Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2017

09.03.2017 | SPECIAL ISSUE: THEORY, MODELING, AND SIMULATION OF SHAPE MEMORY ALLOYS, INVITED PAPER

Computational Analysis of Advanced Shape-Memory Alloy Devices Through a Robust Modeling Framework

verfasst von: Giulia Scalet, Michele Conti, Ferdinando Auricchio

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shape-memory alloys (SMA) provide significant advantages in various industrial fields, but their manufacturing and commercialization are currently hindered. This is attributed mainly to the poor knowledge of material behavior and the lack of standards in its mechanical characterization. SMA products are usually developed by trial-and-error testing to address specific design requirements, thus increasing costs and time. The development of simulation tools offers a possible solution to assist engineers and designers and allows to better understand SMA transformation phenomena. Accordingly, the purpose of the present paper is to numerically analyze and predict the response of spring-like actuators and septal occluders, which are industrial components exploiting the shape-memory and pseudoelastic properties of SMAs, respectively. The methodology includes two main stages: the implementation of the three-dimensional phenomenological model known as SouzaAuricchio model and the finite element modeling of the device. A discussion about the steps of each stage, as parameter identification and model generalizations, is provided. Validation results are presented through a comparison with the results of a performed experimental campaign. The framework proves good prediction capabilities and allows to reduce the number of experimental tests in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jani J, Leary M, Subic A, Gibson M (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Jani J, Leary M, Subic A, Gibson M (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
2.
Zurück zum Zitat Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24(8):82001–82006CrossRef Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24(8):82001–82006CrossRef
3.
Zurück zum Zitat Costanza G, Tata ME, Calisti C (2010) Nitinol one-way shape memory springs: thermomechanical characterization and actuator design. Sens Actuators A 157:113–117CrossRef Costanza G, Tata ME, Calisti C (2010) Nitinol one-way shape memory springs: thermomechanical characterization and actuator design. Sens Actuators A 157:113–117CrossRef
4.
Zurück zum Zitat Mirzaeifar R, DesRoches R, Yavari A (2011) A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int J Solids Struct 48:611–624CrossRef Mirzaeifar R, DesRoches R, Yavari A (2011) A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int J Solids Struct 48:611–624CrossRef
5.
Zurück zum Zitat Kleinstreuer C, Li Z, Basciano C, Seelecke S, Farber M (2008) Computational mechanics of Nitinol stent grafts. J Biomechem 41:2370–2378CrossRef Kleinstreuer C, Li Z, Basciano C, Seelecke S, Farber M (2008) Computational mechanics of Nitinol stent grafts. J Biomechem 41:2370–2378CrossRef
6.
Zurück zum Zitat Beule M, Cauter S, Mortier P, Loo D, Impec R, Verdonck P, Verhegghe B (2009) Virtual optimization of self-expandable braided wire stents. Med Eng 31:448–453CrossRef Beule M, Cauter S, Mortier P, Loo D, Impec R, Verdonck P, Verhegghe B (2009) Virtual optimization of self-expandable braided wire stents. Med Eng 31:448–453CrossRef
7.
Zurück zum Zitat Cisse C, Zaki W, Zineb TB (2016) A review of constitutive models and modeling techniques for shape memory alloys. Int J Plast 76:244–284CrossRef Cisse C, Zaki W, Zineb TB (2016) A review of constitutive models and modeling techniques for shape memory alloys. Int J Plast 76:244–284CrossRef
8.
Zurück zum Zitat Souza AC, Mamiya EN, Zouain N (1998) Three-dimensional model for solids undergoing stress-induced phase transformations. Eur J Mech A Solids 17:789–806CrossRef Souza AC, Mamiya EN, Zouain N (1998) Three-dimensional model for solids undergoing stress-induced phase transformations. Eur J Mech A Solids 17:789–806CrossRef
9.
Zurück zum Zitat Auricchio F, Scalet G, Urbano M (2014) A numerical/experimental study of Nitinol actuator springs. J Mater Eng Perform 23(7):2420–2428CrossRef Auricchio F, Scalet G, Urbano M (2014) A numerical/experimental study of Nitinol actuator springs. J Mater Eng Perform 23(7):2420–2428CrossRef
10.
Zurück zum Zitat Auricchio F, Conti M, Morganti S, Reali A (2010) Shape memory alloy: from constitutive modeling to finite element analysis of stent deployment. Comput Model Eng Sci 57(3):225–243 Auricchio F, Conti M, Morganti S, Reali A (2010) Shape memory alloy: from constitutive modeling to finite element analysis of stent deployment. Comput Model Eng Sci 57(3):225–243
11.
Zurück zum Zitat Ferraro M, Auricchio F, Boatti E, Scalet G, Conti M, Morganti S, Reali A (2015) An efficient finite element framework to assess flexibility performances of SMA self-expandable carotid artery stents. J Funct Biomater 6(3):585–597CrossRef Ferraro M, Auricchio F, Boatti E, Scalet G, Conti M, Morganti S, Reali A (2015) An efficient finite element framework to assess flexibility performances of SMA self-expandable carotid artery stents. J Funct Biomater 6(3):585–597CrossRef
12.
Zurück zum Zitat Auricchio F, Conti M, Ferraro M, Morganti S, Reali A, Taylor RL (2015) Innovative and efficient stent flexibility simulations based on isogeometric analysis. Comput Methods Appl Mech Eng 295:347–361CrossRef Auricchio F, Conti M, Ferraro M, Morganti S, Reali A, Taylor RL (2015) Innovative and efficient stent flexibility simulations based on isogeometric analysis. Comput Methods Appl Mech Eng 295:347–361CrossRef
13.
Zurück zum Zitat Marioni L (2015) Design and rapid prototyping of a SMA-based actuator. Master Thesis. Università degli Studi di Pavia, Italy Marioni L (2015) Design and rapid prototyping of a SMA-based actuator. Master Thesis. Università degli Studi di Pavia, Italy
14.
Zurück zum Zitat Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Meth Eng 6:807–836CrossRef Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Meth Eng 6:807–836CrossRef
15.
Zurück zum Zitat Grandi D, Stefanelli U (2015) The Souza–Auricchio model for shape-memory alloys. Discret Contin Dyn Syst 8(4):723–747CrossRef Grandi D, Stefanelli U (2015) The Souza–Auricchio model for shape-memory alloys. Discret Contin Dyn Syst 8(4):723–747CrossRef
16.
Zurück zum Zitat Auricchio F, Coda A, Reali A, Urbano MF (2009) SMA numerical modeling versus experimental results: parameter identification and model prediction capabilities. J Mater Eng Perform 18:649–654CrossRef Auricchio F, Coda A, Reali A, Urbano MF (2009) SMA numerical modeling versus experimental results: parameter identification and model prediction capabilities. J Mater Eng Perform 18:649–654CrossRef
17.
Zurück zum Zitat Auricchio F, Reali A, Stefanelli U (2007) A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int J Plast 23:207–226CrossRef Auricchio F, Reali A, Stefanelli U (2007) A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int J Plast 23:207–226CrossRef
18.
Zurück zum Zitat Barrera N, Biscari P, Urbano MF (2014) Macroscopic modeling of functional fatigue in shape memory alloys. Eur J Mech A 45:101–109CrossRef Barrera N, Biscari P, Urbano MF (2014) Macroscopic modeling of functional fatigue in shape memory alloys. Eur J Mech A 45:101–109CrossRef
19.
Zurück zum Zitat Auricchio F, Reali A, Stefanelli U (2009) A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. Comput Methods Appl Mech Eng 198:1631–1637CrossRef Auricchio F, Reali A, Stefanelli U (2009) A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. Comput Methods Appl Mech Eng 198:1631–1637CrossRef
20.
Zurück zum Zitat Grandi D, Stefanelli U (2014) A phenomenological model for microstructure-dependent inelasticity in shape-memory alloys. Meccanica 49:2265–2283CrossRef Grandi D, Stefanelli U (2014) A phenomenological model for microstructure-dependent inelasticity in shape-memory alloys. Meccanica 49:2265–2283CrossRef
21.
Zurück zum Zitat Ashrafi M, Arghavani J, Naghdabadi R, Auricchio F (2015) A three-dimensional phenomenological constitutive model for porous shape memory alloys including plasticity effects. J Intell Mater Syst Struct 42:1–17 Ashrafi M, Arghavani J, Naghdabadi R, Auricchio F (2015) A three-dimensional phenomenological constitutive model for porous shape memory alloys including plasticity effects. J Intell Mater Syst Struct 42:1–17
22.
Zurück zum Zitat Sepe V, Auricchio F, Marfia S, Sacco E (2015) Micromechanical analysis of porous SMA. Smart Mater Struct 24:085035CrossRef Sepe V, Auricchio F, Marfia S, Sacco E (2015) Micromechanical analysis of porous SMA. Smart Mater Struct 24:085035CrossRef
23.
Zurück zum Zitat Auricchio F, Constantinescu A, Menna C, Scalet G (2016) A shakedown analysis of high cycle fatigue of shape memory alloys. Int J Fatigue 87:112–123CrossRef Auricchio F, Constantinescu A, Menna C, Scalet G (2016) A shakedown analysis of high cycle fatigue of shape memory alloys. Int J Fatigue 87:112–123CrossRef
24.
Zurück zum Zitat Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape memory alloy materials. Comput Mech 44:405–421CrossRef Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape memory alloy materials. Comput Mech 44:405–421CrossRef
25.
Zurück zum Zitat Evangelista V, Marfia S, Sacco E (2010) A 3D SMA constitutive model in the framework of finite strain. Int J Numer Meth Eng 81:761–785 Evangelista V, Marfia S, Sacco E (2010) A 3D SMA constitutive model in the framework of finite strain. Int J Numer Meth Eng 81:761–785
26.
Zurück zum Zitat Arghavani J, Auricchio F, Naghdabadi R, Reali A (2011) On the robustness and efficiency of integration algorithms for a 3D finite strain phenomenological SMA constitutive model. Int J Numer Meth Eng 85(1):107–134CrossRef Arghavani J, Auricchio F, Naghdabadi R, Reali A (2011) On the robustness and efficiency of integration algorithms for a 3D finite strain phenomenological SMA constitutive model. Int J Numer Meth Eng 85(1):107–134CrossRef
27.
Zurück zum Zitat Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: thermomechanical coupling and hybrid composite applications. Int J Numer Meth Eng 61:716–737CrossRef Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: thermomechanical coupling and hybrid composite applications. Int J Numer Meth Eng 61:716–737CrossRef
28.
Zurück zum Zitat Auricchio F, Boatti E, Reali A, Stefanelli U (2016) Gradient structures for the thermomechanics of shape-memory materials. Comput Methods Appl Mech Eng 299:440–469CrossRef Auricchio F, Boatti E, Reali A, Stefanelli U (2016) Gradient structures for the thermomechanics of shape-memory materials. Comput Methods Appl Mech Eng 299:440–469CrossRef
29.
Zurück zum Zitat Auricchio F, Bessoud AL, Reali A, Stefanelli U (2015) A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys. Eur J Mech A 52:1–11CrossRef Auricchio F, Bessoud AL, Reali A, Stefanelli U (2015) A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys. Eur J Mech A 52:1–11CrossRef
30.
Zurück zum Zitat Artioli E, Bisegna P (2016) An incremental energy minimization state update algorithm for 3D phenomenological internal-variable SMA constitutive models based on isotropic flow potentials. Int J Numer Meth Eng 105(3):197–220CrossRef Artioli E, Bisegna P (2016) An incremental energy minimization state update algorithm for 3D phenomenological internal-variable SMA constitutive models based on isotropic flow potentials. Int J Numer Meth Eng 105(3):197–220CrossRef
31.
Zurück zum Zitat Scalet G, Peigney M (2017) A robust and efficient radial return algorithm based on incremental energy minimization for the 3D Souza–Auricchio model for shape memory alloys. Eur J Mech A 61:364–382CrossRef Scalet G, Peigney M (2017) A robust and efficient radial return algorithm based on incremental energy minimization for the 3D Souza–Auricchio model for shape memory alloys. Eur J Mech A 61:364–382CrossRef
32.
Zurück zum Zitat Elahinia M (ed) (2016) Shape memory alloy actuators: design, fabrication and experimental evaluation. Wiley, New York Elahinia M (ed) (2016) Shape memory alloy actuators: design, fabrication and experimental evaluation. Wiley, New York
33.
Zurück zum Zitat Miller D, Lagoudas DC (2000) Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains. Smart Mater Struct 9(5):640CrossRef Miller D, Lagoudas DC (2000) Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains. Smart Mater Struct 9(5):640CrossRef
34.
Zurück zum Zitat Spaggiari A, Dragoni E, Tuissi A (2014) NiTi alloy negator springs for long-stroke constant-force shape memory actuators: modeling, simulation and testing. J Mater Eng Perform 23(7):2412–2419CrossRef Spaggiari A, Dragoni E, Tuissi A (2014) NiTi alloy negator springs for long-stroke constant-force shape memory actuators: modeling, simulation and testing. J Mater Eng Perform 23(7):2412–2419CrossRef
35.
Zurück zum Zitat de Aguiar RAA, de Castro Leão Neto WC, Savi MA, Calas Lopes Pacheco PM (2013) Shape memory alloy helical springs performance: Modeling and experimental analysis. Mater Sci Forum 758:147–156CrossRef de Aguiar RAA, de Castro Leão Neto WC, Savi MA, Calas Lopes Pacheco PM (2013) Shape memory alloy helical springs performance: Modeling and experimental analysis. Mater Sci Forum 758:147–156CrossRef
36.
Zurück zum Zitat Rao A, Srinivasa AR, Reddy JN (ed) (2015) Design of shape memory alloy (SMA) actuators. Springer, New York Rao A, Srinivasa AR, Reddy JN (ed) (2015) Design of shape memory alloy (SMA) actuators. Springer, New York
37.
Zurück zum Zitat Sedlák P, Frost M, Kruisová A, Hiřmanová K, Heller L, Šittner P (2014) Simulations of mechanical response of superelastic NiTi helical spring and its relation to fatigue resistance. J Mater Eng Perform 23(7):2591–2598CrossRef Sedlák P, Frost M, Kruisová A, Hiřmanová K, Heller L, Šittner P (2014) Simulations of mechanical response of superelastic NiTi helical spring and its relation to fatigue resistance. J Mater Eng Perform 23(7):2591–2598CrossRef
38.
Zurück zum Zitat Dumont G, Kühl C (2005) Finite element simulation for design optimization of shape memory alloy spring actuators. Eng Comput 22:835–848CrossRef Dumont G, Kühl C (2005) Finite element simulation for design optimization of shape memory alloy spring actuators. Eng Comput 22:835–848CrossRef
39.
Zurück zum Zitat de Aguiar RAA, Savi M, Pacheco PMCL (2010) Experimental and numerical investigations of shape memory alloy helical springs. Smart Mater Struct 19:1–9CrossRef de Aguiar RAA, Savi M, Pacheco PMCL (2010) Experimental and numerical investigations of shape memory alloy helical springs. Smart Mater Struct 19:1–9CrossRef
40.
Zurück zum Zitat Saleeb A, Dhakal B, Hosseini M, Padula S (2013) I.I. Large-scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles. Smart Mater Struct 22:1–20 Saleeb A, Dhakal B, Hosseini M, Padula S (2013) I.I. Large-scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles. Smart Mater Struct 22:1–20
42.
Zurück zum Zitat Lagoudas D (ed) (2008) Shape memory alloys. Modeling and engineering applications. Springer, New York Lagoudas D (ed) (2008) Shape memory alloys. Modeling and engineering applications. Springer, New York
43.
Zurück zum Zitat MacDonald ST, Daniels MJ, Ormerod OJ (2013) Initial use of the new GORE® septal occluder in patent foramen ovale closure: implantation and preliminary results. Catheter Cardiovasc Interv 81:660–665CrossRef MacDonald ST, Daniels MJ, Ormerod OJ (2013) Initial use of the new GORE® septal occluder in patent foramen ovale closure: implantation and preliminary results. Catheter Cardiovasc Interv 81:660–665CrossRef
44.
Zurück zum Zitat Boatti E, Ferraro M, Scalet G, Auricchio F (2016) Development of an effective and user-friendly numerical framework for the simulation of complex smart material components and devices. Abstract of the first international conference on materials design and applications (MDA 2016), Porto Boatti E, Ferraro M, Scalet G, Auricchio F (2016) Development of an effective and user-friendly numerical framework for the simulation of complex smart material components and devices. Abstract of the first international conference on materials design and applications (MDA 2016), Porto
Metadaten
Titel
Computational Analysis of Advanced Shape-Memory Alloy Devices Through a Robust Modeling Framework
verfasst von
Giulia Scalet
Michele Conti
Ferdinando Auricchio
Publikationsdatum
09.03.2017
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2017
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-017-0102-7

Weitere Artikel der Ausgabe 2/2017

Shape Memory and Superelasticity 2/2017 Zur Ausgabe

SPECIAL ISSUE: THEORY, MODELING, AND SIMULATION OF SHAPE MEMORY ALLOYS, INVITED PAPER

Modeling the Cyclic Behavior of Shape Memory Alloys

SPECIAL ISSUE: ICFSMA 2016, INVITED PAPER

Magnetic Torque in Single Crystal Ni–Mn–Ga

SPECIAL ISSUE: FUNCTIONAL PERFORMANCE OF SHAPE MEMORY ALLOYS, INVITED PAPER

Cyclic Nanoindentation and Nano-Impact Fatigue Mechanisms of Functionally Graded TiN/TiNi Film

SPECIAL ISSUE: THEORY, MODELING, AND SIMULATION OF SHAPE MEMORY ALLOYS, INVITED PAPER

A Gradient-Based Constitutive Model for Shape Memory Alloys

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.