Skip to main content
Erschienen in: Mechanics of Composite Materials 5/2023

31.10.2023

Fatigue Analysis of a Type-IV CNG Composite Cylinder with Variable Wall-Thickness and Polyethylene Liner

verfasst von: M. Nouri, F. Ashenai Ghasemi, G. R. Sherbaf, K. R. Kashyzadeh

Erschienen in: Mechanics of Composite Materials | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present research estimates fatigue life of a type-IV CNG composite cylinder of a road automobile that serves as a super-acute part from a safety perspective. This component is subjected to cyclic internal pressure due to filling and emptying the cylinder. To this end, the mechanical and fatigue properties of different materials were determined experimentally. Transient dynamic analysis was performed to obtain the stress tensor as a function of time in the critical zone using Finite Element (FE) simulation. Next, fatigue life of this critical component was assessed utilizing 3D stress components and employing some well-known fatigue failure criteria for composite materials. The FE and tests results were compared. The most important achievement of the research is that the Epaarachchi and Clausen, Fawaz–Ellyin, and Harris and Gathercole criteria ensure the highest precision (15, 17, and 18% error) for fatigue life assessment of this critical component.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. A. B. Semin, “A technical review of compressed natural gas as an alternative fuel for internal combustion engines,” American J. Eng. and Appl. Sci., 1, No 4, 302-311 (2008).CrossRef R. A. B. Semin, “A technical review of compressed natural gas as an alternative fuel for internal combustion engines,” American J. Eng. and Appl. Sci., 1, No 4, 302-311 (2008).CrossRef
2.
Zurück zum Zitat M. Ţălu and S. Ţălu, “Optimal engineering design of a pressurized paralepipedic fuel tank,” Annals of Faculty of Eng. Hunedoara-Int. J. of Eng., 16, 193-200 (2018). M. Ţălu and S. Ţălu, “Optimal engineering design of a pressurized paralepipedic fuel tank,” Annals of Faculty of Eng. Hunedoara-Int. J. of Eng., 16, 193-200 (2018).
3.
Zurück zum Zitat A. K. Agrawal and S. Kumar, “Fatigue life prediction of a Hoop-Wrapped composite CNG cylinder containing surface flow,” Int. J. Emerging Technol. and Adv. Eng., 4, 790-796 (2014). A. K. Agrawal and S. Kumar, “Fatigue life prediction of a Hoop-Wrapped composite CNG cylinder containing surface flow,” Int. J. Emerging Technol. and Adv. Eng., 4, 790-796 (2014).
4.
Zurück zum Zitat T. Sawant, N. K. Purwant, S. Kulkarni, and P. Karajagi, “Design & stress analysis of a hoop wrapped CNG composite vessel with an SAE-4135 low alloy steel liner,” Int. Eng. Research J., 338-343 (2016). T. Sawant, N. K. Purwant, S. Kulkarni, and P. Karajagi, “Design & stress analysis of a hoop wrapped CNG composite vessel with an SAE-4135 low alloy steel liner,” Int. Eng. Research J., 338-343 (2016).
5.
Zurück zum Zitat M. Heaidari Rarani, and A. Jebeli, “Finite element modeling of failure in IV type composite pressure vessel using WCM plug-in in ABAQUS software,” [in Persian], Modares Mech. Eng., 18, 191-200 (2018). M. Heaidari Rarani, and A. Jebeli, “Finite element modeling of failure in IV type composite pressure vessel using WCM plug-in in ABAQUS software,” [in Persian], Modares Mech. Eng., 18, 191-200 (2018).
6.
Zurück zum Zitat A. Vafaeesefat, “Optimization of composite pressure vessels with metal liner by adaptive response surface method,” J. Mech. Sci. and Technol., 25, No. 11, 2811-2816 (2011).CrossRef A. Vafaeesefat, “Optimization of composite pressure vessels with metal liner by adaptive response surface method,” J. Mech. Sci. and Technol., 25, No. 11, 2811-2816 (2011).CrossRef
7.
Zurück zum Zitat A. Clarich, Z. Wen, and G. Fratti, “Design Optimization, Cost and Risk Analysis of CNG Vessels Transportation,” 14th World Congress in Computational Mechanics (WCCM), ECCOMAS Congress 2020, Paris, France, (19-24 July 2020). A. Clarich, Z. Wen, and G. Fratti, “Design Optimization, Cost and Risk Analysis of CNG Vessels Transportation,” 14th World Congress in Computational Mechanics (WCCM), ECCOMAS Congress 2020, Paris, France, (19-24 July 2020).
8.
Zurück zum Zitat E. S. Kim and S. K. Choi, “Risk analysis of CNG composite pressure vessel via computer-aided method and fractography,” Engineering Failure Analysis, 27, 84-98 (2013).CrossRef E. S. Kim and S. K. Choi, “Risk analysis of CNG composite pressure vessel via computer-aided method and fractography,” Engineering Failure Analysis, 27, 84-98 (2013).CrossRef
9.
Zurück zum Zitat T. A. Yersak, M. A. Elhamid, A. Dailly, M. Rogers, J. Prince, and M. Cai, “Dynamics of a type IV comfortable pressure vessel for natural gas passenger vehicles,” Int. J. Pressure Vessels and Piping, 175 (2019). T. A. Yersak, M. A. Elhamid, A. Dailly, M. Rogers, J. Prince, and M. Cai, “Dynamics of a type IV comfortable pressure vessel for natural gas passenger vehicles,” Int. J. Pressure Vessels and Piping, 175 (2019).
10.
Zurück zum Zitat C. J. B. Dicken and W. Merida, “Measured effects of filling time and initial mass on the temperature distribution within a hydrogen cylinder during refueling,” J. Power Sources, 165, 324-336 (2007).CrossRef C. J. B. Dicken and W. Merida, “Measured effects of filling time and initial mass on the temperature distribution within a hydrogen cylinder during refueling,” J. Power Sources, 165, 324-336 (2007).CrossRef
11.
Zurück zum Zitat Y. L. Liu, Y. Z. Zhao, L. Zhao, X. Li, H. G. Chen, L. F. Zhang, H. Zhao, R. H. Sheng, T. Xie, D. H. Hu, and J. Y. Zheng, “Experimental studies on temperature rise within a hydrogen cylinder during refueling,” Int. J. Hydrogen Energy, 35, 2627-2632 (2010).CrossRef Y. L. Liu, Y. Z. Zhao, L. Zhao, X. Li, H. G. Chen, L. F. Zhang, H. Zhao, R. H. Sheng, T. Xie, D. H. Hu, and J. Y. Zheng, “Experimental studies on temperature rise within a hydrogen cylinder during refueling,” Int. J. Hydrogen Energy, 35, 2627-2632 (2010).CrossRef
12.
Zurück zum Zitat M. Deymi-Dashtebayaz, M. Farzaneh-Gord, and N. Nooralipoor, “The full simulation of rapid refueling of a natural gas vehicle on-board cylinder,” J. Natural Gas Sci. and Eng., 21, 1099-1106 (2014).CrossRef M. Deymi-Dashtebayaz, M. Farzaneh-Gord, and N. Nooralipoor, “The full simulation of rapid refueling of a natural gas vehicle on-board cylinder,” J. Natural Gas Sci. and Eng., 21, 1099-1106 (2014).CrossRef
13.
Zurück zum Zitat M. C. Galassi, E. Papanikolaou, M. Heitsch, D. Baraldi, B. A. Iborra, and P. Moretto, Assessment of CFD models for hydrogen fast filling simulations,” Int. J. Hydrogen Energy, 39, 6252-6260 (2014).CrossRef M. C. Galassi, E. Papanikolaou, M. Heitsch, D. Baraldi, B. A. Iborra, and P. Moretto, Assessment of CFD models for hydrogen fast filling simulations,” Int. J. Hydrogen Energy, 39, 6252-6260 (2014).CrossRef
14.
Zurück zum Zitat Q. Li, J Zhou, Q. Chang, and W. Xing, “Effects of geometry and inconstant mass flow rate on temperature within a pressurized hydrogen cylinder during refueling,” Int. J. Hydrogen Energy, 37, 6043-6052 (2010).CrossRef Q. Li, J Zhou, Q. Chang, and W. Xing, “Effects of geometry and inconstant mass flow rate on temperature within a pressurized hydrogen cylinder during refueling,” Int. J. Hydrogen Energy, 37, 6043-6052 (2010).CrossRef
15.
Zurück zum Zitat S. Chamberlain and M. Modarres, “Compressed natural gas bus safety: A quantitative risk assessment,” Risk Analysis, 25, No. 2, 377-387 (2005).CrossRef S. Chamberlain and M. Modarres, “Compressed natural gas bus safety: A quantitative risk assessment,” Risk Analysis, 25, No. 2, 377-387 (2005).CrossRef
16.
Zurück zum Zitat C. J. Hu, B. Yang, Y. Wu, B. Xiao, F. Z. Xuan, “Guided wave propagating behavior in composite pressure vessel,” 7th Asia-Pacific Workshop on Structural Health Monitoring, Hong Kong, China, (2018). C. J. Hu, B. Yang, Y. Wu, B. Xiao, F. Z. Xuan, “Guided wave propagating behavior in composite pressure vessel,” 7th Asia-Pacific Workshop on Structural Health Monitoring, Hong Kong, China, (2018).
17.
Zurück zum Zitat S. M. Seyedi, A. Naddaf Oskouei and M. Sayah Badkhor, “Experimental, numerical and optimization study of composite tanks with non-metallic primer (CNG fourth type),” Modares Mech. Eng., 20, No. 7, 1789-1800 (2020). S. M. Seyedi, A. Naddaf Oskouei and M. Sayah Badkhor, “Experimental, numerical and optimization study of composite tanks with non-metallic primer (CNG fourth type),” Modares Mech. Eng., 20, No. 7, 1789-1800 (2020).
18.
Zurück zum Zitat Z. YongMing, L. PeiNing, and W. Xi, “Study of fiber hoop-wrapped composite cylinders impact resistance,” Compos., Part B, 45, No. 1, 1377-1383 (2013).CrossRef Z. YongMing, L. PeiNing, and W. Xi, “Study of fiber hoop-wrapped composite cylinders impact resistance,” Compos., Part B, 45, No. 1, 1377-1383 (2013).CrossRef
19.
Zurück zum Zitat L. Fang and W. Deng-feng, “Additional fuel system optimization for CNG vehicle base on MDO method,” Int. Conf. on Transportation, Mechanical, and Electrical Engineering (TMEE-2011), IEEE, 770-774 (2011). L. Fang and W. Deng-feng, “Additional fuel system optimization for CNG vehicle base on MDO method,” Int. Conf. on Transportation, Mechanical, and Electrical Engineering (TMEE-2011), IEEE, 770-774 (2011).
20.
Zurück zum Zitat M. Nouri Kamari, F. Ashenai Ghasemi, G. H. Rahimi Sherbaf, and K. R. Kashyzadeh, “Numerical simulation of CNG fuel tank behavior made of epoxy/glass composite in design mode considering constant and variable thicknesses under burst pressure test,” Iranian J. Manufact. Eng., 8, No. 7, 20-30 (2021). M. Nouri Kamari, F. Ashenai Ghasemi, G. H. Rahimi Sherbaf, and K. R. Kashyzadeh, “Numerical simulation of CNG fuel tank behavior made of epoxy/glass composite in design mode considering constant and variable thicknesses under burst pressure test,” Iranian J. Manufact. Eng., 8, No. 7, 20-30 (2021).
21.
Zurück zum Zitat K. R. Kashyzadeh, S. S. Rahimian Koloor, M. Omidi Bidgoli, M. Petrů, and A. Amiri Asfarjani, “An optimum fatigue design of polymer composite compressed natural gas tank using hybrid finite element-response surface methods,” Polymers, 13, No. 4, 483 (2021). K. R. Kashyzadeh, S. S. Rahimian Koloor, M. Omidi Bidgoli, M. Petrů, and A. Amiri Asfarjani, “An optimum fatigue design of polymer composite compressed natural gas tank using hybrid finite element-response surface methods,” Polymers, 13, No. 4, 483 (2021).
22.
Zurück zum Zitat A. Amiri Asfarjani, S. Adibnazari, and K. Reza Kashyzadeh, “Experimental and finite element analysis approach for fatigue of unidirectional fibrous composites,” Appl. Mech. and Mater., 87 (2011). A. Amiri Asfarjani, S. Adibnazari, and K. Reza Kashyzadeh, “Experimental and finite element analysis approach for fatigue of unidirectional fibrous composites,” Appl. Mech. and Mater., 87 (2011).
23.
Zurück zum Zitat S. S. R. Koloor, M. A. Abdullah, M. N. Tamin, and M. R. Ayatollahi, “Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates,” Compos. Sci. and Technol., 183, 107779 (2019).CrossRef S. S. R. Koloor, M. A. Abdullah, M. N. Tamin, and M. R. Ayatollahi, “Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates,” Compos. Sci. and Technol., 183, 107779 (2019).CrossRef
24.
Zurück zum Zitat Z. Hashin and A. Rotem, “A fatigue criterion for fiber reinforced composite materials,” J. Compos. Mater., 448-464 (1973). Z. Hashin and A. Rotem, “A fatigue criterion for fiber reinforced composite materials,” J. Compos. Mater., 448-464 (1973).
25.
Zurück zum Zitat C. M. Lawrence Wu, “Thermal and mechanical fatigue analysis CFRP laminates,” Compos. Struct., 25, 339-344 (1993). C. M. Lawrence Wu, “Thermal and mechanical fatigue analysis CFRP laminates,” Compos. Struct., 25, 339-344 (1993).
26.
Zurück zum Zitat Z. Fawaz and F. Ellyin, “Fatigue failure model for fiber-reinforced materials under general loading condition,” J. Compos. Mater., 28, No. 15, 1432-1451 (1994).CrossRef Z. Fawaz and F. Ellyin, “Fatigue failure model for fiber-reinforced materials under general loading condition,” J. Compos. Mater., 28, No. 15, 1432-1451 (1994).CrossRef
27.
Zurück zum Zitat B. Harris, “Fatigue behavior of polymer-based composites and life prediction method,” AIB-Vincotte Leestoel, 2 maart 1995, Belgium, Nationaal Fonds voor Wetenschappelijk Onderzoek, (1985). B. Harris, “Fatigue behavior of polymer-based composites and life prediction method,” AIB-Vincotte Leestoel, 2 maart 1995, Belgium, Nationaal Fonds voor Wetenschappelijk Onderzoek, (1985).
28.
Zurück zum Zitat N. Gathercole, H. Reiter, T. Adam and B. Harris, “Life prediction for fatigue of T800/5245 carbon-fiber composites: constant amplitude loading,” Int. J. Fatigue, 16, No. 8, 523-532 (1994).CrossRef N. Gathercole, H. Reiter, T. Adam and B. Harris, “Life prediction for fatigue of T800/5245 carbon-fiber composites: constant amplitude loading,” Int. J. Fatigue, 16, No. 8, 523-532 (1994).CrossRef
29.
Zurück zum Zitat M. H. R. Jen and C. H. Lee, “Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: Experimental,” Int. J. Fatigue, 20, No. 9, 605-615 (1998).CrossRef M. H. R. Jen and C. H. Lee, “Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: Experimental,” Int. J. Fatigue, 20, No. 9, 605-615 (1998).CrossRef
30.
Zurück zum Zitat M. H. R. Jen and C. H. Lee, “Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: Formulation,” International Journal of Fatigue, 20, No. 9, 617-629 (1998).CrossRef M. H. R. Jen and C. H. Lee, “Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: Formulation,” International Journal of Fatigue, 20, No. 9, 617-629 (1998).CrossRef
31.
Zurück zum Zitat T. P. Philippidis and A. P. Vassilopoulos, “Fatigue strength prediction under multiaxial stress,” J. Compos. Mater., 33, No. 17, 1578-1599 (1999).CrossRef T. P. Philippidis and A. P. Vassilopoulos, “Fatigue strength prediction under multiaxial stress,” J. Compos. Mater., 33, No. 17, 1578-1599 (1999).CrossRef
32.
Zurück zum Zitat J. A. Epaarachchi and P. D. Clausen, “A new approach to a fatigue model for glass-fiber reinforced plastic composites,” In: Hui D.(ed), Proceedings of the seventh Int. Conf. on Composites Engineering (ICCE/7), Denver, Colorado, 211-212 (2000). J. A. Epaarachchi and P. D. Clausen, “A new approach to a fatigue model for glass-fiber reinforced plastic composites,” In: Hui D.(ed), Proceedings of the seventh Int. Conf. on Composites Engineering (ICCE/7), Denver, Colorado, 211-212 (2000).
33.
Zurück zum Zitat S. T. Jitendra, A. D. Kelkar, and J. D. Whitcomb, “Effect of braid angle on fatigue performance of biaxial braided composites,” Int. J. Fatigue, 28, 1239–1247 (2006).CrossRef S. T. Jitendra, A. D. Kelkar, and J. D. Whitcomb, “Effect of braid angle on fatigue performance of biaxial braided composites,” Int. J. Fatigue, 28, 1239–1247 (2006).CrossRef
34.
Zurück zum Zitat S. T. Jitendra and A. D. Kelkar, “Stiffness degradation model for biaxial braided composites under fatigue loading,” Compos., Part B, 39, 548–555 (2008).CrossRef S. T. Jitendra and A. D. Kelkar, “Stiffness degradation model for biaxial braided composites under fatigue loading,” Compos., Part B, 39, 548–555 (2008).CrossRef
35.
Zurück zum Zitat ASTM D3039-17, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM International, West Conshohocken, www.astm.org, (accessed 13 March 2019) (2017). ASTM D3039-17, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM International, West Conshohocken, www.​astm.​org, (accessed 13 March 2019) (2017).
36.
Zurück zum Zitat E. Maleki, O. Unal, and K. Reza Kashyzadeh, “Fatigue behavior prediction and analysis of shot peened mild carbon steels,” Int. J. Fatigue, 116, 48-67 (2018). E. Maleki, O. Unal, and K. Reza Kashyzadeh, “Fatigue behavior prediction and analysis of shot peened mild carbon steels,” Int. J. Fatigue, 116, 48-67 (2018).
37.
Zurück zum Zitat E. Maleki, O. Unal, and K. Reza Kashyzadeh, “Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel,” Surface and Coatings Technol., 344, 62-74 (2018). E. Maleki, O. Unal, and K. Reza Kashyzadeh, “Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel,” Surface and Coatings Technol., 344, 62-74 (2018).
38.
Zurück zum Zitat K. Reza Kashyzadeh, G. H. Farrahi, and M. M. T. Shariyat, “Ahmadian. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with complicated geometry and multi-input random non- proportional 3D stress components,” Eng. Failure Analysis, 90, 534-553 (2018). K. Reza Kashyzadeh, G. H. Farrahi, and M. M. T. Shariyat, “Ahmadian. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with complicated geometry and multi-input random non- proportional 3D stress components,” Eng. Failure Analysis, 90, 534-553 (2018).
39.
Zurück zum Zitat K. Reza Kashyzadeh and E. Maleki, “Experimental investigation and artificial neural network modelling of warm- galvanization and hardened chromium coatings thickness effects on the fatigue life of AISI 1045 carbon steel,” J. Failure Analysis and Prevention, 17, No. 6, 1276-1287 (2017). K. Reza Kashyzadeh and E. Maleki, “Experimental investigation and artificial neural network modelling of warm- galvanization and hardened chromium coatings thickness effects on the fatigue life of AISI 1045 carbon steel,” J. Failure Analysis and Prevention, 17, No. 6, 1276-1287 (2017).
40.
Zurück zum Zitat K. Reza Kashyzadeh and A. Arghavan, “Study of the Effect of Different Industrial Coating with Micro-scale Thickness on the CK45 Steel by Experimental and Finite Element Methods,” Strength of Mater., 45, No. 6, 748-757 (2013). K. Reza Kashyzadeh and A. Arghavan, “Study of the Effect of Different Industrial Coating with Micro-scale Thickness on the CK45 Steel by Experimental and Finite Element Methods,” Strength of Mater., 45, No. 6, 748-757 (2013).
41.
Zurück zum Zitat International Standard, ISO 11439, Gas cylinders — High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles, First edition, 2000-09-15. International Standard, ISO 11439, Gas cylinders — High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles, First edition, 2000-09-15.
42.
Zurück zum Zitat M. Omidi Bidgoli, K. Reza Kashyzadeh, S. S. Rahimian Koloor, M. Petru, and N. Amiri, “Optimum design of sunken reinforced enclosures under buckling condition,” Appl. Sci., 10, No. 23, 8449 (2020). M. Omidi Bidgoli, K. Reza Kashyzadeh, S. S. Rahimian Koloor, M. Petru, and N. Amiri, “Optimum design of sunken reinforced enclosures under buckling condition,” Appl. Sci., 10, No. 23, 8449 (2020).
43.
Zurück zum Zitat M. M. Naeini, S. M. Moghadasi, and M. O. Bidgoli, “A numerical analysis of reinforced T shaped concrete beams by polymeric strap of CFRP and GFRP with finite element method technique,” Civil Eng. J., 4, No. 5, 1006-1018 (2018).CrossRef M. M. Naeini, S. M. Moghadasi, and M. O. Bidgoli, “A numerical analysis of reinforced T shaped concrete beams by polymeric strap of CFRP and GFRP with finite element method technique,” Civil Eng. J., 4, No. 5, 1006-1018 (2018).CrossRef
44.
Zurück zum Zitat M. Nouri, F. Ashenai Ghasemi, G. H. Rahimi Sherbaf, and K. R. Kashyzadeh, “Experimental and numerical study of the static performance of a hoop-wrapped CNG composite cylinder considering variable wall-thickness and polymer liner,” Mech. Compos. Mater., 56, 339-352 (2020). M. Nouri, F. Ashenai Ghasemi, G. H. Rahimi Sherbaf, and K. R. Kashyzadeh, “Experimental and numerical study of the static performance of a hoop-wrapped CNG composite cylinder considering variable wall-thickness and polymer liner,” Mech. Compos. Mater., 56, 339-352 (2020).
45.
Zurück zum Zitat K. Reza Kashyzadeh, S. Alipanah Kivi and M. Rynkovskaya, “Fatigue life assessment of unidirectional fibrous composite centrifugal compressor impeller blades based on FEA,” Int. J. Emerging Technol. and Adv. Eng., 7, No.5, 6-11 (2017). K. Reza Kashyzadeh, S. Alipanah Kivi and M. Rynkovskaya, “Fatigue life assessment of unidirectional fibrous composite centrifugal compressor impeller blades based on FEA,” Int. J. Emerging Technol. and Adv. Eng., 7, No.5, 6-11 (2017).
46.
Zurück zum Zitat K. Reza Kashyzadeh, “A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: the case of the steering knuckle,” Eng. Sci. and Technol., 23, No. 2, 392-404 (2020). K. Reza Kashyzadeh, “A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: the case of the steering knuckle,” Eng. Sci. and Technol., 23, No. 2, 392-404 (2020).
47.
Zurück zum Zitat S. S. Rahimian Koloor, A. Karimzadeh, N. Yidris, M. Petrů, M. R. Ayatollahi, and M. N. Tamin, “An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model,” Polymers, 12, No. 1, 157 (2020). S. S. Rahimian Koloor, A. Karimzadeh, N. Yidris, M. Petrů, M. R. Ayatollahi, and M. N. Tamin, “An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model,” Polymers, 12, No. 1, 157 (2020).
Metadaten
Titel
Fatigue Analysis of a Type-IV CNG Composite Cylinder with Variable Wall-Thickness and Polyethylene Liner
verfasst von
M. Nouri
F. Ashenai Ghasemi
G. R. Sherbaf
K. R. Kashyzadeh
Publikationsdatum
31.10.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 5/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10143-5

Weitere Artikel der Ausgabe 5/2023

Mechanics of Composite Materials 5/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.