Hausner Ratio?, Powder Technol., 2019, 354, p 52–63CrossRef A. Saker, M.G. Cares-Pacheco, P. Marchal, and V. Falk, Powders Flowability Assessment in Granular Compaction: What about the Consistency of Hausner Ratio?, Powder Technol., 2019, 354, p 52–63CrossRef
36.
Zurück zum Zitat M.R.I. Shishir, F.S. Taip, N.A. Aziz, and R.A. Talib, Physical Properties of Spray-Dried Pink Guava (Psidium Guajava) Powder, Agric. Agric. Sci. Procedia, 2014, 2, p 74–81 M.R.I. Shishir, F.S. Taip, N.A. Aziz, and R.A. Talib, Physical Properties of Spray-Dried Pink Guava (Psidium Guajava) Powder, Agric. Agric. Sci. Procedia, 2014, 2, p 74–81
37.
Zurück zum Zitat A. Bhatt, S. Priyadarshini, A. Acharath Mohanakrishnan, A. Abri, M. Sattler, and S. Techapaphawit, Physical, Chemical, and Geotechnical Properties of Coal Fly Ash: A Global Review, Case Studies in Construction Materials, 2019, 11, p 1–11 A. Bhatt, S. Priyadarshini, A. Acharath Mohanakrishnan, A. Abri, M. Sattler, and S. Techapaphawit, Physical, Chemical, and Geotechnical Properties of Coal Fly Ash: A Global Review, Case Studies in Construction Materials, 2019, 11, p 1–11
38.
Zurück zum Zitat T. Matsunaga, J.K. Kim, S. Hardcastle, and P.K. Rohatgi, Crystallinity and Selected Properties of Fly Ash Particles, Mater. Sci. Eng., A, 2002, 325, p 333–343CrossRef T. Matsunaga, J.K. Kim, S. Hardcastle, and P.K. Rohatgi, Crystallinity and Selected Properties of Fly Ash Particles, Mater. Sci. Eng., A, 2002, 325, p 333–343CrossRef
39.
Zurück zum Zitat C.A. Leon, G. Rodriguez-Ortiz, and E.A. Aguilar-Reyes, Cold Compaction of Metal-Ceramic Powders in the Preparation of Copper Base Hybrid Materials, Mater. Sci. Eng., A, 2009, 526(1–2), p 106–112CrossRef C.A. Leon, G. Rodriguez-Ortiz, and E.A. Aguilar-Reyes, Cold Compaction of Metal-Ceramic Powders in the Preparation of Copper Base Hybrid Materials, Mater. Sci. Eng., A, 2009, 526(1–2), p 106–112CrossRef
40.
Zurück zum Zitat R. Stevens, T. Vendlinski, J. Palacio-Cayetano, J. Underdahl, P. Paek, M. Sprang, and E. Simpson, Tracing the Development, Transfer, and Persistence of Problem Solving Skills, Mater. Des., 2001, 24, p 561–575 R. Stevens, T. Vendlinski, J. Palacio-Cayetano, J. Underdahl, P. Paek, M. Sprang, and E. Simpson, Tracing the Development, Transfer, and Persistence of Problem Solving Skills, Mater. Des., 2001, 24, p 561–575
41.
Zurück zum Zitat D. Poquillon, J. Lemaitre, V. Baco-Carles, P. Tailhades, and J. Lacaze, Cold Compaction of Iron Powders—Relations between Powder Morphology and Mechanical Properties: Part I: Powder Preparation and Compaction, Powder Technol., 2002, 126(1), p 65–74CrossRef D. Poquillon, J. Lemaitre, V. Baco-Carles, P. Tailhades, and J. Lacaze, Cold Compaction of Iron Powders—Relations between Powder Morphology and Mechanical Properties: Part I: Powder Preparation and Compaction, Powder Technol., 2002, 126(1), p 65–74CrossRef
42.
Zurück zum Zitat A. Fathy, O. El-Kady, and M.M.M. Mohammed, Effect of Iron Addition on Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route, Trans. Nonferrous Met. Soc. China, 2015, 25(1), p 46–53CrossRef A. Fathy, O. El-Kady, and M.M.M. Mohammed, Effect of Iron Addition on Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route, Trans. Nonferrous Met. Soc. China, 2015, 25(1), p 46–53CrossRef
43.
Zurück zum Zitat M. Andasmas, P. Langlois, N. Fagnon, T. Chauveau, A. Hendaoui, and D. Vrel, Phenomenological Study of the Densification Behavior of Aluminum-Nickel Powder Mixtures during Cold Isostatic Pressing and Differential Hydrostatic Extrusion, Powder Technol., 2011, 207(1–3), p 304–310CrossRef M. Andasmas, P. Langlois, N. Fagnon, T. Chauveau, A. Hendaoui, and D. Vrel, Phenomenological Study of the Densification Behavior of Aluminum-Nickel Powder Mixtures during Cold Isostatic Pressing and Differential Hydrostatic Extrusion, Powder Technol., 2011, 207(1–3), p 304–310CrossRef
44.
Zurück zum Zitat S. Mahdavi and F. Akhlaghi, Effect of SiC Content on the Processing, Compaction Behavior, and Properties of Al6061/SiC/Gr Hybrid Composites, J. Mater. Sci., 2011, 46(5), p 1502–1511CrossRef S. Mahdavi and F. Akhlaghi, Effect of SiC Content on the Processing, Compaction Behavior, and Properties of Al6061/SiC/Gr Hybrid Composites, J. Mater. Sci., 2011, 46(5), p 1502–1511CrossRef
45.
Zurück zum Zitat H.F. Fischmeister, Eighteenth John Player Lecture. Powder Compaction: Fundamentals and Recent Developments, Proc. Instn. Mech. Engrs., 1982, 196, p 105–121CrossRef H.F. Fischmeister, Eighteenth John Player Lecture. Powder Compaction: Fundamentals and Recent Developments, Proc. Instn. Mech. Engrs., 1982, 196, p 105–121CrossRef
46.
Zurück zum Zitat C. Manière and E.A. Olevsky, Porosity Dependence of Powder Compaction Constitutive Parameters: Determination Based on Spark Plasma Sintering Tests, Scripta Mater., 2017, 141, p 62–66CrossRef C. Manière and E.A. Olevsky, Porosity Dependence of Powder Compaction Constitutive Parameters: Determination Based on Spark Plasma Sintering Tests, Scripta Mater., 2017, 141, p 62–66CrossRef
47.
Zurück zum Zitat F. Ludewig, N. Vandewalle, and S. Dorbolo, Compaction of Granular Mixtures, Granul. Matter, 2006, 8(2), p 87–91CrossRef F. Ludewig, N. Vandewalle, and S. Dorbolo, Compaction of Granular Mixtures, Granul. Matter, 2006, 8(2), p 87–91CrossRef
48.
Zurück zum Zitat J.P. Panakkal, H. Willems, and W. Arnold, Nondestructive Evaluation of Elastic Parameters of Sintered Iron Powder Compacts, J. Mater. Sci., 1990, 25(2), p 1397–1402CrossRef J.P. Panakkal, H. Willems, and W. Arnold, Nondestructive Evaluation of Elastic Parameters of Sintered Iron Powder Compacts, J. Mater. Sci., 1990, 25(2), p 1397–1402CrossRef
49.
Zurück zum Zitat Y. Tian, Z. Dou, L. Niu, and T. Zhang, Effect of Nanoboron Carbide Particles on Properties of Copper-Matrix/Graphite Composite Materials, Mater. Res. Express, 2019, 6(9), p 0950c7CrossRef Y. Tian, Z. Dou, L. Niu, and T. Zhang, Effect of Nanoboron Carbide Particles on Properties of Copper-Matrix/Graphite Composite Materials, Mater. Res. Express, 2019, 6(9), p 0950c7CrossRef
50.
Zurück zum Zitat M. Zhou, S. Huang, Y. Lei, W. Liu, and S. Yan, Investigation on Compaction Densification Behaviors of Multicomponent Mixed Metal Powders to Manufacture Silver-Based Filler Metal Sheets, Arab. J. Sci. Eng., 2019, 44(2), p 1321–1335CrossRef M. Zhou, S. Huang, Y. Lei, W. Liu, and S. Yan, Investigation on Compaction Densification Behaviors of Multicomponent Mixed Metal Powders to Manufacture Silver-Based Filler Metal Sheets, Arab. J. Sci. Eng., 2019, 44(2), p 1321–1335CrossRef
51.
Zurück zum Zitat M. Andrezak and B. Schiffer, Kanban and Technical Excellence or: Why Daily Releases Are a Great Objective to Meet, in Lecture Notes in Business Information Processing, 2010, p 115–117. M. Andrezak and B. Schiffer, Kanban and Technical Excellence or: Why Daily Releases Are a Great Objective to Meet, in Lecture Notes in Business Information Processing, 2010, p 115–117.
52.
Zurück zum Zitat W. Chen, J. Wang, S. Wang, P. Chen, J. Cheng, W. Chen, J. Wang, S. Wang, P. Chen, and J. Cheng, On the Processing Properties and Friction Behaviours during Compaction of Powder Mixtures, Mater. Sci. Technol., 2020, 36, p 1057–1064CrossRef W. Chen, J. Wang, S. Wang, P. Chen, J. Cheng, W. Chen, J. Wang, S. Wang, P. Chen, and J. Cheng, On the Processing Properties and Friction Behaviours during Compaction of Powder Mixtures, Mater. Sci. Technol., 2020, 36, p 1057–1064CrossRef
53.
Zurück zum Zitat P.J. Denny, Compaction Equations: A Comparison of the Heckel and Kawakita Equations, Powder Technol., 2002, 127, p 162–172CrossRef P.J. Denny, Compaction Equations: A Comparison of the Heckel and Kawakita Equations, Powder Technol., 2002, 127, p 162–172CrossRef
54.
Zurück zum Zitat C. Machio, R. Machaka, T. Shabalala, and H.K. Chikwanda, Analysis of the Cold Compaction Behaviour of TiH2-316L Nanocomposite Powder Blend Using Compaction Models, Mater. Sci. Forum, 2015, 828–829(June), p 121–128CrossRef C. Machio, R. Machaka, T. Shabalala, and H.K. Chikwanda, Analysis of the Cold Compaction Behaviour of TiH2-316L Nanocomposite Powder Blend Using Compaction Models, Mater. Sci. Forum, 2015, 828–829(June), p 121–128CrossRef
55.
Zurück zum Zitat H. Abdollahi, R. Mahdavinejad, and R.P. Leavoli, Investigation and Optimization of Properties of Sintered Iron/Recycled Grey Cast Iron Powder Metallurgy Parts, J. Eng. Manuf., 2015, 229(6), p 1010–1020CrossRef H. Abdollahi, R. Mahdavinejad, and R.P. Leavoli, Investigation and Optimization of Properties of Sintered Iron/Recycled Grey Cast Iron Powder Metallurgy Parts, J. Eng. Manuf., 2015, 229(6), p 1010–1020CrossRef
56.
Zurück zum Zitat G. Arora and S. Sharma, A Review on Monolithic and Hybrid Metal-Matrix Composites Reinforced with Industrial-Agro Wastes, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(11), p 4819–4835CrossRef G. Arora and S. Sharma, A Review on Monolithic and Hybrid Metal-Matrix Composites Reinforced with Industrial-Agro Wastes, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(11), p 4819–4835CrossRef
57.
Zurück zum Zitat D.C. Jana, P. Barick, and B.P. Saha, Effect of Sintering Temperature on Density and Mechanical Properties of Solid-State Sintered Silicon Carbide Ceramics and Evaluation of Failure Origin, J. Mater. Eng. Perform., 2018, 27(6), p 2960–2966CrossRef D.C. Jana, P. Barick, and B.P. Saha, Effect of Sintering Temperature on Density and Mechanical Properties of Solid-State Sintered Silicon Carbide Ceramics and Evaluation of Failure Origin, J. Mater. Eng. Perform., 2018, 27(6), p 2960–2966CrossRef
58.
Zurück zum Zitat A. Nirala and A. Upadhyaya, Experimental Characterization and Sintering Behavior in Mixed Atmosphere (N2 and H2) of Fe3P-Added Ferritic Stainless Steel (434L), J. Mater. Eng. Perform., 2020, 29(5), p 2926–2935CrossRef A. Nirala and A. Upadhyaya, Experimental Characterization and Sintering Behavior in Mixed Atmosphere (N2 and H2) of Fe3P-Added Ferritic Stainless Steel (434L), J. Mater. Eng. Perform., 2020, 29(5), p 2926–2935CrossRef
59.
Zurück zum Zitat J. William D. Callister and Department, Fundamentals of Materials Science and Engineering. W. Anderson, Ed., Fifth, 2001, Wiley, New York. J. William D. Callister and Department, Fundamentals of Materials Science and Engineering. W. Anderson, Ed., Fifth, 2001, Wiley, New York.
60.
Zurück zum Zitat H. Abdollahi, R. Mahdavinejad, M. Ghambari, and M. Moradi, Investigation of Green Properties of Iron/Jet-Milled Grey Cast Iron Compacts by Response Surface Method, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2014, 228(4), p 493–503CrossRef H. Abdollahi, R. Mahdavinejad, M. Ghambari, and M. Moradi, Investigation of Green Properties of Iron/Jet-Milled Grey Cast Iron Compacts by Response Surface Method, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2014, 228(4), p 493–503CrossRef
61.
Zurück zum Zitat P. Balamurugan and M. Uthayakumar, Influence of Process Parameters on Cu-Fly Ash Composite by Powder Metallurgy Technique, Mater. Manuf. Process., 2015, 30(3), p 313–319CrossRef P. Balamurugan and M. Uthayakumar, Influence of Process Parameters on Cu-Fly Ash Composite by Powder Metallurgy Technique, Mater. Manuf. Process., 2015, 30(3), p 313–319CrossRef
62.
Zurück zum Zitat P. Ruano, L.L. Delgado, S. Picco, L. Villegas, F. Tonelli, M. Merlo, J. Rigau, D. Diaz, and M. Masuelli, We Are Intech Open the World’s Leading Publisher of Open Access Books Built by Scientists, Intech, 2016, p 13. P. Ruano, L.L. Delgado, S. Picco, L. Villegas, F. Tonelli, M. Merlo, J. Rigau, D. Diaz, and M. Masuelli, We Are Intech Open the World’s Leading Publisher of Open Access Books Built by Scientists, Intech, 2016, p 13.
63.
Zurück zum Zitat E. Biguereau, D. Bouvard, J.M. Chaix, and S. Roure, On the Swelling of Silver Powder during Sintering, Powder Metall., 2016, 59(5), p 394–400CrossRef E. Biguereau, D. Bouvard, J.M. Chaix, and S. Roure, On the Swelling of Silver Powder during Sintering, Powder Metall., 2016, 59(5), p 394–400CrossRef
64.
Zurück zum Zitat F. Lin, Z. Chen, B. Liu, Y. Liu, and C. Zhou, Microstructure and Mechanical Properties of Iron-Containing Titanium Metal-Metal Composites, Int. J. Refract Metal Hard Mater., 2020, 90, p 1–6CrossRef F. Lin, Z. Chen, B. Liu, Y. Liu, and C. Zhou, Microstructure and Mechanical Properties of Iron-Containing Titanium Metal-Metal Composites, Int. J. Refract Metal Hard Mater., 2020, 90, p 1–6CrossRef
Metadaten
Titel
Compaction and Densification Characteristics of Iron Powder/Coal Fly Ash Mixtures Processed by Powder Metallurgy Technique
verfasst von
Amarjit Singh
Jarnail Singh
Manoj Kumar Sinha
Ravi Kumar
Vikram Verma
Publikationsdatum
11.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05429-x

Weitere Artikel der Ausgabe 2/2021

Journal of Materials Engineering and Performance 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.