Skip to main content
Erschienen in: Journal of Iron and Steel Research International 4/2022

17.07.2021 | Original Paper

Comparison of feasibility, microstructure and performance of hybrid laser arc, activated flux tungsten inert gas and friction stir welding for thick plate of innovative ultra-pure ferritic stainless steel

verfasst von: Jian Han, Lian-meng Liu, Xin-ya Chen, Min-fang Chen, Lei Cui, Yang-chuan Cai, Yin-bao Tian

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An innovative grade of ferritic stainless steel, ultra-pure 18Cr–2Mo thick plate, was designed and produced for special industrial application. In order to maintain its mechanical properties after joining, three advanced joining methods, hybrid laser arc welding, activated flux tungsten inert gas welding and friction stir welding, were selected and conducted to connect the thick plates. The feasibility of three joining methods, the microstructure and mechanical properties were compared, and the results have demonstrated that the sound joint was successfully produced using the selected parameters through friction stir welding. The obtained hardness and impact toughness of the weld zone were satisfying. In terms of activated flux tungsten inert gas welding, the crack will be created due to microstructural brittleness. And as for hybrid laser arc welding, the weld zone is narrow, and the addition of wire during welding for the top weld metal area leads to higher formation ratio of low-angle grain boundaries, which is beneficial to performance of the joint. However, there is still a weak area in the fusion line of the welded joint. The result has illustrated that the welding of innovative ultra-pure ferritic stainless steel thick plate by friction stir welding is feasible.
Literatur
[1]
Zurück zum Zitat J. Han, Z.X. Zhu, G. Wei, X.X. Jiang, Q. Wang, Y.C. Cai, Z.Y. Jiang, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 716–730. J. Han, Z.X. Zhu, G. Wei, X.X. Jiang, Q. Wang, Y.C. Cai, Z.Y. Jiang, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 716–730.
[2]
Zurück zum Zitat H.F.G. de Abreu, A.D.S. Brano, S.S.M. Tavares, R.P. Santos, S.S. Carvalho, Mater. Charact. 57 (2006) 342–347.CrossRef H.F.G. de Abreu, A.D.S. Brano, S.S.M. Tavares, R.P. Santos, S.S. Carvalho, Mater. Charact. 57 (2006) 342–347.CrossRef
[3]
Zurück zum Zitat H.L. Liu, L.L. Liu, M.Y. Ma, L.Q. Chen, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 991–1000. H.L. Liu, L.L. Liu, M.Y. Ma, L.Q. Chen, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 991–1000.
[4]
Zurück zum Zitat Y.T. Shan, X.H. Luo, X.Q. Hu, S. Liu, J. Mater. Sci. Technol. 27 (2011) 352–358.CrossRef Y.T. Shan, X.H. Luo, X.Q. Hu, S. Liu, J. Mater. Sci. Technol. 27 (2011) 352–358.CrossRef
[5]
Zurück zum Zitat W. Du, L.Z. Jiang, Q.S. Sun, Z.Y. Liu, X. Zhang, J. Iron Steel Res. Int. 17 (2010) 47–52.CrossRef W. Du, L.Z. Jiang, Q.S. Sun, Z.Y. Liu, X. Zhang, J. Iron Steel Res. Int. 17 (2010) 47–52.CrossRef
[6]
[7]
Zurück zum Zitat L. Ma, S.S. Hu, J.Q. Shen, J. Han, J. Mater. Sci. Technol. 32 (2016) 552–560.CrossRef L. Ma, S.S. Hu, J.Q. Shen, J. Han, J. Mater. Sci. Technol. 32 (2016) 552–560.CrossRef
[8]
Zurück zum Zitat L. Ma, J. Han, J.Q. Shen, S.S. Hu, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 407–415. L. Ma, J. Han, J.Q. Shen, S.S. Hu, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 407–415.
[9]
Zurück zum Zitat M. Ragavendran, M. Vasudevan, Mater. Manuf. Process. 35 (2020) 922–934.CrossRef M. Ragavendran, M. Vasudevan, Mater. Manuf. Process. 35 (2020) 922–934.CrossRef
[10]
Zurück zum Zitat Z.W. Zhu, X.Q. Ma, C.M. Wang, G.Y. Mi, Mater. Charact. 164 (2020) 110311. Z.W. Zhu, X.Q. Ma, C.M. Wang, G.Y. Mi, Mater. Charact. 164 (2020) 110311.
[11]
Zurück zum Zitat Z.D. Zhang, Z.M. Luo, L.M. Liu, Mater. Manuf. Process. 27 (2012) 1178–1183.CrossRef Z.D. Zhang, Z.M. Luo, L.M. Liu, Mater. Manuf. Process. 27 (2012) 1178–1183.CrossRef
[12]
[13]
Zurück zum Zitat L. Cui, D.Y. He, F. Guo, X.Y. Li, J.M. Jiang, Mater. Manuf. Process. 25 (2010) 1309–1316.CrossRef L. Cui, D.Y. He, F. Guo, X.Y. Li, J.M. Jiang, Mater. Manuf. Process. 25 (2010) 1309–1316.CrossRef
[14]
Zurück zum Zitat S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Scripta Mater. 51 (2004) 101–105.CrossRef S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Scripta Mater. 51 (2004) 101–105.CrossRef
[15]
Zurück zum Zitat G.Q. Chen, S. Zhang, Y.C. Zhu, C.L. Yang, Q.Y. Shi, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 3–12. G.Q. Chen, S. Zhang, Y.C. Zhu, C.L. Yang, Q.Y. Shi, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 3–12.
[16]
Zurück zum Zitat G.M. Xie, R.H. Duan, P. Xue, Z.Y. Ma, H.L. Liu, Z.A. Luo, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 88–102. G.M. Xie, R.H. Duan, P. Xue, Z.Y. Ma, H.L. Liu, Z.A. Luo, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 88–102.
[17]
Zurück zum Zitat Y. Yano, Y.S. Sato, Y. Sekio, S. Ohtsuka, T. Kaito, R. Ogawa, H. Kokawa, J. Nucl. Mater. 4421 (2013) S524–S528.CrossRef Y. Yano, Y.S. Sato, Y. Sekio, S. Ohtsuka, T. Kaito, R. Ogawa, H. Kokawa, J. Nucl. Mater. 4421 (2013) S524–S528.CrossRef
[18]
Zurück zum Zitat A.K. Lakshminarayanan, V. Balasubramanian, Mater. Sci. Eng. A 539 (2012) 143–153.CrossRef A.K. Lakshminarayanan, V. Balasubramanian, Mater. Sci. Eng. A 539 (2012) 143–153.CrossRef
[19]
Zurück zum Zitat J. Han, H.J. Li, Z.X. Zhu, F. Barbaro, L.Z. Jiang, H.G. Xu, L. Ma, Mater. Des. 63 (2014) 238–246.CrossRef J. Han, H.J. Li, Z.X. Zhu, F. Barbaro, L.Z. Jiang, H.G. Xu, L. Ma, Mater. Des. 63 (2014) 238–246.CrossRef
[20]
Zurück zum Zitat B.W. Ahn, D.H. Choi, D.J. Kim, S.B. Jung, Mater. Sci. Eng. A 532 (2012) 476–479.CrossRef B.W. Ahn, D.H. Choi, D.J. Kim, S.B. Jung, Mater. Sci. Eng. A 532 (2012) 476–479.CrossRef
[21]
Zurück zum Zitat R. Nakhaei, A. Khodabandeh, H. Najafi, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 295–300. R. Nakhaei, A. Khodabandeh, H. Najafi, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 295–300.
[22]
Zurück zum Zitat R.S. Vidyarthy, D.K. Dwivedi, V. Muthukumaran, Mater. Manuf. Process. 33 (2018) 709–717.CrossRef R.S. Vidyarthy, D.K. Dwivedi, V. Muthukumaran, Mater. Manuf. Process. 33 (2018) 709–717.CrossRef
[23]
Zurück zum Zitat K.D. Ramkumar, A. Chandrasekhar, A.K. Singh, S. Ahuja, A. Agarwal, N. Arivazhagan, A.M. Rabel, J. Manuf. Process. 20 (2015) 54–69.CrossRef K.D. Ramkumar, A. Chandrasekhar, A.K. Singh, S. Ahuja, A. Agarwal, N. Arivazhagan, A.M. Rabel, J. Manuf. Process. 20 (2015) 54–69.CrossRef
[24]
Zurück zum Zitat H.H. Lu, H.K. Guo, L.Y. Du, Z.G. Liu, J.C. Li, W. Liang, Mater. Charact. 151 (2019) 470–479.CrossRef H.H. Lu, H.K. Guo, L.Y. Du, Z.G. Liu, J.C. Li, W. Liang, Mater. Charact. 151 (2019) 470–479.CrossRef
[25]
Zurück zum Zitat J. Han, H.J. Li, F. Barbaro, L.Z. Jiang, Z.X. Zhu, H.G. Xu, L. Ma, Mater. Sci. Eng. A 612 (2014) 63–70.CrossRef J. Han, H.J. Li, F. Barbaro, L.Z. Jiang, Z.X. Zhu, H.G. Xu, L. Ma, Mater. Sci. Eng. A 612 (2014) 63–70.CrossRef
[26]
Zurück zum Zitat J.H. Cho, D.E. Boyce, P.R. Dawson, Mater. Sci. Eng. A 398 (2005) 146–163.CrossRef J.H. Cho, D.E. Boyce, P.R. Dawson, Mater. Sci. Eng. A 398 (2005) 146–163.CrossRef
[27]
Zurück zum Zitat J.H. Cho, P.R. Dawson, Metall. Mater. Trans. A 37 (2006) 1147–1164.CrossRef J.H. Cho, P.R. Dawson, Metall. Mater. Trans. A 37 (2006) 1147–1164.CrossRef
[28]
Zurück zum Zitat J.H. Li, H.H. Wang, Q. Luo, L. Li, C. Sun, R.D.K. Misra, J. Iron Steel Res. Int. 26 (2019) 761–770.CrossRef J.H. Li, H.H. Wang, Q. Luo, L. Li, C. Sun, R.D.K. Misra, J. Iron Steel Res. Int. 26 (2019) 761–770.CrossRef
[29]
Zurück zum Zitat S. Patala, J.K. Mason, C.A. Schuh, Prog. Mater. Sci. 57 (2012)1383–1425.CrossRef S. Patala, J.K. Mason, C.A. Schuh, Prog. Mater. Sci. 57 (2012)1383–1425.CrossRef
[30]
Zurück zum Zitat X.L. Wang, Z.Q. Wang, L.L. Dong, Mater. Sci. Eng. A 704 (2017) 448–458.CrossRef X.L. Wang, Z.Q. Wang, L.L. Dong, Mater. Sci. Eng. A 704 (2017) 448–458.CrossRef
[31]
Zurück zum Zitat C. Wang, X. Wang, J. Kang, J. Iron Steel Res. Int. 27 (2020) 440–450.CrossRef C. Wang, X. Wang, J. Kang, J. Iron Steel Res. Int. 27 (2020) 440–450.CrossRef
[32]
Zurück zum Zitat G.P. Medina, H. Lopez, A.P. Miranda, J. Iron Steel Res. Int. 27 (2020) 637–646. G.P. Medina, H. Lopez, A.P. Miranda, J. Iron Steel Res. Int. 27 (2020) 637–646.
[33]
Zurück zum Zitat Y. You, C.J. Shang, W.J. Nie, S. Subramanian, Mater. Sci. Eng. A 588 (2012) 692–701.CrossRef Y. You, C.J. Shang, W.J. Nie, S. Subramanian, Mater. Sci. Eng. A 588 (2012) 692–701.CrossRef
[34]
Zurück zum Zitat L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, Mater. Sci. Eng. A 529 (2011) 192–200.CrossRef L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, Mater. Sci. Eng. A 529 (2011) 192–200.CrossRef
Metadaten
Titel
Comparison of feasibility, microstructure and performance of hybrid laser arc, activated flux tungsten inert gas and friction stir welding for thick plate of innovative ultra-pure ferritic stainless steel
verfasst von
Jian Han
Lian-meng Liu
Xin-ya Chen
Min-fang Chen
Lei Cui
Yang-chuan Cai
Yin-bao Tian
Publikationsdatum
17.07.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 4/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00630-1

Weitere Artikel der Ausgabe 4/2022

Journal of Iron and Steel Research International 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.