Skip to main content
Erschienen in: Cellulose 15/2019

09.04.2019 | Original Research

Comparative metabolomic analysis of furfural stress response in Aspergillus terreus

verfasst von: Xiaohuan Zhang, Yu Zhang, Wei Qi, Zhenhong Yuan, Zhongming Wang

Erschienen in: Cellulose | Ausgabe 15/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pretreatment of lignocellulosic biomass results in the generation of a great number of inhibitors, which seriously hinder microbial growth and fermentation. Furfural, one inhibitor produced, can impede Aspergillus terreus growth and itaconic acid (IA) production. In this study, chemical mutagenesis was employed to improve the tolerance of A. terreus to furfural, with results showing significant improvement in A. terreus mutant strain growth rates, furfural degradation and reduction in IA production. Metabolomic analysis was applied to establish the underlying mechanisms of furfural tolerance in A. terreus. Differences in metabolic pathways were assessed between mutant and parental strains, when exposed to 0.5 g/L furfural, which induces significantly greater toxicity to the parental strain than the mutant strain. Results show that the higher activity of beta-alanine, glutathione and tryptophan metabolism pathways in parental strains can directly affect the cell content of NAD+, NADP+/NADPH and coenzyme A, which protect cells from furfural damage. Additionally, parental strain can protect cells against furfural toxicity by reducing lysine metabolism. This study identifies four metabolic pathways which are related to furfural tolerance in A. terreus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2CrossRef Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2CrossRef
Zurück zum Zitat Al-Saryi NA, Al-Hejjaj MY, van Roermund CWT, Hulmes GE, Ekal L, Payton C, Wanders RJA, Hettema EH (2017) Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci Rep 7:11868CrossRef Al-Saryi NA, Al-Hejjaj MY, van Roermund CWT, Hulmes GE, Ekal L, Payton C, Wanders RJA, Hettema EH (2017) Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci Rep 7:11868CrossRef
Zurück zum Zitat Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336CrossRef Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336CrossRef
Zurück zum Zitat Crawford IP (1987) Synthesis of tryptophan from chorismate—comparative aspects. Method Enzymol 142:293–300CrossRef Crawford IP (1987) Synthesis of tryptophan from chorismate—comparative aspects. Method Enzymol 142:293–300CrossRef
Zurück zum Zitat Deponte M (2017) The incomplete glutathione puzzle: just guessing at numbers and figures? Antioxid Redox Sign 27:1130–1161CrossRef Deponte M (2017) The incomplete glutathione puzzle: just guessing at numbers and figures? Antioxid Redox Sign 27:1130–1161CrossRef
Zurück zum Zitat Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15:647–653CrossRef Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15:647–653CrossRef
Zurück zum Zitat Duhaze C, Gagneul D, Leport L, Larher FR, Bouchereau A (2003) Uracil as one of the multiple sources of beta-alanine in Limonium latifolium, a halotolerant beta-alanine betaine accumulating Plumbaginaceae. Plant Physiol Biochem 41:993–998CrossRef Duhaze C, Gagneul D, Leport L, Larher FR, Bouchereau A (2003) Uracil as one of the multiple sources of beta-alanine in Limonium latifolium, a halotolerant beta-alanine betaine accumulating Plumbaginaceae. Plant Physiol Biochem 41:993–998CrossRef
Zurück zum Zitat Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10:2CrossRef Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10:2CrossRef
Zurück zum Zitat Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on nadph-dependent reduction by at least two oxireductases. Appl Environ Microb 75:7631–7638CrossRef Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on nadph-dependent reduction by at least two oxireductases. Appl Environ Microb 75:7631–7638CrossRef
Zurück zum Zitat Jung YH, Kim S, Yang J, Seo JH, Kim KH (2017) Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural. Microb Biotechnol 10:395–404CrossRef Jung YH, Kim S, Yang J, Seo JH, Kim KH (2017) Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural. Microb Biotechnol 10:395–404CrossRef
Zurück zum Zitat Kim D, Hahn JS (2013) Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microb 79:5069–5077CrossRef Kim D, Hahn JS (2013) Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microb 79:5069–5077CrossRef
Zurück zum Zitat Krull S, Hevekerl A, Kuenz A, Pruss U (2017) Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biotechnol 101:4063–4072CrossRef Krull S, Hevekerl A, Kuenz A, Pruss U (2017) Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biotechnol 101:4063–4072CrossRef
Zurück zum Zitat Li BZ, Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biot 86:1915–1924CrossRef Li BZ, Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biot 86:1915–1924CrossRef
Zurück zum Zitat Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520CrossRef Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520CrossRef
Zurück zum Zitat Matsuda F, Shirai T, Ishii J, Kondo A (2013) Regulation of central carbon metabolism in Saccharomyces cerevisiae by metabolic inhibitors. J Biosci Bioeng 116:59–64CrossRef Matsuda F, Shirai T, Ishii J, Kondo A (2013) Regulation of central carbon metabolism in Saccharomyces cerevisiae by metabolic inhibitors. J Biosci Bioeng 116:59–64CrossRef
Zurück zum Zitat Min DY, Wei L, Zhao T, Li MF, Jia Z, Wan GC, Zhang QT, Qin CR, Wang SF (2018) Combination of hydrothermal pretreatment and sodium hydroxide post-treatment applied on wheat straw for enhancing its enzymatic hydrolysis. Cellulose 25:1197–1206CrossRef Min DY, Wei L, Zhao T, Li MF, Jia Z, Wan GC, Zhang QT, Qin CR, Wang SF (2018) Combination of hydrothermal pretreatment and sodium hydroxide post-treatment applied on wheat straw for enhancing its enzymatic hydrolysis. Cellulose 25:1197–1206CrossRef
Zurück zum Zitat Miozzari G, Niederberger P, Hutter R (1978) Tryptophan biosynthesis in Saccharomyces-Cerevisiae—control of flux through pathway. J Bacteriol 134:48–59PubMedPubMedCentral Miozzari G, Niederberger P, Hutter R (1978) Tryptophan biosynthesis in Saccharomyces-Cerevisiae—control of flux through pathway. J Bacteriol 134:48–59PubMedPubMedCentral
Zurück zum Zitat Mondala AH (2015) Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J Ind Microbiol Biotechnol 42:487–506CrossRef Mondala AH (2015) Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J Ind Microbiol Biotechnol 42:487–506CrossRef
Zurück zum Zitat Moon J, Liu ZL (2012) Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH. Enzyme Microb Tech 50:115–120CrossRef Moon J, Liu ZL (2012) Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH. Enzyme Microb Tech 50:115–120CrossRef
Zurück zum Zitat Nugroho RH, Yoshikawa K, Shimizu H (2015) Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 120:396–404CrossRef Nugroho RH, Yoshikawa K, Shimizu H (2015) Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 120:396–404CrossRef
Zurück zum Zitat Ohashi K, Chaleckis R, Takaine M, Wheelock CE, Yoshida S (2017) Kynurenine aminotransferase activity of Aro8/Aro9 engage tryptophan degradation by producing kynurenic acid in Saccharomyces cerevisiae. Sci Rep 7:12180CrossRef Ohashi K, Chaleckis R, Takaine M, Wheelock CE, Yoshida S (2017) Kynurenine aminotransferase activity of Aro8/Aro9 engage tryptophan degradation by producing kynurenic acid in Saccharomyces cerevisiae. Sci Rep 7:12180CrossRef
Zurück zum Zitat Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biot 76:495–511CrossRef Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biot 76:495–511CrossRef
Zurück zum Zitat Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH (2011) Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol 102:6033–6038CrossRef Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH (2011) Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol 102:6033–6038CrossRef
Zurück zum Zitat Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762CrossRef Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762CrossRef
Zurück zum Zitat Qiu ZQ, Deng ZJ, Tan HM, Zhou SN, Cao LX (2015) Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene. J Ind Microbiol Biot 42:537–542CrossRef Qiu ZQ, Deng ZJ, Tan HM, Zhou SN, Cao LX (2015) Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene. J Ind Microbiol Biot 42:537–542CrossRef
Zurück zum Zitat Saha BC (2017) Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biotechnol 44:303–315CrossRef Saha BC (2017) Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biotechnol 44:303–315CrossRef
Zurück zum Zitat Schmacht M, Lorenz E, Senz M (2017) Microbial production of glutathione. World J Microbiol Biotechnol 33:106CrossRef Schmacht M, Lorenz E, Senz M (2017) Microbial production of glutathione. World J Microbiol Biotechnol 33:106CrossRef
Zurück zum Zitat Shen Y, Zhao LZ, Li YR, Zhang L, Shi GY (2014) Synthesis of beta-alanine from L-aspartate using L-aspartate-alpha-decarboxylase from Corynebacterium glutamicum. Biotechnol Lett 36:1681–1686CrossRef Shen Y, Zhao LZ, Li YR, Zhang L, Shi GY (2014) Synthesis of beta-alanine from L-aspartate using L-aspartate-alpha-decarboxylase from Corynebacterium glutamicum. Biotechnol Lett 36:1681–1686CrossRef
Zurück zum Zitat Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO (2011) Increased furfural tolerance due to overexpression of nadh-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microb 77:5132–5140CrossRef Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO (2011) Increased furfural tolerance due to overexpression of nadh-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microb 77:5132–5140CrossRef
Zurück zum Zitat Wang X, Li BZ, Ding MZ, Zhang WW, Yuan YJ (2013) Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. OMICS 17:150–159CrossRef Wang X, Li BZ, Ding MZ, Zhang WW, Yuan YJ (2013) Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. OMICS 17:150–159CrossRef
Zurück zum Zitat Wang X, Jin MJ, Balan V, Jones AD, Li X, Li BZ, Dale BE, Yuan YJ (2014) Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during Co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 111:152–164CrossRef Wang X, Jin MJ, Balan V, Jones AD, Li X, Li BZ, Dale BE, Yuan YJ (2014) Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during Co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 111:152–164CrossRef
Zurück zum Zitat Wang X, Bai X, Chen DF, Chen FZ, Li BZ, Yuan YJ (2015) Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels 8:142CrossRef Wang X, Bai X, Chen DF, Chen FZ, Li BZ, Yuan YJ (2015) Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels 8:142CrossRef
Zurück zum Zitat Wei H, Tucker MP, Baker JO, Harris M, Luo YH, Xu Q, Himmel ME, Ding SY (2012) Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity. Biotechnol Biofuels 5:20CrossRef Wei H, Tucker MP, Baker JO, Harris M, Luo YH, Xu Q, Himmel ME, Ding SY (2012) Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity. Biotechnol Biofuels 5:20CrossRef
Zurück zum Zitat White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem 276:10794–10800CrossRef White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem 276:10794–10800CrossRef
Zurück zum Zitat Wolfner M, Yep D, Messenguy F, Fink GR (1975) Integration of amino-acid biosynthesis into cell-cycle of Saccharomyces-Cerevisiae. J Mol Biol 96:273–290CrossRef Wolfner M, Yep D, Messenguy F, Fink GR (1975) Integration of amino-acid biosynthesis into cell-cycle of Saccharomyces-Cerevisiae. J Mol Biol 96:273–290CrossRef
Zurück zum Zitat Wu XF, Liu Q, Deng YD, Li JH, Chen XJ, Gu YZ, Lv XJ, Zheng Z, Jiang ST, Li XJ (2017) Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. Bioresour Technol 241:25–34CrossRef Wu XF, Liu Q, Deng YD, Li JH, Chen XJ, Gu YZ, Lv XJ, Zheng Z, Jiang ST, Li XJ (2017) Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. Bioresour Technol 241:25–34CrossRef
Zurück zum Zitat Xu HY, Andi B, Qian JH, West AH, Cook PF (2006) The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46:43–64CrossRef Xu HY, Andi B, Qian JH, West AH, Cook PF (2006) The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46:43–64CrossRef
Zurück zum Zitat Zabriskie TM, Jackson MD (2000) Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17:85–97CrossRef Zabriskie TM, Jackson MD (2000) Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17:85–97CrossRef
Zurück zum Zitat Zhai QL, Li FL, Wang F, Xu JM, Jiang JC, Cai ZS (2018) Liquefaction of poplar biomass for value-added platform chemicals. Cellulose 25:4663–4675CrossRef Zhai QL, Li FL, Wang F, Xu JM, Jiang JC, Cai ZS (2018) Liquefaction of poplar biomass for value-added platform chemicals. Cellulose 25:4663–4675CrossRef
Metadaten
Titel
Comparative metabolomic analysis of furfural stress response in Aspergillus terreus
verfasst von
Xiaohuan Zhang
Yu Zhang
Wei Qi
Zhenhong Yuan
Zhongming Wang
Publikationsdatum
09.04.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 15/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02402-3

Weitere Artikel der Ausgabe 15/2019

Cellulose 15/2019 Zur Ausgabe