Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2021

04.06.2021

Comprehensive study of changes in the optical, structural and strength properties of ZrO2 ceramics as a result of phase transformations caused by irradiation with heavy ions

verfasst von: M. Alin, A. L. Kozlovskiy, M. V. Zdorovets, V. V. Uglov

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work is devoted to the study of the effect of irradiation with Kr15+ and Xe23+ heavy ions with energies of 147 and 220 MeV, respectively, on the change in the optical, structural and strength properties of ceramics ZrO2. Polycrystalline ZrO2 ceramics with a tetragonal type of crystal structure, which are highly resistant to external influences, mechanical strength to cracking, and hardness were chosen as the object of research. The choice of heavy ions Kr15+ and Xe23+ is due to the possibility of simulating the effect of nuclear fission fragments in an atomic reactor, and the choice of irradiation doses of 1 × 1013–1 × 1014 ion/cm2 is due to the possibility of simulating the effects of overlapping defect regions arising along the trajectory of ions in the material. Using the X-ray diffraction method, it was found that in the case of irradiation with heavy ions, an increase in the radiation dose leads to phase transformations of the tetragonal type of the crystal lattice into a cubic one. In this case, for the samples irradiated with Xe23+ ions at an irradiation dose of 1 × 1014 ion/cm2, an almost complete phase transformation is observed. Dependences of changes in strength and optical characteristics on the type of irradiation and dose load have been established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Lang et al., Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr. Opin. Solid State Mater. Sci. 19(1), 39–48 (2015)CrossRef M. Lang et al., Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr. Opin. Solid State Mater. Sci. 19(1), 39–48 (2015)CrossRef
2.
Zurück zum Zitat M. Beauvy et al., Damages in ceramics for nuclear waste transmutation by irradiation with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 242(1–2), 557–561 (2006)CrossRef M. Beauvy et al., Damages in ceramics for nuclear waste transmutation by irradiation with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 242(1–2), 557–561 (2006)CrossRef
3.
Zurück zum Zitat A.V. Trukhanov et al., Pecularities of the magnetic structure and microwave properties in Ba (Fe1-xScx) 12O19 (x< 0.1) hexaferrites. J. Alloys Compd. 822, 153575 (2020)CrossRef A.V. Trukhanov et al., Pecularities of the magnetic structure and microwave properties in Ba (Fe1-xScx) 12O19 (x< 0.1) hexaferrites. J. Alloys Compd. 822, 153575 (2020)CrossRef
4.
Zurück zum Zitat D.A. Vinnik et al., Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites. J. Magn. Magn. Mater. 498, 166190 (2020)CrossRef D.A. Vinnik et al., Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites. J. Magn. Magn. Mater. 498, 166190 (2020)CrossRef
5.
Zurück zum Zitat J. Liu et al., Highly porous ZrO2 cellular ceramics with 3D network architecture. Ceram. Int. 46(6), 7149–7154 (2020)CrossRef J. Liu et al., Highly porous ZrO2 cellular ceramics with 3D network architecture. Ceram. Int. 46(6), 7149–7154 (2020)CrossRef
6.
Zurück zum Zitat Y. Yang et al., Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0. 4Sr0. 6-xNdxFe12. 0–x (Nb0. 5Zn0. 5) xO19. J. Alloys Compd. 765, 616–623 (2018)CrossRef Y. Yang et al., Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0. 4Sr0. 6-xNdxFe12. 0–x (Nb0. 5Zn0. 5) xO19. J. Alloys Compd. 765, 616–623 (2018)CrossRef
7.
Zurück zum Zitat A. Gentils et al., Damage production in cubic zirconia irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 218, 457–460 (2004)CrossRef A. Gentils et al., Damage production in cubic zirconia irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 218, 457–460 (2004)CrossRef
8.
Zurück zum Zitat A.J. Van Vuuren et al., The effect of He and swift heavy ions on nanocrystalline zirconium nitride. Nucl. Instrum. Methods Phys. Res. Sect. B 326, 19–22 (2014)CrossRef A.J. Van Vuuren et al., The effect of He and swift heavy ions on nanocrystalline zirconium nitride. Nucl. Instrum. Methods Phys. Res. Sect. B 326, 19–22 (2014)CrossRef
9.
Zurück zum Zitat J.M. Costantini et al., Thermal annealing study of swift heavy-ion irradiated zirconia. J. Appl. Phys. 99(12), 123501 (2006)CrossRef J.M. Costantini et al., Thermal annealing study of swift heavy-ion irradiated zirconia. J. Appl. Phys. 99(12), 123501 (2006)CrossRef
10.
Zurück zum Zitat D.S. Klygach et al., Measurement of permittivity and permeability of barium hexaferrite. J. Magn. Magn. Mater. 465, 290–294 (2018)CrossRef D.S. Klygach et al., Measurement of permittivity and permeability of barium hexaferrite. J. Magn. Magn. Mater. 465, 290–294 (2018)CrossRef
11.
Zurück zum Zitat J. Liu et al., In-situ TEM study of irradiation-induced damage mechanisms in monoclinic-ZrO2. Acta Mater. 199, 429–442 (2020)CrossRef J. Liu et al., In-situ TEM study of irradiation-induced damage mechanisms in monoclinic-ZrO2. Acta Mater. 199, 429–442 (2020)CrossRef
12.
Zurück zum Zitat G. Nicolas et al., Laser induced surface modifications on ZrO2 ceramics. Appl. Surf. Sci. 109, 289–292 (1997)CrossRef G. Nicolas et al., Laser induced surface modifications on ZrO2 ceramics. Appl. Surf. Sci. 109, 289–292 (1997)CrossRef
13.
Zurück zum Zitat V.M. Bekale et al., Mechanical properties of cubic zirconia irradiated with swift heavy ions. J. Nucl. Mater. 384(1), 70–76 (2009)CrossRef V.M. Bekale et al., Mechanical properties of cubic zirconia irradiated with swift heavy ions. J. Nucl. Mater. 384(1), 70–76 (2009)CrossRef
14.
Zurück zum Zitat S. Moll et al., Damage induced by electronic excitation in ion-irradiated yttria-stabilized zirconia. J. Appl. Phys. 105(2), 023512 (2009)CrossRef S. Moll et al., Damage induced by electronic excitation in ion-irradiated yttria-stabilized zirconia. J. Appl. Phys. 105(2), 023512 (2009)CrossRef
15.
Zurück zum Zitat A. Benyagoub, Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions. Phys. Rev. B 72(9), 094114 (2005)CrossRef A. Benyagoub, Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions. Phys. Rev. B 72(9), 094114 (2005)CrossRef
16.
Zurück zum Zitat R. Devanathan, W.J. Weber, Dynamic annealing of defects in irradiated zirconia-based ceramics. J. Mater. Res. 23(3), 593–597 (2008)CrossRef R. Devanathan, W.J. Weber, Dynamic annealing of defects in irradiated zirconia-based ceramics. J. Mater. Res. 23(3), 593–597 (2008)CrossRef
17.
Zurück zum Zitat G. Sattonnay et al., Phenomenological model for the formation of heterogeneous tracks in pyrochlores irradiated with swift heavy ions. Acta Mater. 60(1), 22–34 (2012)CrossRef G. Sattonnay et al., Phenomenological model for the formation of heterogeneous tracks in pyrochlores irradiated with swift heavy ions. Acta Mater. 60(1), 22–34 (2012)CrossRef
18.
Zurück zum Zitat B. Schuster et al., Structural phase transition in ZrO2 induced by swift heavy ion irradiation at high-pressure. Nucl. Instrum. Methods Phys. Res. Sect. B 267(6), 964–968 (2009)CrossRef B. Schuster et al., Structural phase transition in ZrO2 induced by swift heavy ion irradiation at high-pressure. Nucl. Instrum. Methods Phys. Res. Sect. B 267(6), 964–968 (2009)CrossRef
19.
Zurück zum Zitat S. Moll et al., Multistep damage evolution process in cubic zirconia irradiated with MeV ions. J. Appl. Phys. 106(7), 073509 (2009)CrossRef S. Moll et al., Multistep damage evolution process in cubic zirconia irradiated with MeV ions. J. Appl. Phys. 106(7), 073509 (2009)CrossRef
20.
Zurück zum Zitat K.E. Sickafus et al., Radiation damage effects in zirconia. J. Nucl. Mater. 274(1–2), 66–77 (1999)CrossRef K.E. Sickafus et al., Radiation damage effects in zirconia. J. Nucl. Mater. 274(1–2), 66–77 (1999)CrossRef
22.
Zurück zum Zitat F. Dellisanti, G. Valdre, On the high-temperature structural behaviour of talc (Mg3Si4O10 (OH) 2) to 1600 °C: effect of mechanical deformation and strain. Phil. Mag. 90(17–18), 2443–2457 (2010)CrossRef F. Dellisanti, G. Valdre, On the high-temperature structural behaviour of talc (Mg3Si4O10 (OH) 2) to 1600 °C: effect of mechanical deformation and strain. Phil. Mag. 90(17–18), 2443–2457 (2010)CrossRef
23.
Zurück zum Zitat D. Kaoumi, A.T. Motta, R.C. Birtcher, A thermal spike model of grain growth under irradiation. J. Appl. Phys. 104(7), 073525 (2008)CrossRef D. Kaoumi, A.T. Motta, R.C. Birtcher, A thermal spike model of grain growth under irradiation. J. Appl. Phys. 104(7), 073525 (2008)CrossRef
24.
Zurück zum Zitat G. Szenes, Comparison of two thermal spike models for ion–solid interaction. Nucl. Instrum. Methods Phys. Res. Sect. B 269(2), 174–179 (2011)CrossRef G. Szenes, Comparison of two thermal spike models for ion–solid interaction. Nucl. Instrum. Methods Phys. Res. Sect. B 269(2), 174–179 (2011)CrossRef
25.
Zurück zum Zitat M. Toulemonde et al., Nanometric transformation of the matter by short and intense electronic excitation: experimental data versus inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res. Sect. B 277, 28–39 (2012)CrossRef M. Toulemonde et al., Nanometric transformation of the matter by short and intense electronic excitation: experimental data versus inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res. Sect. B 277, 28–39 (2012)CrossRef
26.
Zurück zum Zitat D.E. Alexander, G.S. Was, Thermal-spike treatment of ion-induced grain growth: theory and experimental comparison. Phys. Rev. B 47(6), 2983 (1993)CrossRef D.E. Alexander, G.S. Was, Thermal-spike treatment of ion-induced grain growth: theory and experimental comparison. Phys. Rev. B 47(6), 2983 (1993)CrossRef
Metadaten
Titel
Comprehensive study of changes in the optical, structural and strength properties of ZrO2 ceramics as a result of phase transformations caused by irradiation with heavy ions
verfasst von
M. Alin
A. L. Kozlovskiy
M. V. Zdorovets
V. V. Uglov
Publikationsdatum
04.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06317-3

Weitere Artikel der Ausgabe 13/2021

Journal of Materials Science: Materials in Electronics 13/2021 Zur Ausgabe

Neuer Inhalt