Skip to main content
Erschienen in: Computational Mechanics 2/2023

10.11.2022 | Original Paper

Computational homogenization of fatigue in additively manufactured microlattice structures

verfasst von: F. Mozafari, I. Temizer

Erschienen in: Computational Mechanics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel computational approach to predicting fatigue crack initiation life in additively manufactured microlattice structures is proposed based on a recently developed microplasticity-based constitutive theory. The key idea is to use the concept of (micro)plastic dissipation as the driving factor to model fatigue degradation in additively manufactured metallic microlattice. An ad-hoc curve-fitting procedure is proposed to calibrate the introduced material constitutive parameters efficiently. The well-calibrated model is employed to obtain fatigue life predictions for microlattices through a diverse set of RVE-based finite element fatigue simulations. The model’s predictive capabilities are verified by comparing the simulation results with experimental fatigue data reported in the literature. The overall approach constitutes a unified setting for fatigue life prediction of additively manufactured microlattice structures ranging from low- to high-cycle regimes. It is also shown that the model can be applied to technologically relevant microlattices with mathematically-created complex microstructure topologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Xiong J, Mines R, Ghosh R, Vaziri A, Ma L, Ohrndorf A, Christ H-J, Wu L (2015) Advanced micro-lattice materials. Adv Eng Mater 17(9):1253–1264CrossRef Xiong J, Mines R, Ghosh R, Vaziri A, Ma L, Ohrndorf A, Christ H-J, Wu L (2015) Advanced micro-lattice materials. Adv Eng Mater 17(9):1253–1264CrossRef
2.
Zurück zum Zitat Du Plessis A, Kouprianoff D-P, Yadroitsava I, Yadroitsev I (2018) Mechanical properties and in situ deformation imaging of microlattices manufactured by laser based powder bed fusion. Materials 11(9):1663CrossRef Du Plessis A, Kouprianoff D-P, Yadroitsava I, Yadroitsev I (2018) Mechanical properties and in situ deformation imaging of microlattices manufactured by laser based powder bed fusion. Materials 11(9):1663CrossRef
3.
Zurück zum Zitat Yoo D-J (2012) Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf 13(4):527–537CrossRef Yoo D-J (2012) Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf 13(4):527–537CrossRef
4.
Zurück zum Zitat Saleh MS, Li J, Park J, Panat R (2018) 3d printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit Manuf 23:70–78 Saleh MS, Li J, Park J, Panat R (2018) 3d printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit Manuf 23:70–78
5.
Zurück zum Zitat Yang L, Yan C, Cao W, Liu Z, Song B, Wen S, Zhang C, Shi Y, Yang S (2019) Compression-compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater 181:49–66CrossRef Yang L, Yan C, Cao W, Liu Z, Song B, Wen S, Zhang C, Shi Y, Yang S (2019) Compression-compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater 181:49–66CrossRef
6.
Zurück zum Zitat Boniotti L, Beretta S, Patriarca L, Rigoni L, Foletti S (2019) Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM. Int J Fatigue 128:105181CrossRef Boniotti L, Beretta S, Patriarca L, Rigoni L, Foletti S (2019) Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM. Int J Fatigue 128:105181CrossRef
7.
Zurück zum Zitat Beevers E, Brandão AD, Gumpinger J, Gschweitl M, Seyfert C, Hofbauer P, Rohr T, Ghidini T (2018) Fatigue properties and material characteristics of additively manufactured alsi10mg-effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties. Int J Fatigue 117:148–162CrossRef Beevers E, Brandão AD, Gumpinger J, Gschweitl M, Seyfert C, Hofbauer P, Rohr T, Ghidini T (2018) Fatigue properties and material characteristics of additively manufactured alsi10mg-effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties. Int J Fatigue 117:148–162CrossRef
8.
Zurück zum Zitat Li P, Warner D, Fatemi A, Phan N (2016) Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research. Int J Fatigue 85:130–143CrossRef Li P, Warner D, Fatemi A, Phan N (2016) Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research. Int J Fatigue 85:130–143CrossRef
9.
Zurück zum Zitat Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier H (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 48:300–307CrossRef Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier H (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 48:300–307CrossRef
10.
Zurück zum Zitat Edwards P, Ramulu M (2014) Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater Sci Eng A 598:327–337CrossRef Edwards P, Ramulu M (2014) Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater Sci Eng A 598:327–337CrossRef
11.
Zurück zum Zitat Huynh L, Rotella J, Sangid MD (2016) Fatigue behavior of in718 microtrusses produced via additive manufacturing. Mater Des 105:278–289CrossRef Huynh L, Rotella J, Sangid MD (2016) Fatigue behavior of in718 microtrusses produced via additive manufacturing. Mater Des 105:278–289CrossRef
12.
Zurück zum Zitat Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A 651:198–213CrossRef Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A 651:198–213CrossRef
13.
Zurück zum Zitat Persenot T, Burr A, Martin G, Buffiere J-Y, Dendievel R, Maire E (2019) Effect of build orientation on the fatigue properties of as-built electron beam melted Ti-6Al-4V alloy. Int J Fatigue 118:65–76CrossRef Persenot T, Burr A, Martin G, Buffiere J-Y, Dendievel R, Maire E (2019) Effect of build orientation on the fatigue properties of as-built electron beam melted Ti-6Al-4V alloy. Int J Fatigue 118:65–76CrossRef
14.
Zurück zum Zitat Yavari SA, Wauthlé R, van der Stok J, Riemslag A, Janssen M, Mulier M, Kruth J-P, Schrooten J, Weinans H, Zadpoor AA (2013) Fatigue behavior of porous biomaterials manufactured using selective laser melting. Mater Sci Eng C 33(8):4849–4858CrossRef Yavari SA, Wauthlé R, van der Stok J, Riemslag A, Janssen M, Mulier M, Kruth J-P, Schrooten J, Weinans H, Zadpoor AA (2013) Fatigue behavior of porous biomaterials manufactured using selective laser melting. Mater Sci Eng C 33(8):4849–4858CrossRef
15.
Zurück zum Zitat Abad EMK, Khanoki SA, Pasini D (2013) Fatigue design of lattice materials via computational mechanics: application to lattices with smooth transitions in cell geometry. Int J Fatigue 47:126–136CrossRef Abad EMK, Khanoki SA, Pasini D (2013) Fatigue design of lattice materials via computational mechanics: application to lattices with smooth transitions in cell geometry. Int J Fatigue 47:126–136CrossRef
16.
Zurück zum Zitat Hedayati R, Hosseini-Toudeshky H, Sadighi M, Mohammadi-Aghdam M, Zadpoor A (2016) Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials. Int J Fatigue 84:67–79CrossRef Hedayati R, Hosseini-Toudeshky H, Sadighi M, Mohammadi-Aghdam M, Zadpoor A (2016) Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials. Int J Fatigue 84:67–79CrossRef
17.
Zurück zum Zitat Zargarian A, Esfahanian M, Kadkhodapour J, Ziaei-Rad S, Zamani D (2019) On the fatigue behavior of additive manufactured lattice structures. Theor Appl Fract Mech 100:225–232CrossRef Zargarian A, Esfahanian M, Kadkhodapour J, Ziaei-Rad S, Zamani D (2019) On the fatigue behavior of additive manufactured lattice structures. Theor Appl Fract Mech 100:225–232CrossRef
18.
Zurück zum Zitat Refai K, Brugger C, Montemurro M, Saintier N (2020) An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (SLM). Int J Fatigue 138:105623CrossRef Refai K, Brugger C, Montemurro M, Saintier N (2020) An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (SLM). Int J Fatigue 138:105623CrossRef
19.
Zurück zum Zitat Simone A, Gibson L (1998) Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater 46(6):2139–2150CrossRef Simone A, Gibson L (1998) Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater 46(6):2139–2150CrossRef
20.
Zurück zum Zitat Peng C, Tran P, Nguyen-Xuan H, Ferreira A (2020) Mechanical performance and fatigue life prediction of lattice structures: parametric computational approach. Compos Struct 235:111821CrossRef Peng C, Tran P, Nguyen-Xuan H, Ferreira A (2020) Mechanical performance and fatigue life prediction of lattice structures: parametric computational approach. Compos Struct 235:111821CrossRef
21.
Zurück zum Zitat Mozafari F, Thamburaja P, Moslemi N, Srinivasa A (2021) Finite-element simulation of multi-axial fatigue loading in metals based on a novel experimentally-validated microplastic hysteresis-tracking method. Finite Elem Anal Des 187:103481CrossRef Mozafari F, Thamburaja P, Moslemi N, Srinivasa A (2021) Finite-element simulation of multi-axial fatigue loading in metals based on a novel experimentally-validated microplastic hysteresis-tracking method. Finite Elem Anal Des 187:103481CrossRef
22.
Zurück zum Zitat Molavitabrizi D, Ekberg A, Mousavi SM (2022) Computational model for low cycle fatigue analysis of lattice materials: Incorporating theory of critical distance with elastoplastic homogenization. Eur J Mech-A/Solids 92:104480MATHCrossRef Molavitabrizi D, Ekberg A, Mousavi SM (2022) Computational model for low cycle fatigue analysis of lattice materials: Incorporating theory of critical distance with elastoplastic homogenization. Eur J Mech-A/Solids 92:104480MATHCrossRef
23.
Zurück zum Zitat Chandran KR (2016) A physical model and constitutive equations for complete characterization of SN fatigue behavior of metals. Acta Mater 121:85–103CrossRef Chandran KR (2016) A physical model and constitutive equations for complete characterization of SN fatigue behavior of metals. Acta Mater 121:85–103CrossRef
24.
Zurück zum Zitat Mughrabi H (2015) Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Philos Trans R Soc A Math Phys Eng Sci 373(2038):20140132CrossRef Mughrabi H (2015) Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Philos Trans R Soc A Math Phys Eng Sci 373(2038):20140132CrossRef
25.
Zurück zum Zitat Zhang P, Zhang DZ, Zhong B (2022) Constitutive and damage modelling of selective laser melted Ti-6Al-4V lattice structure subjected to low cycle fatigue. Int J Fatigue 159:106800CrossRef Zhang P, Zhang DZ, Zhong B (2022) Constitutive and damage modelling of selective laser melted Ti-6Al-4V lattice structure subjected to low cycle fatigue. Int J Fatigue 159:106800CrossRef
26.
Zurück zum Zitat Hu Y, Wu S, Withers P, Zhang J, Bao H, Fu Y, Kang G (2020) The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures. Mater Des 192:108708CrossRef Hu Y, Wu S, Withers P, Zhang J, Bao H, Fu Y, Kang G (2020) The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures. Mater Des 192:108708CrossRef
27.
Zurück zum Zitat Tang M, Pistorius PC (2019) Fatigue life prediction for AlSi10Mg components produced by selective laser melting. Int J Fatigue 125:479–490CrossRef Tang M, Pistorius PC (2019) Fatigue life prediction for AlSi10Mg components produced by selective laser melting. Int J Fatigue 125:479–490CrossRef
28.
Zurück zum Zitat Uzan NE, Shneck R, Yeheskel O, Frage N (2017) Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Mater Sci Eng A 704:229–237CrossRef Uzan NE, Shneck R, Yeheskel O, Frage N (2017) Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Mater Sci Eng A 704:229–237CrossRef
29.
Zurück zum Zitat Vayssette B, Saintier N, Brugger C, El May M (2020) Surface roughness effect of SLM and EBM Ti-6Al-4V on multiaxial high cycle fatigue. Theor Appl Fract Mech 108:102581CrossRef Vayssette B, Saintier N, Brugger C, El May M (2020) Surface roughness effect of SLM and EBM Ti-6Al-4V on multiaxial high cycle fatigue. Theor Appl Fract Mech 108:102581CrossRef
30.
Zurück zum Zitat Vayssette B, Saintier N, Brugger C, Elmay M, Pessard E (2018) Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: effect on the high cycle fatigue life. Proced Eng 213:89–97CrossRef Vayssette B, Saintier N, Brugger C, Elmay M, Pessard E (2018) Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: effect on the high cycle fatigue life. Proced Eng 213:89–97CrossRef
31.
Zurück zum Zitat Yánez A, Fiorucci MP, Cuadrado A, Martel O, Monopoli D (2020) Surface roughness effects on the fatigue behaviour of gyroid cellular structures obtained by additive manufacturing. Int J Fatigue 138:105702CrossRef Yánez A, Fiorucci MP, Cuadrado A, Martel O, Monopoli D (2020) Surface roughness effects on the fatigue behaviour of gyroid cellular structures obtained by additive manufacturing. Int J Fatigue 138:105702CrossRef
32.
Zurück zum Zitat Witkin DB, Albright TV, Patel DN (2016) Empirical approach to understanding the fatigue behavior of metals made using additive manufacturing. Metall Mater Trans A 47(8):3823–3836CrossRef Witkin DB, Albright TV, Patel DN (2016) Empirical approach to understanding the fatigue behavior of metals made using additive manufacturing. Metall Mater Trans A 47(8):3823–3836CrossRef
33.
Zurück zum Zitat Naderi M, Michopoulos J, Iyyer N, Goel K, Phan N (2019) Multiscale analysis of fatigue crack initiation life for unidirectional composite laminates. Compos Struct 213:271–283CrossRef Naderi M, Michopoulos J, Iyyer N, Goel K, Phan N (2019) Multiscale analysis of fatigue crack initiation life for unidirectional composite laminates. Compos Struct 213:271–283CrossRef
34.
Zurück zum Zitat Belytschko T, Song J-H (2010) Coarse-graining of multiscale crack propagation. Int J Numer Methods Eng 81(5):537–563MATHCrossRef Belytschko T, Song J-H (2010) Coarse-graining of multiscale crack propagation. Int J Numer Methods Eng 81(5):537–563MATHCrossRef
35.
Zurück zum Zitat Lee J, Wang X, Chen Y (2009) Multiscale material modeling and its application to a dynamic crack propagation problem. Theor Appl Fract Mech 51(1):33–40CrossRef Lee J, Wang X, Chen Y (2009) Multiscale material modeling and its application to a dynamic crack propagation problem. Theor Appl Fract Mech 51(1):33–40CrossRef
36.
Zurück zum Zitat Chakraborty A, Rahman S (2009) A parametric study on probabilistic fracture of functionally graded composites by a concurrent multiscale method. Probab Eng Mech 24(3):438–451CrossRef Chakraborty A, Rahman S (2009) A parametric study on probabilistic fracture of functionally graded composites by a concurrent multiscale method. Probab Eng Mech 24(3):438–451CrossRef
37.
Zurück zum Zitat Chan KS (2010) Roles of microstructure in fatigue crack initiation. Int J Fatigue 32(9):1428–1447CrossRef Chan KS (2010) Roles of microstructure in fatigue crack initiation. Int J Fatigue 32(9):1428–1447CrossRef
38.
Zurück zum Zitat Seki H, Tane M, Nakajima H (2008) Fatigue crack initiation and propagation in lotus-type porous copper. Mater Trans 49(1):144–150CrossRef Seki H, Tane M, Nakajima H (2008) Fatigue crack initiation and propagation in lotus-type porous copper. Mater Trans 49(1):144–150CrossRef
39.
Zurück zum Zitat Mozafari F, Thamburaja P, Srinivasa A, Moslemi N (2019) A rate independent inelasticity model with smooth transition for unifying low-cycle to high-cycle fatigue life prediction. Int J Mech Sci 159:325–335CrossRef Mozafari F, Thamburaja P, Srinivasa A, Moslemi N (2019) A rate independent inelasticity model with smooth transition for unifying low-cycle to high-cycle fatigue life prediction. Int J Mech Sci 159:325–335CrossRef
40.
Zurück zum Zitat Mozafari F, Thamburaja P, Srinivasa A, Abdullah S (2020) Fatigue life prediction under variable amplitude loading using a microplasticity-based constitutive model. Int J Fatigue 134:105477CrossRef Mozafari F, Thamburaja P, Srinivasa A, Abdullah S (2020) Fatigue life prediction under variable amplitude loading using a microplasticity-based constitutive model. Int J Fatigue 134:105477CrossRef
41.
Zurück zum Zitat Maaß R, Derlet P (2018) Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Mater 143:338–363CrossRef Maaß R, Derlet P (2018) Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Mater 143:338–363CrossRef
42.
Zurück zum Zitat Ye D-Y, Wang D-J, An P (1996) Characteristics of the change in the surface microhardness during high cycle fatigue damage. Mater Chem Phys 44(2):179–181CrossRef Ye D-Y, Wang D-J, An P (1996) Characteristics of the change in the surface microhardness during high cycle fatigue damage. Mater Chem Phys 44(2):179–181CrossRef
43.
Zurück zum Zitat Ustrzycka A, Mróz Z, Kowalewski Z, Kucharski S (2020) Analysis of fatigue crack initiation in cyclic microplasticity regime. Int J Fatigue 131:105342CrossRef Ustrzycka A, Mróz Z, Kowalewski Z, Kucharski S (2020) Analysis of fatigue crack initiation in cyclic microplasticity regime. Int J Fatigue 131:105342CrossRef
44.
Zurück zum Zitat Guo Q, Guo X, Fan J, Syed R, Wu C (2015) An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation. Int J Fatigue 80:136–144CrossRef Guo Q, Guo X, Fan J, Syed R, Wu C (2015) An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation. Int J Fatigue 80:136–144CrossRef
45.
Zurück zum Zitat Jarecki D, Srinivasa A, Iyyer N (2021) Rate-independent elasto-plastic materials-a brief history and some new developments. Int J Adv Eng Sci Appl Math 13(1):3–17CrossRef Jarecki D, Srinivasa A, Iyyer N (2021) Rate-independent elasto-plastic materials-a brief history and some new developments. Int J Adv Eng Sci Appl Math 13(1):3–17CrossRef
46.
Zurück zum Zitat Lush A, Weber G, Anand L (1989) An implicit time-integration procedure for a set of internal variable constitutive equations for isotropic elasto-viscoplasticity. Int J Plast 5(5):521–549MATHCrossRef Lush A, Weber G, Anand L (1989) An implicit time-integration procedure for a set of internal variable constitutive equations for isotropic elasto-viscoplasticity. Int J Plast 5(5):521–549MATHCrossRef
47.
Zurück zum Zitat Rajagopal K, Srinivasa A (2015) Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response. Int J Plast 71:1–9CrossRef Rajagopal K, Srinivasa A (2015) Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response. Int J Plast 71:1–9CrossRef
48.
Zurück zum Zitat Torries B, Sterling AJ, Shamsaei N, Thompson SM, Daniewicz SR (2016) Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V. Rapid Prototyp J 22(5):817–825CrossRef Torries B, Sterling AJ, Shamsaei N, Thompson SM, Daniewicz SR (2016) Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V. Rapid Prototyp J 22(5):817–825CrossRef
49.
Zurück zum Zitat Jirandehi AP, Khonsari M, Guo S, Gradl P (2022) Fatigue assessment of additively-manufactured c-18150 copper alloy at room and elevated temperatures via a microstructure-sensitive algorithm. Int J Fatigue 159:106777CrossRef Jirandehi AP, Khonsari M, Guo S, Gradl P (2022) Fatigue assessment of additively-manufactured c-18150 copper alloy at room and elevated temperatures via a microstructure-sensitive algorithm. Int J Fatigue 159:106777CrossRef
50.
Zurück zum Zitat Mantovani S, Giacalone M, Merulla A, Bassoli E, Defanti S (2022) Effective mechanical properties of AlSi7Mg additively manufactured cubic lattice structures. 3D Printing Addit Manuf 9:326–336CrossRef Mantovani S, Giacalone M, Merulla A, Bassoli E, Defanti S (2022) Effective mechanical properties of AlSi7Mg additively manufactured cubic lattice structures. 3D Printing Addit Manuf 9:326–336CrossRef
52.
Zurück zum Zitat Sugimura Y, Rabiei A, Evans AG, Harte A, Fleck NA (1999) Compression fatigue of a cellular al alloy. Mater Sci Eng A 269(1–2):38–48CrossRef Sugimura Y, Rabiei A, Evans AG, Harte A, Fleck NA (1999) Compression fatigue of a cellular al alloy. Mater Sci Eng A 269(1–2):38–48CrossRef
53.
Zurück zum Zitat Li S, Murr LE, Cheng X, Zhang Z, Hao Y, Yang R, Medina F, Wicker R (2012) Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. Acta Mater 60(3):793–802CrossRef Li S, Murr LE, Cheng X, Zhang Z, Hao Y, Yang R, Medina F, Wicker R (2012) Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. Acta Mater 60(3):793–802CrossRef
54.
Zurück zum Zitat Liu Y, Wang H, Li S, Wang S, Wang W, Hou W, Hao Y, Yang R, Zhang L (2017) Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater 126:58–66CrossRef Liu Y, Wang H, Li S, Wang S, Wang W, Hou W, Hao Y, Yang R, Zhang L (2017) Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater 126:58–66CrossRef
55.
Zurück zum Zitat Özbilen S, Liebert D, Beck T, Bram M (2016) Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders. Mater Sci Eng C 60:446–457CrossRef Özbilen S, Liebert D, Beck T, Bram M (2016) Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders. Mater Sci Eng C 60:446–457CrossRef
56.
Zurück zum Zitat Terada K, Kato J, Hirayama N, Inugai T, Yamamoto K (2013) A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput Mech 52(5):1199–1219MATHCrossRef Terada K, Kato J, Hirayama N, Inugai T, Yamamoto K (2013) A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput Mech 52(5):1199–1219MATHCrossRef
57.
Zurück zum Zitat Temizer I, Wriggers P (2008) On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput Methods Appl Mech Eng 198(3–4):495–510MATHCrossRef Temizer I, Wriggers P (2008) On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput Methods Appl Mech Eng 198(3–4):495–510MATHCrossRef
58.
Zurück zum Zitat Rajagopalan S, Robb RA (2006) Schwarz meets schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal 10(5):693–712CrossRef Rajagopalan S, Robb RA (2006) Schwarz meets schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal 10(5):693–712CrossRef
59.
Zurück zum Zitat Al-Ketan O, Al-Rub RKA, Rowshan R (2017) Mechanical properties of a new type of architected interpenetrating phase composite materials. Adv Mater Technol 2(2):1600235CrossRef Al-Ketan O, Al-Rub RKA, Rowshan R (2017) Mechanical properties of a new type of architected interpenetrating phase composite materials. Adv Mater Technol 2(2):1600235CrossRef
60.
Zurück zum Zitat Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE (2011) Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29):6875–6882CrossRef Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE (2011) Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29):6875–6882CrossRef
61.
Zurück zum Zitat Feng J, Fu J, Yao X, He Y (2022) Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf 4(2):022001CrossRef Feng J, Fu J, Yao X, He Y (2022) Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf 4(2):022001CrossRef
62.
Zurück zum Zitat Zhang L, Hu Z, Wang MY, Feih S (2021) Hierarchical sheet triply periodic minimal surface lattices: design, geometric and mechanical performance. Mater Des 209:109931CrossRef Zhang L, Hu Z, Wang MY, Feih S (2021) Hierarchical sheet triply periodic minimal surface lattices: design, geometric and mechanical performance. Mater Des 209:109931CrossRef
63.
Zurück zum Zitat Bonatti C, Mohr D (2019) Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments. J Mech Phys Solids 122:1–26CrossRef Bonatti C, Mohr D (2019) Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments. J Mech Phys Solids 122:1–26CrossRef
64.
Zurück zum Zitat Al-Ketan O, Abu Al-Rub RK (2021) Mslattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater Des Process Commun 3(6):e205 Al-Ketan O, Abu Al-Rub RK (2021) Mslattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater Des Process Commun 3(6):e205
65.
Zurück zum Zitat Brown MW, Miller K (1973) A theory for fatigue failure under multiaxial stress-strain conditions. Proc Inst Mech Eng 187(1):745–755CrossRef Brown MW, Miller K (1973) A theory for fatigue failure under multiaxial stress-strain conditions. Proc Inst Mech Eng 187(1):745–755CrossRef
66.
Zurück zum Zitat Kandil FA, Brown MW, Miller KJ (1982) Biaxial low cycle fatigue fracture of 316 stainless steel at elevated temperatures. Metal Soc, Lond 280:203–210 Kandil FA, Brown MW, Miller KJ (1982) Biaxial low cycle fatigue fracture of 316 stainless steel at elevated temperatures. Metal Soc, Lond 280:203–210
Metadaten
Titel
Computational homogenization of fatigue in additively manufactured microlattice structures
verfasst von
F. Mozafari
I. Temizer
Publikationsdatum
10.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2023
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-022-02243-1

Weitere Artikel der Ausgabe 2/2023

Computational Mechanics 2/2023 Zur Ausgabe

Neuer Inhalt