Skip to main content
Erschienen in: Journal of Iron and Steel Research International 4/2022

04.08.2021 | Original Paper

Effect of yttrium treatment on alumina inclusions in high carbon steel

verfasst von: Yi Wang, Chang-rong Li, Lin-zhu Wang, Xing-qiang Xiong, Lu Chen

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum oxide inclusions in SWRS82B steel seriously affect the drawing performance of steel strands. The effects of different addition amounts of yttrium (within the range of 0%–0.026%) on the composition, morphology, size and spacing of aluminum oxide inclusions were studied by scanning electron microscopy and energy spectrum analysis. Based on classical thermodynamics and FactSage software, the predominance diagram of inclusions in Fe–O–S–Y system and the effect of the addition of rare earth yttrium on the stability of alumina inclusions were calculated. The results showed that molten steel was modified by adding the rare earth element yttrium. It can be inferred that the approximate route of target inclusion modification was: Al2O3 → Y2S3 + YAlO3 + Al2O3 → Y2S3 + YAlO3 + Y2O2S + YAlO3 + Al2O3 → Y2S3 + Y2O2S. The experimental samples with 0.026% added yttrium had the best inclusion characteristics, in which the inclusion surface density distribution was uniform, and the interfacial distance between inclusions was mainly in the range of 100–500 μm. After modification, the average inclusion size in molten steel was reduced by 6.9–8.6 μm. The mechanism of yttrium modification was discussed based on actual calculation results and experimental results.
Literatur
[1]
Zurück zum Zitat N. Li, L. Wang, Z.L. Xue, C.Z. Li, A. Huang, F.F. Wang, Results Phys. 16 (2020) 102929.CrossRef N. Li, L. Wang, Z.L. Xue, C.Z. Li, A. Huang, F.F. Wang, Results Phys. 16 (2020) 102929.CrossRef
[2]
Zurück zum Zitat C.F. Yu, Z.L. Xue, W.T. Jin, J. Iron Steel Res. Int. 23 (2016) 338–343.CrossRef C.F. Yu, Z.L. Xue, W.T. Jin, J. Iron Steel Res. Int. 23 (2016) 338–343.CrossRef
[3]
Zurück zum Zitat C.P. Xin, F. Yue, C.X. Jiang, Q.F. Wu, High Temp. Mater. Proc. 35 (2016) 47–54.CrossRef C.P. Xin, F. Yue, C.X. Jiang, Q.F. Wu, High Temp. Mater. Proc. 35 (2016) 47–54.CrossRef
[4]
Zurück zum Zitat D.W. Guo, Z.B. Hou, J.H. Cao, Z.A. Guo, Y. Chang, G.H. Wen, J. Iron Steel Res. Int. 27 (2020) 1163–1170.CrossRef D.W. Guo, Z.B. Hou, J.H. Cao, Z.A. Guo, Y. Chang, G.H. Wen, J. Iron Steel Res. Int. 27 (2020) 1163–1170.CrossRef
[5]
Zurück zum Zitat L.P. Wu, J.S. Zhang, J.G. Zhi, Q. Liu, C. Su, S.B. Wang, L.L. Zou, Rare Met. Mater. Eng. 49 (2020) 2800–2806. L.P. Wu, J.S. Zhang, J.G. Zhi, Q. Liu, C. Su, S.B. Wang, L.L. Zou, Rare Met. Mater. Eng. 49 (2020) 2800–2806.
[6]
Zurück zum Zitat C.Y. Yang, Y.K. Luan, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298–1308.CrossRef C.Y. Yang, Y.K. Luan, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298–1308.CrossRef
[7]
Zurück zum Zitat H.P. Wang, L. Xiong, L. Zhang, Y. Wang, Y.Y. Shu, Y.H. Zhou, Metall. Mater. Trans. B 48 (2017) 2849–2859.CrossRef H.P. Wang, L. Xiong, L. Zhang, Y. Wang, Y.Y. Shu, Y.H. Zhou, Metall. Mater. Trans. B 48 (2017) 2849–2859.CrossRef
[8]
[9]
Zurück zum Zitat X.D. Zou, D.P. Zhao, J.C. Sun, C. Wang, H. Matsuura, Metall. Mater. Trans. B 49 (2018) 481–490.CrossRef X.D. Zou, D.P. Zhao, J.C. Sun, C. Wang, H. Matsuura, Metall. Mater. Trans. B 49 (2018) 481–490.CrossRef
[10]
Zurück zum Zitat Y. Ren, Y.F. Wang, S.S. Li, L.F. Zhang, X.J. Zuo, S.N. Lekakh, K. Peaslee, Metall. Mater. Trans. B 45 (2014) 1291–1303.CrossRef Y. Ren, Y.F. Wang, S.S. Li, L.F. Zhang, X.J. Zuo, S.N. Lekakh, K. Peaslee, Metall. Mater. Trans. B 45 (2014) 1291–1303.CrossRef
[12]
Zurück zum Zitat X.L. Zhang, S.F. Li, J.S. Yang, J.Q. Wu, Int. J. Miner. Metall. Mater. 27 (2020) 754–763.CrossRef X.L. Zhang, S.F. Li, J.S. Yang, J.Q. Wu, Int. J. Miner. Metall. Mater. 27 (2020) 754–763.CrossRef
[13]
Zurück zum Zitat Z.G. Wang, C.M. Song, Y.H. Zhang, H. Wang, L. Qi, B. Yang, Mater. Charact. 151 (2019) 112–118.CrossRef Z.G. Wang, C.M. Song, Y.H. Zhang, H. Wang, L. Qi, B. Yang, Mater. Charact. 151 (2019) 112–118.CrossRef
[14]
Zurück zum Zitat L. Li, D.Y. Li, J. Phys. Condes. Matter 31 (2019) 1361–1366. L. Li, D.Y. Li, J. Phys. Condes. Matter 31 (2019) 1361–1366.
[15]
Zurück zum Zitat G.X. Qiu, D.P. Zhan, C.S. Li, Y.K. Yang, Z.H. Jiang, H.S. Zhang, Nucl. Eng. Technol. 52 (2019) 811–818.CrossRef G.X. Qiu, D.P. Zhan, C.S. Li, Y.K. Yang, Z.H. Jiang, H.S. Zhang, Nucl. Eng. Technol. 52 (2019) 811–818.CrossRef
[16]
Zurück zum Zitat D.F. Liu, J. Qin, Y.H. Zhang, Z.G. Wang, J.C. Nie, Mater. Sci. Eng. A 797 (2020) 140238.CrossRef D.F. Liu, J. Qin, Y.H. Zhang, Z.G. Wang, J.C. Nie, Mater. Sci. Eng. A 797 (2020) 140238.CrossRef
[17]
Zurück zum Zitat X.L. Kang, S.Y. Dong, H.B. Wang, S.X. Yan, X.T. Liu, B.S. Xu, Mater. Des. 188 (2020) 108434.CrossRef X.L. Kang, S.Y. Dong, H.B. Wang, S.X. Yan, X.T. Liu, B.S. Xu, Mater. Des. 188 (2020) 108434.CrossRef
[18]
Zurück zum Zitat G.J. Cai, Y. Li, Y.R. Huang, R.D.K. Misra, ISIJ Int. 60 (2020) 2541–2548.CrossRef G.J. Cai, Y. Li, Y.R. Huang, R.D.K. Misra, ISIJ Int. 60 (2020) 2541–2548.CrossRef
[19]
Zurück zum Zitat S. Gerasin, D. Kalisz, J. Iwanciw, J. Min. Metall. Sect. B Metall. 56 (2019) 11–25.CrossRef S. Gerasin, D. Kalisz, J. Iwanciw, J. Min. Metall. Sect. B Metall. 56 (2019) 11–25.CrossRef
[20]
Zurück zum Zitat F. Pan, H.L. Chen, Y.H. Su, Y.H. Su, W.S. Hwang, Sci. Rep. 7 (2017) 2564–2571.CrossRef F. Pan, H.L. Chen, Y.H. Su, Y.H. Su, W.S. Hwang, Sci. Rep. 7 (2017) 2564–2571.CrossRef
[21]
Zurück zum Zitat C. Pascal, M. Braccini, V. Parry, E. Fedorova, M. Mantel, D. Oquab, D. Monceau, Mater. Charact. 127 (2017) 161–170.CrossRef C. Pascal, M. Braccini, V. Parry, E. Fedorova, M. Mantel, D. Oquab, D. Monceau, Mater. Charact. 127 (2017) 161–170.CrossRef
[22]
Zurück zum Zitat H.G. Fu, Q. Xiao, J.C. Kuang, Z.Q. Jiang, J.D. Xing, Mater. Sci. Eng. A 466 (2007) 160–165.CrossRef H.G. Fu, Q. Xiao, J.C. Kuang, Z.Q. Jiang, J.D. Xing, Mater. Sci. Eng. A 466 (2007) 160–165.CrossRef
[23]
Zurück zum Zitat J. Yang, D.N. Zou, X.M. Li, Z.Z. Du, J. Iron Steel Res. Int. 14 (2007) 47–52.CrossRef J. Yang, D.N. Zou, X.M. Li, Z.Z. Du, J. Iron Steel Res. Int. 14 (2007) 47–52.CrossRef
[24]
Zurück zum Zitat H.J. Duan, Y. Zhang, Y. Ren, L.F. Zhang, J. Iron Steel Res. Int. 26 (2019) 962–972.CrossRef H.J. Duan, Y. Zhang, Y. Ren, L.F. Zhang, J. Iron Steel Res. Int. 26 (2019) 962–972.CrossRef
[25]
Zurück zum Zitat X.H. Huang, Principles of iron and steel metallurgy, 3rd ed., Metallurgical Industry Press, Beijing, China, 1981. X.H. Huang, Principles of iron and steel metallurgy, 3rd ed., Metallurgical Industry Press, Beijing, China, 1981.
[26]
[27]
Zurück zum Zitat C.H. Wu, Study on behavior of inclusions in yttrium-based rare earth microalloyed E36 cast slab, University of Science and Technology Jiangxi, Ganzhou, China, 2016. C.H. Wu, Study on behavior of inclusions in yttrium-based rare earth microalloyed E36 cast slab, University of Science and Technology Jiangxi, Ganzhou, China, 2016.
[28]
Zurück zum Zitat Y. Ren, L.F. Zhang, Y. Zhang, J. Iron Steel Res. Int. 25 (2018) 146–156.CrossRef Y. Ren, L.F. Zhang, Y. Zhang, J. Iron Steel Res. Int. 25 (2018) 146–156.CrossRef
Metadaten
Titel
Effect of yttrium treatment on alumina inclusions in high carbon steel
verfasst von
Yi Wang
Chang-rong Li
Lin-zhu Wang
Xing-qiang Xiong
Lu Chen
Publikationsdatum
04.08.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 4/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00633-y

Weitere Artikel der Ausgabe 4/2022

Journal of Iron and Steel Research International 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.