Skip to main content
Erschienen in: Cellulose 4/2009

01.08.2009

Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates

verfasst von: Philip T. Pienkos, Min Zhang

Erschienen in: Cellulose | Ausgabe 4/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Department of Energy’s Office of the Biomass Program has set goals of making ethanol cost competitive by 2012 and replacing 30% of 2004 transportation supply with biofuels by 2030. Both goals require improvements in conversions of cellulosic biomass to sugars as well as improvements in fermentation rates and yields. Current best pretreatment processes are reasonably efficient at making the cellulose/hemicellulose/lignin matrix amenable to enzymatic hydrolysis and fermentation, but they release a number of toxic compounds into the hydrolysate which inhibit the growth and ethanol productivity of fermentation organisms. Conditioning methods designed to reduce the toxicity of hydrolysates are effective, but add to process costs and tend to reduce sugar yields, thus adding significantly to the final cost of production. Reducing the cost of cellulosic ethanol production will likely require enhanced understanding of the source and mode of action of hydrolysate toxic compounds, the means by which some organisms resist the actions of these compounds, and the methodology and mechanisms for conditioning hydrolysate to reduce toxicity. This review will provide an update on the state of knowledge in these areas and can provide insights useful for the crafting of hypotheses for improvements in pretreatment, conditioning, and fermentation organisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Almeida JRM, Roder A et al (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechno 76:939–945CrossRef Almeida JRM, Roder A et al (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechno 76:939–945CrossRef
Zurück zum Zitat Alriksson B, Sarvari Horvath I et al (2005) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 121:911–922CrossRef Alriksson B, Sarvari Horvath I et al (2005) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 121:911–922CrossRef
Zurück zum Zitat Alriksson B, Sjode A et al (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 129–132:599–611CrossRef Alriksson B, Sjode A et al (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 129–132:599–611CrossRef
Zurück zum Zitat Ando S, Arai I et al (1986) Identification of aromatic monomers in steam-exploded poplar and their influence on ethanol fermentation. J Ferment Technol 64:567–570CrossRef Ando S, Arai I et al (1986) Identification of aromatic monomers in steam-exploded poplar and their influence on ethanol fermentation. J Ferment Technol 64:567–570CrossRef
Zurück zum Zitat Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 24:421–433CrossRef Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 24:421–433CrossRef
Zurück zum Zitat Banerjee N, Bhatnagar R et al (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 11:226–228CrossRef Banerjee N, Bhatnagar R et al (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 11:226–228CrossRef
Zurück zum Zitat Berson RE, Young JS et al (2006) Reintroduced solids increase inhibitor levels in a pretreated corn stover hydrolysate. Appl Biochem Biotechnol 129–132:612–620CrossRef Berson RE, Young JS et al (2006) Reintroduced solids increase inhibitor levels in a pretreated corn stover hydrolysate. Appl Biochem Biotechnol 129–132:612–620CrossRef
Zurück zum Zitat Bjerre AB, Olesen AB et al (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biores Technol 49:568–577 Bjerre AB, Olesen AB et al (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biores Technol 49:568–577
Zurück zum Zitat Brandberg T, Franzen CJ et al (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98:122–125 Brandberg T, Franzen CJ et al (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98:122–125
Zurück zum Zitat Cantarella M, Cantarella L et al (2004) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206CrossRef Cantarella M, Cantarella L et al (2004) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206CrossRef
Zurück zum Zitat Chen S-F, Mowery RA et al (2006) High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. J Chromatogr A 1104:54–61CrossRef Chen S-F, Mowery RA et al (2006) High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. J Chromatogr A 1104:54–61CrossRef
Zurück zum Zitat Clark TA, Mackie KL (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chem Tech Biotechnol 34B:101–110 Clark TA, Mackie KL (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chem Tech Biotechnol 34B:101–110
Zurück zum Zitat Clark TA, Mackie KL (1987) Steam explosion of the soft-wood Pinus radiata with sulfphur dioxide addition. I. Process optimization. J Wood Chem Technol 7:373–403CrossRef Clark TA, Mackie KL (1987) Steam explosion of the soft-wood Pinus radiata with sulfphur dioxide addition. I. Process optimization. J Wood Chem Technol 7:373–403CrossRef
Zurück zum Zitat Dale BE, Moreira MJ (1982) A freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp 12:31–43 Dale BE, Moreira MJ (1982) A freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp 12:31–43
Zurück zum Zitat Delgenes JP, Moletta R et al (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225CrossRef Delgenes JP, Moletta R et al (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225CrossRef
Zurück zum Zitat deMancilha IM, Karim MN (2003) Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog 19:1837–1841CrossRef deMancilha IM, Karim MN (2003) Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog 19:1837–1841CrossRef
Zurück zum Zitat Ezeji K, Qureshi N et al (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRef Ezeji K, Qureshi N et al (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRef
Zurück zum Zitat Fenske JJ, Griffin DA et al (1998) Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J Ind Microbiol Biotechnol 20:364–368CrossRef Fenske JJ, Griffin DA et al (1998) Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J Ind Microbiol Biotechnol 20:364–368CrossRef
Zurück zum Zitat Ferrari MD, Neirotti E et al (1992) Ethanol production from Eucalyptus wood hemicellulose hydrolysate by Pichia stipitis. Biotechnol Bioeng 40:753–759CrossRef Ferrari MD, Neirotti E et al (1992) Ethanol production from Eucalyptus wood hemicellulose hydrolysate by Pichia stipitis. Biotechnol Bioeng 40:753–759CrossRef
Zurück zum Zitat Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRef Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRef
Zurück zum Zitat Gorsich S, Dien B et al (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349CrossRef Gorsich S, Dien B et al (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349CrossRef
Zurück zum Zitat Grous WR, Converse AO et al (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enz Microb Technol 8:274–280CrossRef Grous WR, Converse AO et al (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enz Microb Technol 8:274–280CrossRef
Zurück zum Zitat Gutierrez T, Ingram LO et al (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1–An enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164CrossRef Gutierrez T, Ingram LO et al (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1–An enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164CrossRef
Zurück zum Zitat Heipieper JJ, Weber FJ et al (1994) Mechanism of resistance of whole cells to toxic organic solvents. TIBTECH 12:409–415 Heipieper JJ, Weber FJ et al (1994) Mechanism of resistance of whole cells to toxic organic solvents. TIBTECH 12:409–415
Zurück zum Zitat Helle S, Cameron D et al (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enz Microb Technol 33:786–792CrossRef Helle S, Cameron D et al (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enz Microb Technol 33:786–792CrossRef
Zurück zum Zitat Holtzapple MT, Jun JH et al (1991) The ammonia freeze explosion (AFEX) process: a practical lignocellulose pretreatment. Appl Biochem Biotechnol 28/29:59–74CrossRef Holtzapple MT, Jun JH et al (1991) The ammonia freeze explosion (AFEX) process: a practical lignocellulose pretreatment. Appl Biochem Biotechnol 28/29:59–74CrossRef
Zurück zum Zitat Horvath IS, Franzen CJ et al (2003) Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol 69:4076–4086CrossRef Horvath IS, Franzen CJ et al (2003) Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol 69:4076–4086CrossRef
Zurück zum Zitat Horvath IS, Sjode A et al (2004) Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce. Appl Biochem Biotechnol 113–116:525–538CrossRef Horvath IS, Sjode A et al (2004) Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce. Appl Biochem Biotechnol 113–116:525–538CrossRef
Zurück zum Zitat Jeffries T, Jin Y (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268CrossRef Jeffries T, Jin Y (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268CrossRef
Zurück zum Zitat Jonsson LJ, Palmqvist E et al (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697CrossRef Jonsson LJ, Palmqvist E et al (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697CrossRef
Zurück zum Zitat Keating JD, Panganiban C et al (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93:1196–1206CrossRef Keating JD, Panganiban C et al (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93:1196–1206CrossRef
Zurück zum Zitat Klinke HB, Thomsen A et al (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 57:631–638CrossRef Klinke HB, Thomsen A et al (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 57:631–638CrossRef
Zurück zum Zitat Klinke HB, Ahring BK et al (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Biores Technol 82:15–26CrossRef Klinke HB, Ahring BK et al (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Biores Technol 82:15–26CrossRef
Zurück zum Zitat Klinke HB, Thomsen AB et al (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRef Klinke HB, Thomsen AB et al (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRef
Zurück zum Zitat Larsson S, Palmqvist E et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enz Microb Technol 24:151–159CrossRef Larsson S, Palmqvist E et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enz Microb Technol 24:151–159CrossRef
Zurück zum Zitat Larsson S, Cassland P et al (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170CrossRef Larsson S, Cassland P et al (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170CrossRef
Zurück zum Zitat Liu Z (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73:27–36CrossRef Liu Z (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73:27–36CrossRef
Zurück zum Zitat Liu ZL, Slininger PJ et al (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352 Liu ZL, Slininger PJ et al (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352
Zurück zum Zitat Liu Z, Slinginger PJ et al (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Microbiol Biotechnol 121–124:451–460 Liu Z, Slinginger PJ et al (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Microbiol Biotechnol 121–124:451–460
Zurück zum Zitat Lopez M, Nichols N et al (2004) Isolation of microorganisms for biological detoxification. Appl Microbiol Biotechnol 64:125–131CrossRef Lopez M, Nichols N et al (2004) Isolation of microorganisms for biological detoxification. Appl Microbiol Biotechnol 64:125–131CrossRef
Zurück zum Zitat Luo C, Brink DL et al (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138CrossRef Luo C, Brink DL et al (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138CrossRef
Zurück zum Zitat Mohagheghi A, Evans K et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose-arabinose fermenting strain of Zymonomas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898CrossRef Mohagheghi A, Evans K et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose-arabinose fermenting strain of Zymonomas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898CrossRef
Zurück zum Zitat Mohagheghi A, Ruth M et al (2006) Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem 41:1806–1811CrossRef Mohagheghi A, Ruth M et al (2006) Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem 41:1806–1811CrossRef
Zurück zum Zitat Mosier N, Wyman C et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686CrossRef Mosier N, Wyman C et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686CrossRef
Zurück zum Zitat Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Biores Technol 93:1–10CrossRef Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Biores Technol 93:1–10CrossRef
Zurück zum Zitat Nichols NN, Dien BS et al (2005) Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Appl Biochem Biotechnol 121–124:379–390CrossRef Nichols NN, Dien BS et al (2005) Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Appl Biochem Biotechnol 121–124:379–390CrossRef
Zurück zum Zitat Nigam JN (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose prehydrolysate. J Appl Microbiol 90:208–215CrossRef Nigam JN (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose prehydrolysate. J Appl Microbiol 90:208–215CrossRef
Zurück zum Zitat Nilsson A, Gorwa-Grauslund M et al (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71:7866–7871CrossRef Nilsson A, Gorwa-Grauslund M et al (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71:7866–7871CrossRef
Zurück zum Zitat Nilvebrant NO, Reimann A et al (2001) Detoxification of lignocellulose hydrolysates with ion exchange resins. Appl Biochem Biotechnol 91–93:35–49CrossRef Nilvebrant NO, Reimann A et al (2001) Detoxification of lignocellulose hydrolysates with ion exchange resins. Appl Biochem Biotechnol 91–93:35–49CrossRef
Zurück zum Zitat Nilvebrant NO, Persson P et al (2003) Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 105–108:615–628CrossRef Nilvebrant NO, Persson P et al (2003) Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 105–108:615–628CrossRef
Zurück zum Zitat Okuda N, Soneura M et al (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106:128–133CrossRef Okuda N, Soneura M et al (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106:128–133CrossRef
Zurück zum Zitat Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Biores Technol 74:25–33CrossRef Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Biores Technol 74:25–33CrossRef
Zurück zum Zitat Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Biores Technol 74:17–24CrossRef Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Biores Technol 74:17–24CrossRef
Zurück zum Zitat Palmqvist E, Grage H et al (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55CrossRef Palmqvist E, Grage H et al (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55CrossRef
Zurück zum Zitat Parekh SR, Yu S et al (1986) Adaptation of Candida shehatae and Pichia stipitis to wood hydrolysates for increased ethanol production. Appl Microbiol Biotechnol 25:300–304CrossRef Parekh SR, Yu S et al (1986) Adaptation of Candida shehatae and Pichia stipitis to wood hydrolysates for increased ethanol production. Appl Microbiol Biotechnol 25:300–304CrossRef
Zurück zum Zitat Persson P, Andersson J et al (2002a) Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J Agric Food Chem 50:5318–5325CrossRef Persson P, Andersson J et al (2002a) Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J Agric Food Chem 50:5318–5325CrossRef
Zurück zum Zitat Persson P, Larsson S et al (2002b) Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79:694–700CrossRef Persson P, Larsson S et al (2002b) Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79:694–700CrossRef
Zurück zum Zitat Petersson A, Almeida JRM et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464CrossRef Petersson A, Almeida JRM et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464CrossRef
Zurück zum Zitat Phowchinda O, Delia-Dupuy ML et al (1995) Effects of acetic acid on growth and fermentation of Saccharomyces cerevisiae. Biotechnol Lett 17:237–242CrossRef Phowchinda O, Delia-Dupuy ML et al (1995) Effects of acetic acid on growth and fermentation of Saccharomyces cerevisiae. Biotechnol Lett 17:237–242CrossRef
Zurück zum Zitat Purwadi R, Niklasson C et al (2004) Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J Biotechnol 114:187–198CrossRef Purwadi R, Niklasson C et al (2004) Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J Biotechnol 114:187–198CrossRef
Zurück zum Zitat Ranatunga TD, Jervis J et al (1997a) Identification of inhibitory components toxic toward Zymomonas mobilis CPR(pZB5) xylose fermentation. Appl Biochem Biotechnol 67:185–197CrossRef Ranatunga TD, Jervis J et al (1997a) Identification of inhibitory components toxic toward Zymomonas mobilis CPR(pZB5) xylose fermentation. Appl Biochem Biotechnol 67:185–197CrossRef
Zurück zum Zitat Ranatunga TD, Jervis J et al (1997b) Toxicity of hardwood extractives toward Saccharomyces cerevisiae glucose fermentation. Biotechnol Lett 19:1125–1127CrossRef Ranatunga TD, Jervis J et al (1997b) Toxicity of hardwood extractives toward Saccharomyces cerevisiae glucose fermentation. Biotechnol Lett 19:1125–1127CrossRef
Zurück zum Zitat Ranatunga TD, Jervis J et al (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enz Microb Technol 27:240–247CrossRef Ranatunga TD, Jervis J et al (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enz Microb Technol 27:240–247CrossRef
Zurück zum Zitat Schirmer-Michel AC, Flores SH et al (2008) Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Biores Technol 99:2898–2904CrossRef Schirmer-Michel AC, Flores SH et al (2008) Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Biores Technol 99:2898–2904CrossRef
Zurück zum Zitat Schneider H (1996) Selective removal of acetic acid from hardwood-spent sulfite liquor using a mutant yeast. Enz Microb Technol 19:94–98CrossRef Schneider H (1996) Selective removal of acetic acid from hardwood-spent sulfite liquor using a mutant yeast. Enz Microb Technol 19:94–98CrossRef
Zurück zum Zitat Sjolander NO, Langlykke AF et al (1938) Butyl alcohol fermentation of wood sugar. Indust Eng Chem 30:1251–1255CrossRef Sjolander NO, Langlykke AF et al (1938) Butyl alcohol fermentation of wood sugar. Indust Eng Chem 30:1251–1255CrossRef
Zurück zum Zitat Skammelsen AS, Thomsen BA (1998) Optimization of wet oxidation pretreatment of wheat straw. Biores Technol 64:139–151CrossRef Skammelsen AS, Thomsen BA (1998) Optimization of wet oxidation pretreatment of wheat straw. Biores Technol 64:139–151CrossRef
Zurück zum Zitat Sreenath H, Jeffries TW (2000) Production of ethanol from wood hydrolyzate by yeasts. Biores Technol 72:253–260CrossRef Sreenath H, Jeffries TW (2000) Production of ethanol from wood hydrolyzate by yeasts. Biores Technol 72:253–260CrossRef
Zurück zum Zitat Su TM, Lamed RJ et al. (1980) Final report to the United States Department of Energy, Subcontract No. XR-9-8271-1 by General Electric Co Su TM, Lamed RJ et al. (1980) Final report to the United States Department of Energy, Subcontract No. XR-9-8271-1 by General Electric Co
Zurück zum Zitat Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83:1–11CrossRef
Zurück zum Zitat Taherzadeh MJ, Gustafsson L et al (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87:169–174CrossRef Taherzadeh MJ, Gustafsson L et al (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87:169–174CrossRef
Zurück zum Zitat Taherzadeh MJ, Gustafsson L et al (2000) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J Biosci Bioeng 90:374–380 Taherzadeh MJ, Gustafsson L et al (2000) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J Biosci Bioeng 90:374–380
Zurück zum Zitat Tran AV, Chambers RP (1985) Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS 5776. Biotechnol Lett 7:841–846CrossRef Tran AV, Chambers RP (1985) Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS 5776. Biotechnol Lett 7:841–846CrossRef
Zurück zum Zitat van Zyl C, Prior B et al (1991) Acetic acid inhibition of d-xylose fermentation by Pichia stipitis. Enzyme Microb Technol 13:82–86CrossRef van Zyl C, Prior B et al (1991) Acetic acid inhibition of d-xylose fermentation by Pichia stipitis. Enzyme Microb Technol 13:82–86CrossRef
Zurück zum Zitat Yourchisin D, Van Walsum G (2004) Comparison of microbial inhibition and enzymatic hydrolysis rates of liquid and solid fractions produced from pretreatment of biomass with carbonic acid and liquid hot water. Appl Biochem Biotechnol 113–116:1073–1086CrossRef Yourchisin D, Van Walsum G (2004) Comparison of microbial inhibition and enzymatic hydrolysis rates of liquid and solid fractions produced from pretreatment of biomass with carbonic acid and liquid hot water. Appl Biochem Biotechnol 113–116:1073–1086CrossRef
Zurück zum Zitat Zaldivar J, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33CrossRef Zaldivar J, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33CrossRef
Zurück zum Zitat Zaldivar J, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530CrossRef Zaldivar J, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530CrossRef
Zurück zum Zitat Zaldivar J, Ingram LO et al (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210CrossRef Zaldivar J, Ingram LO et al (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210CrossRef
Zurück zum Zitat Zhang M, Franden M et al (1995) Promising ethanologens for xylose fermentation. Appl Biochem Biotechnol 51(52):527–536CrossRef Zhang M, Franden M et al (1995) Promising ethanologens for xylose fermentation. Appl Biochem Biotechnol 51(52):527–536CrossRef
Zurück zum Zitat Zheng YZ, Lin HM et al (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896CrossRef Zheng YZ, Lin HM et al (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896CrossRef
Metadaten
Titel
Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates
verfasst von
Philip T. Pienkos
Min Zhang
Publikationsdatum
01.08.2009
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2009
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-009-9309-x

Weitere Artikel der Ausgabe 4/2009

Cellulose 4/2009 Zur Ausgabe