Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

25.10.2021

Compression Performance with Different Build Orientation of Fused Filament Fabrication Polylactic Acid, Acrylonitrile Butadiene Styrene, and Polyether Ether Ketone

verfasst von: Hao Dou, Wenguang Ye, Dinghua Zhang, Yunyong Cheng, Yiran Tian

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the most widely used additive manufacturing technology, Fused Filament Fabrication 3D printing technology has attracted more and more attention and research on its mechanical properties. In this paper, Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS) and Poly Ether-Ether Ketone (PEEK) materials are selected as the research objects to study the material correlation of the compression performance of the printed parts in different build orientations. Under the premise of ensuring that the other process parameters are basically the same, the comparison test results show that, the compressive strength of PLA and PEEK in build orientation Z1 is larger than that in build orientation Z2. On the contrary, the compressive strength of ABS in build orientation Z2 is larger, which reflects the material correlation of mechanical properties. The cone beam Computed Tomography nondestructive testing and Field Emission Scanning Electron Microscope are used to scan the test pieces before and after the experiment. According to the analysis of the testing images, the interlaminar pores caused in the printing process are the main reasons for the different performance responses and structural damage of the test pieces under the compression load.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.V. Wong and A. Hernandez, A Review of Additive Manufacturing, ISRN Mech. Eng., 2012, 2012, p 1–10. CrossRef K.V. Wong and A. Hernandez, A Review of Additive Manufacturing, ISRN Mech. Eng., 2012, 2012, p 1–10. CrossRef
2.
Zurück zum Zitat T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143(February), p 172–196. CrossRef T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143(February), p 172–196. CrossRef
3.
Zurück zum Zitat J.W. Stansbury and M.J. Idacavage, 3D Printing with Polymers: Challenges among Expanding Options and Opportunities, Dental Materials, 2016, 32, p 54–64. CrossRef J.W. Stansbury and M.J. Idacavage, 3D Printing with Polymers: Challenges among Expanding Options and Opportunities, Dental Materials, 2016, 32, p 54–64. CrossRef
4.
Zurück zum Zitat A.D. Valino, J.R.C. Dizon, A.H. Espera, Q. Chen, J. Messman and R.C. Advincula, Advances in 3D Printing of Thermoplastic Polymer Composites and Nanocomposites, Progress in Polymer Science, 2019, 98, p 101162. CrossRef A.D. Valino, J.R.C. Dizon, A.H. Espera, Q. Chen, J. Messman and R.C. Advincula, Advances in 3D Printing of Thermoplastic Polymer Composites and Nanocomposites, Progress in Polymer Science, 2019, 98, p 101162. CrossRef
5.
Zurück zum Zitat J. Herzberger, J.M. Sirrine, C.B. Williams and T.E. Long, Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing, Progress in Polymer Science, 2019, 97, p 101144. CrossRef J. Herzberger, J.M. Sirrine, C.B. Williams and T.E. Long, Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing, Progress in Polymer Science, 2019, 97, p 101144. CrossRef
6.
Zurück zum Zitat W.J. Choi, K.S. Hwang, H.J. Kwon, C. Lee, C.H. Kim, T.H. Kim, S.W. Heo, J.H. Kim and J.Y. Lee, Rapid Development of Dual Porous Poly(Lactic Acid) Foam Using Fused Deposition Modeling (FDM) 3D Printing for Medical Scaffold Application, Mater. Sci. Eng. C, 2019, 2020, p 110. W.J. Choi, K.S. Hwang, H.J. Kwon, C. Lee, C.H. Kim, T.H. Kim, S.W. Heo, J.H. Kim and J.Y. Lee, Rapid Development of Dual Porous Poly(Lactic Acid) Foam Using Fused Deposition Modeling (FDM) 3D Printing for Medical Scaffold Application, Mater. Sci. Eng. C, 2019, 2020, p 110.
7.
Zurück zum Zitat N.A.S. Mohd Pu’ad, R.H. Abdul Haq, H. Mohd Noh, H.Z. Abdullah, M.I. Idris and T.C. Lee, Review on the Fabrication of Fused Deposition Modelling (FDM) Composite Filament for Biomedical Applications, Mater. Today Proc., 2019, 29, p 228–232. CrossRef N.A.S. Mohd Pu’ad, R.H. Abdul Haq, H. Mohd Noh, H.Z. Abdullah, M.I. Idris and T.C. Lee, Review on the Fabrication of Fused Deposition Modelling (FDM) Composite Filament for Biomedical Applications, Mater. Today Proc., 2019, 29, p 228–232. CrossRef
9.
Zurück zum Zitat B. Caulfield, P.E. McHugh and S. Lohfeld, Dependence of Mechanical Properties of Polyamide Components on Build Parameters in the SLS Process, J. Mater. Process. Technol., 2007, 182(1–3), p 477–488. CrossRef B. Caulfield, P.E. McHugh and S. Lohfeld, Dependence of Mechanical Properties of Polyamide Components on Build Parameters in the SLS Process, J. Mater. Process. Technol., 2007, 182(1–3), p 477–488. CrossRef
10.
Zurück zum Zitat C.R. Garcia, J. Correa, D. Espalin, J.H. Barton, R.C. Rumpf, R. Wicker and V. Gonzalez, 3D Printing of Anisotropic Metamaterials, Prog. Electromagn. Res. Lett., 2012, 34, p 75–82. CrossRef C.R. Garcia, J. Correa, D. Espalin, J.H. Barton, R.C. Rumpf, R. Wicker and V. Gonzalez, 3D Printing of Anisotropic Metamaterials, Prog. Electromagn. Res. Lett., 2012, 34, p 75–82. CrossRef
11.
Zurück zum Zitat M. Bardot and M.D. Schulz, Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3d Printing, Nanomaterials, 2020, 10(12), p 1–20. CrossRef M. Bardot and M.D. Schulz, Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3d Printing, Nanomaterials, 2020, 10(12), p 1–20. CrossRef
12.
Zurück zum Zitat S. Farah, D.G. Anderson and R. Langer, Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications: A Comprehensive Review, Adv. Drug Deliv. Rev., 2016, 107, p 367–392. CrossRef S. Farah, D.G. Anderson and R. Langer, Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications: A Comprehensive Review, Adv. Drug Deliv. Rev., 2016, 107, p 367–392. CrossRef
14.
Zurück zum Zitat C. Esposito Corcione, F. Gervaso, F. Scalera, F. Montagna, A. Sannino and A. Maffezzoli, The Feasibility of Printing Polylactic Acid-Nanohydroxyapatite Composites Using a Low-Cost Fused Deposition Modeling 3D Printer, J. Appl. Polym. Sci., 2017, 134(13), p 1–10. CrossRef C. Esposito Corcione, F. Gervaso, F. Scalera, F. Montagna, A. Sannino and A. Maffezzoli, The Feasibility of Printing Polylactic Acid-Nanohydroxyapatite Composites Using a Low-Cost Fused Deposition Modeling 3D Printer, J. Appl. Polym. Sci., 2017, 134(13), p 1–10. CrossRef
15.
Zurück zum Zitat S. Dul, L. Fambri and A. Pegoretti, Fused Deposition Modelling with ABS-Graphene Nanocomposites, Compos. Part A Appl. Sci. Manuf., 2016, 85, p 181–191. CrossRef S. Dul, L. Fambri and A. Pegoretti, Fused Deposition Modelling with ABS-Graphene Nanocomposites, Compos. Part A Appl. Sci. Manuf., 2016, 85, p 181–191. CrossRef
16.
Zurück zum Zitat Q. Sun, G.M. Rizvi, C.T. Bellehumeur and P. Gu, Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments, Rapid Prototyp. J., 2008, 14(2), p 72–80. CrossRef Q. Sun, G.M. Rizvi, C.T. Bellehumeur and P. Gu, Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments, Rapid Prototyp. J., 2008, 14(2), p 72–80. CrossRef
17.
Zurück zum Zitat P. Tran, T.D. Ngo, A. Ghazlan and D. Hui, Bimaterial 3D Printing and Numerical Analysis of Bio-Inspired Composite Structures under in-Plane and Transverse Loadings, Compos. Part B Eng., 2017, 108, p 210–223. CrossRef P. Tran, T.D. Ngo, A. Ghazlan and D. Hui, Bimaterial 3D Printing and Numerical Analysis of Bio-Inspired Composite Structures under in-Plane and Transverse Loadings, Compos. Part B Eng., 2017, 108, p 210–223. CrossRef
18.
Zurück zum Zitat A.M. Oviedo, A.H. Puente, C. Bernal and E. Pérez, Mechanical Evaluation of Polymeric Filaments and Their Corresponding 3D Printed Samples, Polym. Test., 2019, 2020, p 88. A.M. Oviedo, A.H. Puente, C. Bernal and E. Pérez, Mechanical Evaluation of Polymeric Filaments and Their Corresponding 3D Printed Samples, Polym. Test., 2019, 2020, p 88.
19.
Zurück zum Zitat A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane and M.E. Touhami, Optimization of Printing Parameters for Improvement of Mechanical and Thermal Performances of 3D Printed Poly(Ether Ether Ketone) Parts, J. Appl. Polym. Sci., 2020, 137(37), p 1–14. CrossRef A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane and M.E. Touhami, Optimization of Printing Parameters for Improvement of Mechanical and Thermal Performances of 3D Printed Poly(Ether Ether Ketone) Parts, J. Appl. Polym. Sci., 2020, 137(37), p 1–14. CrossRef
20.
Zurück zum Zitat H. Zou, W. Yin, C. Cai, B. Wang, A. Liu, Z. Yang, Y. Li and X. He, The Out-of-Plane Compression Behavior of Cross-Ply AS4/PEEK Thermoplastic Composite Laminates at High Strain Rates, Materials, 2018, 11(11), p 2312. CrossRef H. Zou, W. Yin, C. Cai, B. Wang, A. Liu, Z. Yang, Y. Li and X. He, The Out-of-Plane Compression Behavior of Cross-Ply AS4/PEEK Thermoplastic Composite Laminates at High Strain Rates, Materials, 2018, 11(11), p 2312. CrossRef
22.
Zurück zum Zitat Y. Wang, J. Liu, L. Xia, M. Shen and Z. Xin, Super-Tough Poly(Lactic Acid) Thermoplastic Vulcanizates with Heat Triggered Shape Memory Behaviors Based on Modified Natural Eucommia Ulmoides Gum, Polym. Test., 2019, 80, p 106077. CrossRef Y. Wang, J. Liu, L. Xia, M. Shen and Z. Xin, Super-Tough Poly(Lactic Acid) Thermoplastic Vulcanizates with Heat Triggered Shape Memory Behaviors Based on Modified Natural Eucommia Ulmoides Gum, Polym. Test., 2019, 80, p 106077. CrossRef
23.
Zurück zum Zitat F. Saenz, C. Otarola, K. Valladares and J. Rojas, Influence of 3D Printing Settings on Mechanical Properties of ABS at Room Temperature and 77 K, Addit. Manuf., 2020, 2021, p 39. F. Saenz, C. Otarola, K. Valladares and J. Rojas, Influence of 3D Printing Settings on Mechanical Properties of ABS at Room Temperature and 77 K, Addit. Manuf., 2020, 2021, p 39.
24.
Zurück zum Zitat D. Popescu, A. Zapciu, C. Amza, F. Baciu and R. Marinescu, FDM Process Parameters Influence over the Mechanical Properties of Polymer Specimens: A Review, Polym. Test., 2018, 69(April), p 157–166. CrossRef D. Popescu, A. Zapciu, C. Amza, F. Baciu and R. Marinescu, FDM Process Parameters Influence over the Mechanical Properties of Polymer Specimens: A Review, Polym. Test., 2018, 69(April), p 157–166. CrossRef
25.
Zurück zum Zitat M.M. Prabhakar, A.K. Saravanan, A.H. Lenin, I.J. Leno, K. Mayandi and P.S. Ramalingam, A Short Review on 3D Printing Methods, Process Parameters and Materials, Mater. Today Proc., 2020, 45, p 6108–6114. CrossRef M.M. Prabhakar, A.K. Saravanan, A.H. Lenin, I.J. Leno, K. Mayandi and P.S. Ramalingam, A Short Review on 3D Printing Methods, Process Parameters and Materials, Mater. Today Proc., 2020, 45, p 6108–6114. CrossRef
28.
30.
Zurück zum Zitat A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31(1), p 287–295. CrossRef A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31(1), p 287–295. CrossRef
31.
Zurück zum Zitat L. Wang, S. Jiang, C. Huang, P. Dai, F. Liu, X. Qi and G. Xu, Properties of Abs/Organic-Attapulgite Nanocomposites Parts Fabricated by Fused Deposition Modeling, J. Renew. Mater., 2020, 8(11), p 1505–1518. CrossRef L. Wang, S. Jiang, C. Huang, P. Dai, F. Liu, X. Qi and G. Xu, Properties of Abs/Organic-Attapulgite Nanocomposites Parts Fabricated by Fused Deposition Modeling, J. Renew. Mater., 2020, 8(11), p 1505–1518. CrossRef
32.
Zurück zum Zitat M. Somireddy, C.V. Singh and A. Czekanski, Analysis of the Material Behavior of 3D Printed Laminates Via FFF, Exp. Mech., 2019, 59(6), p 871–881. CrossRef M. Somireddy, C.V. Singh and A. Czekanski, Analysis of the Material Behavior of 3D Printed Laminates Via FFF, Exp. Mech., 2019, 59(6), p 871–881. CrossRef
33.
Zurück zum Zitat A. Dey and N. Yodo, A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics, J. Manuf. Mater. Process., 2019, 3(3), p 64. A. Dey and N. Yodo, A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics, J. Manuf. Mater. Process., 2019, 3(3), p 64.
34.
Zurück zum Zitat A. Alafaghani, A. Qattawi, B. Alrawi and A. Guzman, Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach, Procedia Manuf., 2017, 10, p 791–803. CrossRef A. Alafaghani, A. Qattawi, B. Alrawi and A. Guzman, Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach, Procedia Manuf., 2017, 10, p 791–803. CrossRef
35.
Zurück zum Zitat A.E. Tontowi, L. Ramdani, R.V. Erdizon and D.K. Baroroh, Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part, Int. J. Eng. Technol., 2017, 9(2), p 589–600. CrossRef A.E. Tontowi, L. Ramdani, R.V. Erdizon and D.K. Baroroh, Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part, Int. J. Eng. Technol., 2017, 9(2), p 589–600. CrossRef
36.
Zurück zum Zitat C.C. Wang, T.W. Lin and S.S. Hu, Optimizing the Rapid Prototyping Process by Integrating the Taguchi Method with the Gray Relational Analysis, Rapid Prototyp. J., 2007, 13(5), p 304–315. CrossRef C.C. Wang, T.W. Lin and S.S. Hu, Optimizing the Rapid Prototyping Process by Integrating the Taguchi Method with the Gray Relational Analysis, Rapid Prototyp. J., 2007, 13(5), p 304–315. CrossRef
37.
Zurück zum Zitat A. Bagsik and V. Schöppner, Mechanical Properties of Fused Deposition Modeling Parts Manufactured with Ultem*9085, Ann. Tech. Conf. ANTEC Conf. Proc., 2011, 2(February), p 1294–1298. A. Bagsik and V. Schöppner, Mechanical Properties of Fused Deposition Modeling Parts Manufactured with Ultem*9085, Ann. Tech. Conf. ANTEC Conf. Proc., 2011, 2(February), p 1294–1298.
39.
Zurück zum Zitat B.H. Lee, J. Abdullah and Z.A. Khan, Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object, J. Mater. Process. Technol., 2005, 169(1), p 54–61. CrossRef B.H. Lee, J. Abdullah and Z.A. Khan, Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object, J. Mater. Process. Technol., 2005, 169(1), p 54–61. CrossRef
40.
Zurück zum Zitat X. Wang, L. Zhao, J.Y.H. Fuh and H.P. Lee, Effect of Porosity on Mechanical Properties of 3D Printed Polymers: Experiments and Micromechanical Modeling Based on X-Ray Computed Tomography Analysis, Polymers, 2019, 11(7), p 1154. CrossRef X. Wang, L. Zhao, J.Y.H. Fuh and H.P. Lee, Effect of Porosity on Mechanical Properties of 3D Printed Polymers: Experiments and Micromechanical Modeling Based on X-Ray Computed Tomography Analysis, Polymers, 2019, 11(7), p 1154. CrossRef
41.
Zurück zum Zitat T. Hofstätter, D.B. Pedersen, G. Tosello and H.N. Hansen, Applications of Fiber-Reinforced Polymers in Additive Manufacturing, Procedia CIRP, 2017, 66, p 312–316. CrossRef T. Hofstätter, D.B. Pedersen, G. Tosello and H.N. Hansen, Applications of Fiber-Reinforced Polymers in Additive Manufacturing, Procedia CIRP, 2017, 66, p 312–316. CrossRef
43.
Zurück zum Zitat S.H. Ahn, M. Montero, D. Odell, S. Roundy and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8(4), p 248–257. CrossRef S.H. Ahn, M. Montero, D. Odell, S. Roundy and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8(4), p 248–257. CrossRef
44.
Zurück zum Zitat T.D. McLouth, J.V. Severino, P.M. Adams, D.N. Patel and R.J. Zaldivar, The Impact of Print Orientation and Raster Pattern on Fracture Toughness in Additively Manufactured ABS, Addit. Manuf., 2017, 18, p 103–109. T.D. McLouth, J.V. Severino, P.M. Adams, D.N. Patel and R.J. Zaldivar, The Impact of Print Orientation and Raster Pattern on Fracture Toughness in Additively Manufactured ABS, Addit. Manuf., 2017, 18, p 103–109.
46.
Zurück zum Zitat J. Nomani, D. Wilson, M. Paulino and M.I. Mohammed, Effect of Layer Thickness and Cross-Section Geometry on the Tensile and Compression Properties of 3D Printed ABS, Mater. Today Commun., 2019, 2020, p 22. J. Nomani, D. Wilson, M. Paulino and M.I. Mohammed, Effect of Layer Thickness and Cross-Section Geometry on the Tensile and Compression Properties of 3D Printed ABS, Mater. Today Commun., 2019, 2020, p 22.
Metadaten
Titel
Compression Performance with Different Build Orientation of Fused Filament Fabrication Polylactic Acid, Acrylonitrile Butadiene Styrene, and Polyether Ether Ketone
verfasst von
Hao Dou
Wenguang Ye
Dinghua Zhang
Yunyong Cheng
Yiran Tian
Publikationsdatum
25.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06363-2

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.