Skip to main content
Erschienen in: Mechanics of Composite Materials 5/2023

28.10.2023

Compression Behavior of a Wood-Based Triangular Prism-Type Lattice Sandwich Structure

verfasst von: H. Zhang, Y. Hu

Erschienen in: Mechanics of Composite Materials | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using the insertion-glue method, wood-based triangular prism-type lattice sandwich structures with a round birch rod tenons as the core, an epoxy resin as the adhesive, and plywood as the panels were prepared and analyzed under different multivariable conditions. The results of plane compression tests and a theoretical model used showed that the failure mode is mainly the shear failure of their core.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. T. Munir, C. Belloncle, M. Irle, and M. Federighi, “Wood-based litter in poultry production: a review,” World Poultry Sci. J., 75, 5-16 (2019).CrossRef M. T. Munir, C. Belloncle, M. Irle, and M. Federighi, “Wood-based litter in poultry production: a review,” World Poultry Sci. J., 75, 5-16 (2019).CrossRef
2.
Zurück zum Zitat J. K. Qin, T. T. Zheng, S. Li, Y. P. Cheng, Q. Y. Xu, G. Y. Ye, and Y. C. Hu, “Core configuration and panel reinforcement affect compression properties of wood‑based 2‑D straight column lattice truss sandwich structure,” Eur. J. Wood Prod., 77, 539-546 (2019).CrossRef J. K. Qin, T. T. Zheng, S. Li, Y. P. Cheng, Q. Y. Xu, G. Y. Ye, and Y. C. Hu, “Core configuration and panel reinforcement affect compression properties of wood‑based 2‑D straight column lattice truss sandwich structure,” Eur. J. Wood Prod., 77, 539-546 (2019).CrossRef
3.
Zurück zum Zitat J. Giancaspro, P. N. Balaguru, and R. E. Lyon, “Use of inorganic polymer to improve the fire response of balsa sandwich structures,” J. Mater. Civ. Eng., 18, No. 3, 390-397 (2006).CrossRef J. Giancaspro, P. N. Balaguru, and R. E. Lyon, “Use of inorganic polymer to improve the fire response of balsa sandwich structures,” J. Mater. Civ. Eng., 18, No. 3, 390-397 (2006).CrossRef
4.
Zurück zum Zitat M. Ekenel, “Testing and acceptance criteria for fiber-reinforced composite grid connectors used in concrete sandwich panels,” J. Mater. Civ. Eng., 26, No. 6, 06014004 (2014). M. Ekenel, “Testing and acceptance criteria for fiber-reinforced composite grid connectors used in concrete sandwich panels,” J. Mater. Civ. Eng., 26, No. 6, 06014004 (2014).
5.
Zurück zum Zitat H. Mathieson, A. Fam, “Effect of internal ribs on fatigue performance of sandwich panels with GFRP skins and polyurethane foam core,” J. Mater. Civ. Eng., 27, No. 2, A4014005 (2015). H. Mathieson, A. Fam, “Effect of internal ribs on fatigue performance of sandwich panels with GFRP skins and polyurethane foam core,” J. Mater. Civ. Eng., 27, No. 2, A4014005 (2015).
6.
Zurück zum Zitat S. Li, T. T. Zheng, Y. C. Hu, and B. Wang, “Flexural and energy absorption properties of natural-fiber reinforced composites with a novel fabrication technique,” Composite. Commun., 16, 124-131 (2019).CrossRef S. Li, T. T. Zheng, Y. C. Hu, and B. Wang, “Flexural and energy absorption properties of natural-fiber reinforced composites with a novel fabrication technique,” Composite. Commun., 16, 124-131 (2019).CrossRef
7.
Zurück zum Zitat V. S. Deshpande, M. F. Ashby, and N. A. Fleck, “Foam topology: bending versus stretching dominated architectures,” Acta. Materialia, 49, No. 6, 1035-1040 (2001).CrossRef V. S. Deshpande, M. F. Ashby, and N. A. Fleck, “Foam topology: bending versus stretching dominated architectures,” Acta. Materialia, 49, No. 6, 1035-1040 (2001).CrossRef
8.
Zurück zum Zitat V. S. Deshpande, N. A. Fleck, and M. F. Ashby, “Effective properties of the octet-truss lattice material,” J. Mech. Phys. Solids., 49, No. 8, 1747-1769 (2001).CrossRef V. S. Deshpande, N. A. Fleck, and M. F. Ashby, “Effective properties of the octet-truss lattice material,” J. Mech. Phys. Solids., 49, No. 8, 1747-1769 (2001).CrossRef
9.
Zurück zum Zitat W. Huang, Z. H. Fan, W. Zhang, J. Y. Liu, and W. Zhou, “Impulsive response of composite sandwich structure with tetrahedral truss core,” Compos. Sci. and Technol., 176, 17-28 (2019).CrossRef W. Huang, Z. H. Fan, W. Zhang, J. Y. Liu, and W. Zhou, “Impulsive response of composite sandwich structure with tetrahedral truss core,” Compos. Sci. and Technol., 176, 17-28 (2019).CrossRef
10.
Zurück zum Zitat S. H. Li, W. C. Jiang, X. L. Zhu, and X. F. Xie, “Effect of localized defects on mechanical and creep properties for pyramidal lattice truss panel structure by analytical, experimental and finite element methods,” Thin-Walled Structures, 170, 108531 (2022).CrossRef S. H. Li, W. C. Jiang, X. L. Zhu, and X. F. Xie, “Effect of localized defects on mechanical and creep properties for pyramidal lattice truss panel structure by analytical, experimental and finite element methods,” Thin-Walled Structures, 170, 108531 (2022).CrossRef
11.
Zurück zum Zitat Z. J. Zhang, B. C. Li, Y. J. Wang, W. Zhang, C. C. Yue, Q. C. Zhang, and F. Jin, “Elevated temperature compression behaviors of 3D printed hollow pyramidal lattice sandwich structure reinforced by truncated square honeycomb,” Compos. Struct., 286, 115307 (2022).CrossRef Z. J. Zhang, B. C. Li, Y. J. Wang, W. Zhang, C. C. Yue, Q. C. Zhang, and F. Jin, “Elevated temperature compression behaviors of 3D printed hollow pyramidal lattice sandwich structure reinforced by truncated square honeycomb,” Compos. Struct., 286, 115307 (2022).CrossRef
12.
Zurück zum Zitat B. Xue, Y. X. Peng, S. F. Ren, N. N. Liu, and Q. Zhang, “Investigation of impact resistance performance of pyramid lattice sandwich structure based on SPH-FEM,” Compos. Struct., 261, 113561 (2021).CrossRef B. Xue, Y. X. Peng, S. F. Ren, N. N. Liu, and Q. Zhang, “Investigation of impact resistance performance of pyramid lattice sandwich structure based on SPH-FEM,” Compos. Struct., 261, 113561 (2021).CrossRef
13.
Zurück zum Zitat L. Zhang, S. Feih, S. Daynes, Y. Q. Wang, M. Y. Wang, J. Wei, and W. F. Lu, “Buckling optimization of Kagome lattice cores with free-form trusses,” Mater. Design, 145, 144-155 (2018).CrossRef L. Zhang, S. Feih, S. Daynes, Y. Q. Wang, M. Y. Wang, J. Wei, and W. F. Lu, “Buckling optimization of Kagome lattice cores with free-form trusses,” Mater. Design, 145, 144-155 (2018).CrossRef
14.
Zurück zum Zitat S.-H. Lee, K.-G. Lee, B.-K. Lee et al., “Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model,” Mater. Sci. Eng., 98, 949-959 (2019).CrossRef S.-H. Lee, K.-G. Lee, B.-K. Lee et al., “Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model,” Mater. Sci. Eng., 98, 949-959 (2019).CrossRef
15.
Zurück zum Zitat G. Q. Zhang, L. Ma, B. Wang, and L. Z. Wu, “Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores,” Composites, Part B, 43, 471-476 (2012).CrossRef G. Q. Zhang, L. Ma, B. Wang, and L. Z. Wu, “Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores,” Composites, Part B, 43, 471-476 (2012).CrossRef
16.
Zurück zum Zitat J. Xiong, M. Zhang, and A. Stocchi et al., “Mechanical behaviors of carbon fiber composite sandwich columns with three dimensional honeycomb cores under in-plane compression,” Composites, Part B, 60, 350-358 (2014).CrossRef J. Xiong, M. Zhang, and A. Stocchi et al., “Mechanical behaviors of carbon fiber composite sandwich columns with three dimensional honeycomb cores under in-plane compression,” Composites, Part B, 60, 350-358 (2014).CrossRef
17.
Zurück zum Zitat X. D. Li, F. L. Cong, Y. W. Zhang, Z. Q. Qin, S. Wang, and J. He, “Effect of high-low temperature on the compressive and shear performances of composite sandwich panels with pyramidal lattice truss cores,” Compos. Struct., 292, 115675 (2022).CrossRef X. D. Li, F. L. Cong, Y. W. Zhang, Z. Q. Qin, S. Wang, and J. He, “Effect of high-low temperature on the compressive and shear performances of composite sandwich panels with pyramidal lattice truss cores,” Compos. Struct., 292, 115675 (2022).CrossRef
18.
Zurück zum Zitat N. Jin, F. C. Wang, Y. W. Wang, B. W. Zhang, H. W. Cheng, and H. M. Zhang, “Effect of structural parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading,” Int. J. Impact Eng., 132, 10331 (2019).CrossRef N. Jin, F. C. Wang, Y. W. Wang, B. W. Zhang, H. W. Cheng, and H. M. Zhang, “Effect of structural parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading,” Int. J. Impact Eng., 132, 10331 (2019).CrossRef
19.
Zurück zum Zitat L. X. Zou, T. T. Zheng, S. Li, X. Zhao, L. F. Wang, and Y. C. Hu, “Compression behaviour of the wood‑based X‑type lattice sandwich structure,” Eur. J. Wood Prod., 79, 139-150 (2021).CrossRef L. X. Zou, T. T. Zheng, S. Li, X. Zhao, L. F. Wang, and Y. C. Hu, “Compression behaviour of the wood‑based X‑type lattice sandwich structure,” Eur. J. Wood Prod., 79, 139-150 (2021).CrossRef
20.
Zurück zum Zitat L. F. Wang, Y. C. Hu, X. C. Zhang, S. Li, S. G. Li, and H. F. Zhang, “Design and compressive behavior of a wood‑based pyramidal lattice core sandwich structure,” Eur. J. Wood Prod., 78, 123-134 (2020).CrossRef L. F. Wang, Y. C. Hu, X. C. Zhang, S. Li, S. G. Li, and H. F. Zhang, “Design and compressive behavior of a wood‑based pyramidal lattice core sandwich structure,” Eur. J. Wood Prod., 78, 123-134 (2020).CrossRef
21.
Zurück zum Zitat M. M. Jin, Y. C. Hu, and B. Wang, “Compressive and bending behaviours of wood-based two-dimensional lattice truss core sandwich structures,” Compos. Struct., 124, 337-344 (2015).CrossRef M. M. Jin, Y. C. Hu, and B. Wang, “Compressive and bending behaviours of wood-based two-dimensional lattice truss core sandwich structures,” Compos. Struct., 124, 337-344 (2015).CrossRef
22.
Zurück zum Zitat T. T. Zheng, Y. P. Cheng, S. Li, Y. Zhang, and Y. C. Hu, “Mechanical properties of the wood-based X-type lattice sandwich structure,” BioResources, 15, 1927-1944 (2020a).CrossRef T. T. Zheng, Y. P. Cheng, S. Li, Y. Zhang, and Y. C. Hu, “Mechanical properties of the wood-based X-type lattice sandwich structure,” BioResources, 15, 1927-1944 (2020a).CrossRef
23.
Zurück zum Zitat T. T. Zheng, H. Z. Yan, S. Li, Y. P. Cheng, L. X. Zou, and Y. C. Hu, “Compressive behavior and failure modes of the wood-based double X-type lattice sandwich structure,” J. Build. Eng., 30, 101176 (2020b).CrossRef T. T. Zheng, H. Z. Yan, S. Li, Y. P. Cheng, L. X. Zou, and Y. C. Hu, “Compressive behavior and failure modes of the wood-based double X-type lattice sandwich structure,” J. Build. Eng., 30, 101176 (2020b).CrossRef
24.
Zurück zum Zitat S. Li, J. K. Qin, C. C. Li, Y. X. Feng, X. Zhao, and Y. C. Hu, “Optimization and compressive behavior of composite 2-D lattice structure,” Mech. Adv. Mater. Struct., 27, No. 14, 1213-1222(2018).CrossRef S. Li, J. K. Qin, C. C. Li, Y. X. Feng, X. Zhao, and Y. C. Hu, “Optimization and compressive behavior of composite 2-D lattice structure,” Mech. Adv. Mater. Struct., 27, No. 14, 1213-1222(2018).CrossRef
25.
Zurück zum Zitat U. Meekum and W. Wangkheeree, “Manufacturing of lightweight sandwich structure engineered wood reinforced with fiber glass: selection of core materials using hybridized natural/engineered fibers,” BioResources, 11, No. 3, 7608-7623 (2016).CrossRef U. Meekum and W. Wangkheeree, “Manufacturing of lightweight sandwich structure engineered wood reinforced with fiber glass: selection of core materials using hybridized natural/engineered fibers,” BioResources, 11, No. 3, 7608-7623 (2016).CrossRef
26.
Zurück zum Zitat J. H. Li, J. F. Hunt, S. Q. Gong, and Z. Y. Cai, “High strength wood-based sandwich panels reinforced with fiberglass and foam,” BioResources, 9, No. 2, 1898-1913 (2014).CrossRef J. H. Li, J. F. Hunt, S. Q. Gong, and Z. Y. Cai, “High strength wood-based sandwich panels reinforced with fiberglass and foam,” BioResources, 9, No. 2, 1898-1913 (2014).CrossRef
27.
Zurück zum Zitat Z. X. Fan, G. Y. Ye, S. Li, Z. Y. Bai, Q. W. Yong, Y. H. Zhang, and Y. C. Hu, “Compression performance and failure mechanism of honeycomb structures fabricated with reinforced wood,” Structures, 48, 1868-1882 (2023).CrossRef Z. X. Fan, G. Y. Ye, S. Li, Z. Y. Bai, Q. W. Yong, Y. H. Zhang, and Y. C. Hu, “Compression performance and failure mechanism of honeycomb structures fabricated with reinforced wood,” Structures, 48, 1868-1882 (2023).CrossRef
Metadaten
Titel
Compression Behavior of a Wood-Based Triangular Prism-Type Lattice Sandwich Structure
verfasst von
H. Zhang
Y. Hu
Publikationsdatum
28.10.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 5/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10147-1

Weitere Artikel der Ausgabe 5/2023

Mechanics of Composite Materials 5/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.