Skip to main content
Erschienen in: Mechanics of Composite Materials 5/2023

07.11.2023

Impact of the Shear and Thickness Stretching Effects on the Free Vibrations of Advanced Composite Plates

verfasst von: A. Messaoudi, A. Bouhadra, A. Menasria, B. Mamen, B. Boucham, M. Benguediab, A. Tounsi, M. A. Al-Osta

Erschienen in: Mechanics of Composite Materials | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quasi-3D high-order shear deformation theories (HSDT) are often more effective for investigating advanced composite thick plates than two-dimensional (2D) theories. The present study examines the specific dimensionality effect of quasi-3D HSDT theories through-thickness stretching on the free vibration behavior of thin-thick rectangular plates. For this purpose, a 3D displacement field defined by only five unknowns is proposed. Besides, it contains a stretching component that contributes to the whole behavior of the plate. The results of the 2D model are compared to the results of the quasi-3D model. In addition, several factors, such as the aspect ratio, geometrical ratio, and material index, illustrate the influence of dimensionality. Young’s modulus and densities should be graded in the direction of thickness. The motion equations are deduced based on Hamilton’s principle. According to the boundary condition type, Navier’s solution method is used for solving the obtained equations. The results show that the inclusion of the stretching component would increase the dynamic response of the thick advanced composite plates. Moreover, the influence of dimensionality is less significant for pure ceramic plates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Uchida, “Properties of functionally graded materials, Manufactured by progressive lamination method for applications”, Aichi Inst, Technol. Res. Rep (2004), 39-51. Y. Uchida, “Properties of functionally graded materials, Manufactured by progressive lamination method for applications”, Aichi Inst, Technol. Res. Rep (2004), 39-51.
2.
Zurück zum Zitat L. Marin, “Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials”. Int. J. Solids and Struct.,” 42, No. 15, 4338-4351 (2005). L. Marin, “Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials”. Int. J. Solids and Struct.,” 42, No. 15, 4338-4351 (2005).
3.
Zurück zum Zitat Z. Liu, M. A. Meyers, Z. Zhang, and R. O. Ritchie, “Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications,” Progress in Mater. Sci., 88, 467-498 (2017).CrossRef Z. Liu, M. A. Meyers, Z. Zhang, and R. O. Ritchie, “Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications,” Progress in Mater. Sci., 88, 467-498 (2017).CrossRef
4.
Zurück zum Zitat L. Bai, C. Gong, X. Chen, Y. Sun, J. Zhang, L. Cai, and S. Q. Xie, “Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications,” Metals, 9, No. 9, 1004 (2019). L. Bai, C. Gong, X. Chen, Y. Sun, J. Zhang, L. Cai, and S. Q. Xie, “Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications,” Metals, 9, No. 9, 1004 (2019).
5.
Zurück zum Zitat S. H. Chi and T. L. Chung, “Cracking in coating–substrate composites with multi-layered and FGM coatings,” Eng. Fracture Mech., 70, No. 10, 1227-1243 (2003).CrossRef S. H. Chi and T. L. Chung, “Cracking in coating–substrate composites with multi-layered and FGM coatings,” Eng. Fracture Mech., 70, No. 10, 1227-1243 (2003).CrossRef
6.
Zurück zum Zitat H. Shi, P. Zhou, J. Li, C. Liu and L. Wang, “Functional gradient metallic biomaterials: Techniques, current scenery, and future prospects in the biomedical field,” Frontiers in Bioeng. and Biotechnol., 8, 616845 (2021).CrossRef H. Shi, P. Zhou, J. Li, C. Liu and L. Wang, “Functional gradient metallic biomaterials: Techniques, current scenery, and future prospects in the biomedical field,” Frontiers in Bioeng. and Biotechnol., 8, 616845 (2021).CrossRef
7.
Zurück zum Zitat F. Y. Genao, J. Kim, and K. K. Żur, “Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads,” Compos. Struct., 256, 112931 (2021).CrossRef F. Y. Genao, J. Kim, and K. K. Żur, “Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads,” Compos. Struct., 256, 112931 (2021).CrossRef
8.
Zurück zum Zitat N. V. Nguyen, H. Nguyen-Xuan, D. Lee, and J. Lee, “A novel computational approach to functionally graded porous plates with graphene platelets reinforcement,” Thin-Walled Struct., 150, 106684 (2020).CrossRef N. V. Nguyen, H. Nguyen-Xuan, D. Lee, and J. Lee, “A novel computational approach to functionally graded porous plates with graphene platelets reinforcement,” Thin-Walled Struct., 150, 106684 (2020).CrossRef
9.
Zurück zum Zitat K. Xie, Y. Wang, H. Niu, and H. Chen, “Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: A novel approach based on energy balance method,” Compos. Struct., 246, 112367 (2020).CrossRef K. Xie, Y. Wang, H. Niu, and H. Chen, “Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: A novel approach based on energy balance method,” Compos. Struct., 246, 112367 (2020).CrossRef
10.
Zurück zum Zitat Y. Zhang, G. Jin, M. Chen, T. Ye, C. Yang, and Y. Yin, “Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core,” Compos. Struct., 244, 112298 (2020).CrossRef Y. Zhang, G. Jin, M. Chen, T. Ye, C. Yang, and Y. Yin, “Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core,” Compos. Struct., 244, 112298 (2020).CrossRef
11.
Zurück zum Zitat Y. S. Al Rjoub and A. A. Jinan, “Free vibration of functionally-graded porous cracked plates,” Structures, 28, 2392-2403 (2020). Y. S. Al Rjoub and A. A. Jinan, “Free vibration of functionally-graded porous cracked plates,” Structures, 28, 2392-2403 (2020).
12.
Zurück zum Zitat A. Bouhadra, A. Tounsi, A. A. Bousahla, S. Benyoucef, and S. R. Mahmoud, “Improved HSDT accounting for effect of thickness stretching in advanced composite plates,” Int. J. Struct. Eng. and Mech., 66, No. 1, 61-73 (2018). A. Bouhadra, A. Tounsi, A. A. Bousahla, S. Benyoucef, and S. R. Mahmoud, “Improved HSDT accounting for effect of thickness stretching in advanced composite plates,” Int. J. Struct. Eng. and Mech., 66, No. 1, 61-73 (2018).
13.
Zurück zum Zitat B. Rebai, A. Bouhadra, A. A. Bousahla, M. Meradjah, F. Bourada A. Tounsi, and M. Hussain, “Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT,” Archive of Appl. Mech., 91, No. 7, 3403-3420 (2021). B. Rebai, A. Bouhadra, A. A. Bousahla, M. Meradjah, F. Bourada A. Tounsi, and M. Hussain, “Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT,” Archive of Appl. Mech., 91, No. 7, 3403-3420 (2021).
14.
Zurück zum Zitat N. V. Nguyen, L. B. Nguyen, H. Nguyen-Xuan and J. Lee, “Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bézier extraction of NURBS,” Int. J. Mech. Sci., 180, 105692 (2020).CrossRef N. V. Nguyen, L. B. Nguyen, H. Nguyen-Xuan and J. Lee, “Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bézier extraction of NURBS,” Int. J. Mech. Sci., 180, 105692 (2020).CrossRef
15.
Zurück zum Zitat A. Bouhadra, A. Menasria, and M. A. Rachedi, “Boundary conditions effect for buckling analysis of porous functionally graded nanobeam,” Adv. Nano Research, 10, No. 4, 313-325 (2021). A. Bouhadra, A. Menasria, and M. A. Rachedi, “Boundary conditions effect for buckling analysis of porous functionally graded nanobeam,” Adv. Nano Research, 10, No. 4, 313-325 (2021).
16.
Zurück zum Zitat E. Arshid and A. R. Khorshidvand, “Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method,” Thin-Walled Struct., 125, 220-233 (2018).CrossRef E. Arshid and A. R. Khorshidvand, “Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method,” Thin-Walled Struct., 125, 220-233 (2018).CrossRef
17.
Zurück zum Zitat N. Valizadeh, T. Q. Bui, V. T. Vu, H. T. Thai, and M. N. Nguyen, “Isogeometric simulation for buckling, free and forced vibration of orthotropic plates,” Int. J. Appl. Mech., 5, No. 02, 1350017 (2013). N. Valizadeh, T. Q. Bui, V. T. Vu, H. T. Thai, and M. N. Nguyen, “Isogeometric simulation for buckling, free and forced vibration of orthotropic plates,” Int. J. Appl. Mech., 5, No. 02, 1350017 (2013).
18.
Zurück zum Zitat Z. Hashin, “Analysis of composite materials—a survey,” J. Appl. Mech., 50, 481-505 (1983).CrossRef Z. Hashin, “Analysis of composite materials—a survey,” J. Appl. Mech., 50, 481-505 (1983).CrossRef
19.
Zurück zum Zitat J. N. Reddy and J. Berry, “Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress,” Compos. Struct., 94, No. 12, 3664-3668 (2012).CrossRef J. N. Reddy and J. Berry, “Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress,” Compos. Struct., 94, No. 12, 3664-3668 (2012).CrossRef
20.
Zurück zum Zitat E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates,” J. Appl. Mech., 28. No. 3, 402-408 (1961).CrossRef E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates,” J. Appl. Mech., 28. No. 3, 402-408 (1961).CrossRef
21.
Zurück zum Zitat M. Mohammadi, A. R. Saidi, and E. Jomehzadeh, “Levy solution for buckling analysis of functionally graded rectangular plates,” Appl. Compos. Mater., 17, No. 2, 81-93 (2010).CrossRef M. Mohammadi, A. R. Saidi, and E. Jomehzadeh, “Levy solution for buckling analysis of functionally graded rectangular plates,” Appl. Compos. Mater., 17, No. 2, 81-93 (2010).CrossRef
22.
Zurück zum Zitat S. Zghal, A. Frikha, and F. Dammak, “Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes,” Appl. Math. and Mech., 41, No. 8, 1227-1250 (2020).CrossRef S. Zghal, A. Frikha, and F. Dammak, “Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes,” Appl. Math. and Mech., 41, No. 8, 1227-1250 (2020).CrossRef
23.
Zurück zum Zitat K. Mercan, A. K. Baltacioglu, and Ö. Civalek, “Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method,” Compos. Struct., 186, 153 (2018).CrossRef K. Mercan, A. K. Baltacioglu, and Ö. Civalek, “Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method,” Compos. Struct., 186, 153 (2018).CrossRef
24.
Zurück zum Zitat H. Mellouli, H. Jrad, M. Wali, and F. Dammak, “Meshless implementation of arbitrary 3D-shell structures based on a modified first order shear deformation theory,” Computers & Math. with Applications, 77, No. 1, 34-49 (2019).CrossRef H. Mellouli, H. Jrad, M. Wali, and F. Dammak, “Meshless implementation of arbitrary 3D-shell structures based on a modified first order shear deformation theory,” Computers & Math. with Applications, 77, No. 1, 34-49 (2019).CrossRef
25.
Zurück zum Zitat S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, “Thermal post-buckling analysis of functionally graded material structures using a modified FSDT,” Int. J. Mech. Sci., 144, 74-89 (2018).CrossRef S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, “Thermal post-buckling analysis of functionally graded material structures using a modified FSDT,” Int. J. Mech. Sci., 144, 74-89 (2018).CrossRef
26.
Zurück zum Zitat F. Ebrahimi and N. Shafiei, “Application of Eringen’s nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams,” Smart Struct. and Systems, 17, No. 5, 837-857 (2016).CrossRef F. Ebrahimi and N. Shafiei, “Application of Eringen’s nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams,” Smart Struct. and Systems, 17, No. 5, 837-857 (2016).CrossRef
27.
Zurück zum Zitat Y. Zhou and J. Zhu, “Vibration and bending analysis of multiferroic rectangular plates using third-order shear deformation theory,” Compos. Struct., 153, 712-723 (2016).CrossRef Y. Zhou and J. Zhu, “Vibration and bending analysis of multiferroic rectangular plates using third-order shear deformation theory,” Compos. Struct., 153, 712-723 (2016).CrossRef
28.
Zurück zum Zitat O. Bourihane, Y. Hilali, and K. Mhada, “Nonlinear dynamic response of functionally graded material plates using a high‐order implicit algorithm,” ZAMM‐J. Appl. Math. and Mech./Zeitschrift für Angewandte Mathematik und Mechanik, 100, No. 12, e202000087 (2020). O. Bourihane, Y. Hilali, and K. Mhada, “Nonlinear dynamic response of functionally graded material plates using a high‐order implicit algorithm,” ZAMM‐J. Appl. Math. and Mech./Zeitschrift für Angewandte Mathematik und Mechanik, 100, No. 12, e202000087 (2020).
29.
Zurück zum Zitat Y. Zhou, D. Liu, and J. Zhu, “Vibration and wave analyses in the functionally graded graphene-reinforced composite plates based on the first-order shear deformation plate theory,” Appl. Sci., 12, No. 6, 3140 (2022). Y. Zhou, D. Liu, and J. Zhu, “Vibration and wave analyses in the functionally graded graphene-reinforced composite plates based on the first-order shear deformation plate theory,” Appl. Sci., 12, No. 6, 3140 (2022).
30.
Zurück zum Zitat R. Kang, F. Xin, C. Shen, and T. J. Lu, “3D free vibration analysis of functionally graded plates with arbitrary boundary conditions in thermal environment,” Adv. Eng. Mater., 24, No. 5, 2100636 (2022). R. Kang, F. Xin, C. Shen, and T. J. Lu, “3D free vibration analysis of functionally graded plates with arbitrary boundary conditions in thermal environment,” Adv. Eng. Mater., 24, No. 5, 2100636 (2022).
31.
Zurück zum Zitat Y. XU and Z. WU, “Exact solutions for rectangular anisotropic plates with four clamped edges,” Mech. Adv. Mater. and Struct., 29, No. 12, 1756-1768 (2022).CrossRef Y. XU and Z. WU, “Exact solutions for rectangular anisotropic plates with four clamped edges,” Mech. Adv. Mater. and Struct., 29, No. 12, 1756-1768 (2022).CrossRef
32.
Zurück zum Zitat T. V. Vu, A. Khosravifard, M. R. Hematiyan, and T. Q. Bui, “A new refined simple TSDT-based effective meshfree method for analysis of through-thickness FG plates,” Appl. Math. Model., 57, 514-534 (2018).CrossRef T. V. Vu, A. Khosravifard, M. R. Hematiyan, and T. Q. Bui, “A new refined simple TSDT-based effective meshfree method for analysis of through-thickness FG plates,” Appl. Math. Model., 57, 514-534 (2018).CrossRef
33.
Zurück zum Zitat D. Shahsavari, M. Shahsavari, L. Li, and B. Karami, “A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation,” Aerospace Sci. and Technol., 72, 134-149 (2018).CrossRef D. Shahsavari, M. Shahsavari, L. Li, and B. Karami, “A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation,” Aerospace Sci. and Technol., 72, 134-149 (2018).CrossRef
34.
Zurück zum Zitat M. Arefi, A. Tabatabaeian, and M. Mohammadi, “Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory,” Defence Technol., 17, No. 1, 64-74 2021.CrossRef M. Arefi, A. Tabatabaeian, and M. Mohammadi, “Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory,” Defence Technol., 17, No. 1, 64-74 2021.CrossRef
35.
Zurück zum Zitat Y. WANG and D. WU, “Free vibration of the functionally graded porous cylindrical shell using a sinusoidal shear deformation theory,” Aerospace Sci. and Technol., 66, 83-91 (2017).CrossRef Y. WANG and D. WU, “Free vibration of the functionally graded porous cylindrical shell using a sinusoidal shear deformation theory,” Aerospace Sci. and Technol., 66, 83-91 (2017).CrossRef
36.
Zurück zum Zitat S. Alimirzaei, M. Sadighi, and A. Nikbakht, “Wave propagation analysis in viscoelastic thick composite plates resting on visco-Pasternak foundation by means of quasi-3D sinusoidal shear deformation theory,” Eur. J. Mech.-A/Solids, 74, 1-15 (2019). S. Alimirzaei, M. Sadighi, and A. Nikbakht, “Wave propagation analysis in viscoelastic thick composite plates resting on visco-Pasternak foundation by means of quasi-3D sinusoidal shear deformation theory,” Eur. J. Mech.-A/Solids, 74, 1-15 (2019).
37.
Zurück zum Zitat J. Si and Y. Zhang, “An enhanced higher order zigzag theory for laminated composite plates under mechanical/thermal loading,” Compos. Struct., 282, 115074 (2022).CrossRef J. Si and Y. Zhang, “An enhanced higher order zigzag theory for laminated composite plates under mechanical/thermal loading,” Compos. Struct., 282, 115074 (2022).CrossRef
38.
Zurück zum Zitat M. Sorrenti and M. Di Sciuva, “An enhancement of the warping shear functions of Refined Zigzag Theory,” J. Appl. Mech., 88, No. 8, (2021). M. Sorrenti and M. Di Sciuva, “An enhancement of the warping shear functions of Refined Zigzag Theory,” J. Appl. Mech., 88, No. 8, (2021).
39.
Zurück zum Zitat A. Tessler, “Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner’s mixed variational principle,” Meccanica, 50, No. 10, 2621-2648 (2015).CrossRef A. Tessler, “Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner’s mixed variational principle,” Meccanica, 50, No. 10, 2621-2648 (2015).CrossRef
40.
Zurück zum Zitat P. Jafari and Y. Kiani, “Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model,” Compos. Struct., 275, 114409 (2021).CrossRef P. Jafari and Y. Kiani, “Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model,” Compos. Struct., 275, 114409 (2021).CrossRef
41.
Zurück zum Zitat D. K. Jha, T. Kant, and R. K. Singh, “Free vibration response of functionally graded thick plates with shear and normal deformations effects,” Compos. Struct., 96, 799-823 (2013).CrossRef D. K. Jha, T. Kant, and R. K. Singh, “Free vibration response of functionally graded thick plates with shear and normal deformations effects,” Compos. Struct., 96, 799-823 (2013).CrossRef
42.
Zurück zum Zitat H. Hebali, A. Tounsi, M. S. A. Houari, A. Bessaim, and E. A. A. Bedia, “New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates,” J. Eng. Mech., 140, No 2, 374-383 (2014).CrossRef H. Hebali, A. Tounsi, M. S. A. Houari, A. Bessaim, and E. A. A. Bedia, “New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates,” J. Eng. Mech., 140, No 2, 374-383 (2014).CrossRef
43.
Zurück zum Zitat M. Yaylaci and M. Avcar, “Finite element modeling of contact between an elastic layer and two elastic quarter planes,” Int. J. Computers and Concrete, 26, No 2, 107-114 (2020). M. Yaylaci and M. Avcar, “Finite element modeling of contact between an elastic layer and two elastic quarter planes,” Int. J. Computers and Concrete, 26, No 2, 107-114 (2020).
44.
Zurück zum Zitat M. Yaylaci, G. Adiyaman, E. Öner and A. Birinci, “Examination of analytical and finite element solutions regarding contact of a functionally graded layer,” Structural Engineering and Mechanics, 76, No. 3, 325-336 (2020). M. Yaylaci, G. Adiyaman, E. Öner and A. Birinci, “Examination of analytical and finite element solutions regarding contact of a functionally graded layer,” Structural Engineering and Mechanics, 76, No. 3, 325-336 (2020).
45.
Zurück zum Zitat E. Öner, M. Yaylaci, and A. Birinci, “Analytical solution of a contact problem and comparison with the results from FEM,” Structur. Eng. and Mech., 54, No. 4, 607-622 (2015).CrossRef E. Öner, M. Yaylaci, and A. Birinci, “Analytical solution of a contact problem and comparison with the results from FEM,” Structur. Eng. and Mech., 54, No. 4, 607-622 (2015).CrossRef
46.
Zurück zum Zitat M. Pourabdy, M. Shishesaz, S. Shahrooi, S. Alireza. And S. Roknizadeh, “Analysis of axisymmetric vibration of functionally-graded circular nano-plate based on the integral form of the strain gradient model,” J. Appl. and Comput. Mech., 7, No. 4, 2196- 2220 (2015). M. Pourabdy, M. Shishesaz, S. Shahrooi, S. Alireza. And S. Roknizadeh, “Analysis of axisymmetric vibration of functionally-graded circular nano-plate based on the integral form of the strain gradient model,” J. Appl. and Comput. Mech., 7, No. 4, 2196- 2220 (2015).
47.
Zurück zum Zitat A. A. Daikh, M. S. A. Houari, and M. A. Eltaher, “A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates,” Compos. Struct., 262, 113347 (2021).CrossRef A. A. Daikh, M. S. A. Houari, and M. A. Eltaher, “A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates,” Compos. Struct., 262, 113347 (2021).CrossRef
48.
Zurück zum Zitat A. Bouhadra, A. Menasria, and M. Ali Rachedi, “Boundary conditions effect for buckling analysis of porous functionally graded nanobeam,” Adv. Nano Research, 10, No. 4, 313-325 (2021). A. Bouhadra, A. Menasria, and M. Ali Rachedi, “Boundary conditions effect for buckling analysis of porous functionally graded nanobeam,” Adv. Nano Research, 10, No. 4, 313-325 (2021).
49.
Zurück zum Zitat S. Srinivas, C. J. Rao, and A. K. Rao, “An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates,” J. Sound and Vibration, 12, No. 2, 187-199 (1970).CrossRef S. Srinivas, C. J. Rao, and A. K. Rao, “An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates,” J. Sound and Vibration, 12, No. 2, 187-199 (1970).CrossRef
50.
Zurück zum Zitat J. M. Whitney and N. J. Pagano. “Shear deformation in heterogeneous anisotropic plates,” J. Appl. Mech., 37, 1031-1036 (1070). J. M. Whitney and N. J. Pagano. “Shear deformation in heterogeneous anisotropic plates,” J. Appl. Mech., 37, 1031-1036 (1070).
51.
Zurück zum Zitat S. Yin, T. Yu, and P. Liu, “Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface,” Adv. in Mech. Eng., 5, 634584 (2013).CrossRef S. Yin, T. Yu, and P. Liu, “Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface,” Adv. in Mech. Eng., 5, 634584 (2013).CrossRef
52.
Zurück zum Zitat Q. LI, V. P. IU, and K. P. KOU, “Three-dimensional vibration analysis of functionally graded material sandwich plates,” J. Sound and Vibration, 311, No. 1-2, 498-515 (2008).CrossRef Q. LI, V. P. IU, and K. P. KOU, “Three-dimensional vibration analysis of functionally graded material sandwich plates,” J. Sound and Vibration, 311, No. 1-2, 498-515 (2008).CrossRef
Metadaten
Titel
Impact of the Shear and Thickness Stretching Effects on the Free Vibrations of Advanced Composite Plates
verfasst von
A. Messaoudi
A. Bouhadra
A. Menasria
B. Mamen
B. Boucham
M. Benguediab
A. Tounsi
M. A. Al-Osta
Publikationsdatum
07.11.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 5/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10148-0

Weitere Artikel der Ausgabe 5/2023

Mechanics of Composite Materials 5/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.