Skip to main content
Erschienen in: Energy Systems 1/2019

23.03.2018 | Original Paper

Constant power control of variable speed wind farm for primary frequency control support

verfasst von: Sadegh Ghani Varzaneh, Mehrdad Abedi, G. B. Gharehpetian

Erschienen in: Energy Systems | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing penetration level of wind energy conversion systems (WECSs) into power systems imposes new requirements on the contribution of WECSs in the frequency control system. These requirements can be fulfilled by modifying the conventional control system of WECS. However, special attention should be paid to the frequency response of WECS, which should be high enough to contribute to frequency control, but should not lead to instability of WECS. Since a wind farm contains many turbines, determining the optimal response is very difficult. In this paper, by coordinating the WECSs of a variable speed wind farm, a pre-scheduled power can be tracked. Therefore, the fluctuation of the output power is mitigated; an optimal frequency response is achieved and the stability of WECSs is guaranteed. Simulation results show the capability of the proposed scheme to enable the wind farm tracks a pre-scheduled power and improves frequency control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shafiullah, G., Oo, A.M.T., Ali, AShawkat, Wolfs, P.: Potential challenges of integrating large-scale wind energy into the power grid—a review. Renew. Sustain. Energy Rev. 20, 306–321 (2013)CrossRef Shafiullah, G., Oo, A.M.T., Ali, AShawkat, Wolfs, P.: Potential challenges of integrating large-scale wind energy into the power grid—a review. Renew. Sustain. Energy Rev. 20, 306–321 (2013)CrossRef
2.
Zurück zum Zitat Pradhan, C., Bhende, C.: Adaptive deloading of stand-alone wind farm for primary frequency control. Energy Syst. 6(1), 109–127 (2015)CrossRef Pradhan, C., Bhende, C.: Adaptive deloading of stand-alone wind farm for primary frequency control. Energy Syst. 6(1), 109–127 (2015)CrossRef
3.
Zurück zum Zitat Wang, Y., Meng, J., Zhang, X., Xu, L.: Control of PMSG-based wind turbines for system inertial response and power oscillation damping. IEEE Trans. Sustain. Energy 6(2), 565–574 (2015)CrossRef Wang, Y., Meng, J., Zhang, X., Xu, L.: Control of PMSG-based wind turbines for system inertial response and power oscillation damping. IEEE Trans. Sustain. Energy 6(2), 565–574 (2015)CrossRef
4.
Zurück zum Zitat Wilches-Bernal, F., Chow, J.H., Sanchez-Gasca, J.J.: A fundamental study of applying wind turbines for power system frequency control. IEEE Trans. Power Syst. 31(2), 1496–1505 (2016)CrossRef Wilches-Bernal, F., Chow, J.H., Sanchez-Gasca, J.J.: A fundamental study of applying wind turbines for power system frequency control. IEEE Trans. Power Syst. 31(2), 1496–1505 (2016)CrossRef
5.
Zurück zum Zitat Dreidy, M., Mokhlis, H., Mekhilef, S.: Inertia response and frequency control techniques for renewable energy sources: a review. Renew. Sustain. Energy Rev. 69, 144–155 (2017)CrossRef Dreidy, M., Mokhlis, H., Mekhilef, S.: Inertia response and frequency control techniques for renewable energy sources: a review. Renew. Sustain. Energy Rev. 69, 144–155 (2017)CrossRef
6.
Zurück zum Zitat Machowski, J., Bialek, J., Bumby, J.: Power system dynamics: stability and control. Wiley, New York (2011) Machowski, J., Bialek, J., Bumby, J.: Power system dynamics: stability and control. Wiley, New York (2011)
7.
Zurück zum Zitat Liu, Y., Gracia, J.R., King, T.J., Liu, Y.: Frequency regulation and oscillation damping contributions of variable-speed wind generators in the US eastern interconnection (EI). IEEE Trans. Sustain. Energy 6(3), 951–958 (2015)CrossRef Liu, Y., Gracia, J.R., King, T.J., Liu, Y.: Frequency regulation and oscillation damping contributions of variable-speed wind generators in the US eastern interconnection (EI). IEEE Trans. Sustain. Energy 6(3), 951–958 (2015)CrossRef
8.
Zurück zum Zitat De Rijcke, S., Tielens, P., Rawn, B., Van Hertem, D., Driesen, J.: Trading energy yield for frequency regulation: optimal control of kinetic energy in wind farms. IEEE Trans. Power Syst. 5(30), 2469–2478 (2015)CrossRef De Rijcke, S., Tielens, P., Rawn, B., Van Hertem, D., Driesen, J.: Trading energy yield for frequency regulation: optimal control of kinetic energy in wind farms. IEEE Trans. Power Syst. 5(30), 2469–2478 (2015)CrossRef
9.
Zurück zum Zitat Vidyanandan, K., Senroy, N.: Primary frequency regulation by deloaded wind turbines using variable droop. IEEE Trans. Power Syst. 28(2), 837–846 (2013)CrossRef Vidyanandan, K., Senroy, N.: Primary frequency regulation by deloaded wind turbines using variable droop. IEEE Trans. Power Syst. 28(2), 837–846 (2013)CrossRef
10.
Zurück zum Zitat Liu, Y., Lin, J., Wu, Q., Zhou, X.: Frequency control of DFIG based wind power penetrated power systems using switching angle controller and AGC. IEEE Trans. Power Syst. 32(2), 1553–1567 (2017) Liu, Y., Lin, J., Wu, Q., Zhou, X.: Frequency control of DFIG based wind power penetrated power systems using switching angle controller and AGC. IEEE Trans. Power Syst. 32(2), 1553–1567 (2017)
11.
Zurück zum Zitat Rose, S., Apt, J.: The cost of curtailing wind turbines for secondary frequency regulation capacity. Energy Syst. 5(3), 407–422 (2014)CrossRef Rose, S., Apt, J.: The cost of curtailing wind turbines for secondary frequency regulation capacity. Energy Syst. 5(3), 407–422 (2014)CrossRef
12.
Zurück zum Zitat Hwang, M., Muljadi, E., Park, J.-W., Sorensen, P., Kang, Y.C.: Dynamic droop-based inertial control of a doubly-fed induction generator. IEEE Trans. Sustain. Energy 7(3), 924–933 (2016)CrossRef Hwang, M., Muljadi, E., Park, J.-W., Sorensen, P., Kang, Y.C.: Dynamic droop-based inertial control of a doubly-fed induction generator. IEEE Trans. Sustain. Energy 7(3), 924–933 (2016)CrossRef
13.
Zurück zum Zitat Lee, J., Muljadi, E., Sorensen, P., Kang, Y.C.: Releasable kinetic energy-based inertial control of a DFIG wind power plant. IEEE Trans. Sustain. Energy 7(1), 279–288 (2016)CrossRef Lee, J., Muljadi, E., Sorensen, P., Kang, Y.C.: Releasable kinetic energy-based inertial control of a DFIG wind power plant. IEEE Trans. Sustain. Energy 7(1), 279–288 (2016)CrossRef
14.
Zurück zum Zitat Kayikci, M., Milanovic, J.V.: Dynamic contribution of DFIG-based wind plants to system frequency disturbances. IEEE Trans. Power Syst. 24(2), 859–867 (2009)CrossRef Kayikci, M., Milanovic, J.V.: Dynamic contribution of DFIG-based wind plants to system frequency disturbances. IEEE Trans. Power Syst. 24(2), 859–867 (2009)CrossRef
15.
Zurück zum Zitat Kang, M., Kim, K., Muljadi, E., Park, J.-W., Kang, Y.C.: Frequency control support of a doubly-fed induction generator based on the torque limit. IEEE Trans. Power Syst. 31(6), 4575–4583 (2016)CrossRef Kang, M., Kim, K., Muljadi, E., Park, J.-W., Kang, Y.C.: Frequency control support of a doubly-fed induction generator based on the torque limit. IEEE Trans. Power Syst. 31(6), 4575–4583 (2016)CrossRef
16.
Zurück zum Zitat Ye, H., Pei, W., Qi, Z.: Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems. IEEE Trans. Power Syst. 31(5), 3414–3423 (2016)CrossRef Ye, H., Pei, W., Qi, Z.: Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems. IEEE Trans. Power Syst. 31(5), 3414–3423 (2016)CrossRef
17.
Zurück zum Zitat Zhao, J., Lyu, X., Fu, Y., Hu, X., Li, F.: Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control. IEEE Trans. Energy Convers. 31(3), 833–845 (2016)CrossRef Zhao, J., Lyu, X., Fu, Y., Hu, X., Li, F.: Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control. IEEE Trans. Energy Convers. 31(3), 833–845 (2016)CrossRef
18.
Zurück zum Zitat Lin, J., Sun, Y., Song, Y., Gao, W., Sorensen, P.: Wind power fluctuation smoothing controller based on risk assessment of grid frequency deviation in an isolated system. IEEE Trans. Sustain. Energy 4(2), 379–392 (2013)CrossRef Lin, J., Sun, Y., Song, Y., Gao, W., Sorensen, P.: Wind power fluctuation smoothing controller based on risk assessment of grid frequency deviation in an isolated system. IEEE Trans. Sustain. Energy 4(2), 379–392 (2013)CrossRef
19.
Zurück zum Zitat Xu, J., Liao, S., Sun, Y., Ma, X.-Y., Gao, W., Li, X., Gu, J., Dong, J., Zhou, M.: An isolated industrial power system driven by wind-coal power for aluminum productions: a case study of frequency control. IEEE Trans. Power Syst. 30(1), 471–483 (2015)CrossRef Xu, J., Liao, S., Sun, Y., Ma, X.-Y., Gao, W., Li, X., Gu, J., Dong, J., Zhou, M.: An isolated industrial power system driven by wind-coal power for aluminum productions: a case study of frequency control. IEEE Trans. Power Syst. 30(1), 471–483 (2015)CrossRef
20.
Zurück zum Zitat Ghani Varzaneh, S., Gharehpetian, G., Abedi, M.: Output power smoothing of variable speed wind farms using rotor-inertia. Electr. Power Syst. Res. 116, 208–217 (2014)CrossRef Ghani Varzaneh, S., Gharehpetian, G., Abedi, M.: Output power smoothing of variable speed wind farms using rotor-inertia. Electr. Power Syst. Res. 116, 208–217 (2014)CrossRef
21.
Zurück zum Zitat Saejia, M., Ngamroo, I.: Alleviation of power fluctuation in interconnected power systems with wind farm by SMES with optimal coil size. IEEE Trans. Appl. Supercond. 22(3), 5701504–5701504 (2012)CrossRef Saejia, M., Ngamroo, I.: Alleviation of power fluctuation in interconnected power systems with wind farm by SMES with optimal coil size. IEEE Trans. Appl. Supercond. 22(3), 5701504–5701504 (2012)CrossRef
22.
Zurück zum Zitat Howlader, A.M., Senjyu, T., Saber, A.Y.: An integrated power smoothing control for a grid-interactive wind farm considering wake effects. IEEE Syst. J. 9(3), 954–965 (2015)CrossRef Howlader, A.M., Senjyu, T., Saber, A.Y.: An integrated power smoothing control for a grid-interactive wind farm considering wake effects. IEEE Syst. J. 9(3), 954–965 (2015)CrossRef
23.
Zurück zum Zitat Crdenas, R., Pea, R., Alepuz, S., Asher, G.: Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. Industr. Electron. 60(7), 2776–2798 (2013)CrossRef Crdenas, R., Pea, R., Alepuz, S., Asher, G.: Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. Industr. Electron. 60(7), 2776–2798 (2013)CrossRef
24.
Zurück zum Zitat Ghoudelbourk, S., Dib, D., Omeiri, A.: Decoupled control of active and reactive power of a wind turbine based on DFIG and matrix converter. Energy Syst. 7(3), 483–497 (2015)CrossRef Ghoudelbourk, S., Dib, D., Omeiri, A.: Decoupled control of active and reactive power of a wind turbine based on DFIG and matrix converter. Energy Syst. 7(3), 483–497 (2015)CrossRef
25.
Zurück zum Zitat Pena, R., Clare, J., Asher, G.: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc. Electr. Power Appl. 3, 231–241 (1996)CrossRef Pena, R., Clare, J., Asher, G.: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc. Electr. Power Appl. 3, 231–241 (1996)CrossRef
26.
Zurück zum Zitat Tapia, A., Tapia, G., Ostolaza, J.X., Saenz, J.R.: Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. Energy Convers. 18(2), 194–204 (2003)CrossRef Tapia, A., Tapia, G., Ostolaza, J.X., Saenz, J.R.: Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. Energy Convers. 18(2), 194–204 (2003)CrossRef
27.
Zurück zum Zitat Ghani Varzaneh, S., Rastegar, H., Gharehpetian, G.: A new three-mode maximum power point tracking algorithm for doubly fed induction generator based wind energy conversion system. Electric Power Compon. Syst. 42(1), 45–59 (2014)CrossRef Ghani Varzaneh, S., Rastegar, H., Gharehpetian, G.: A new three-mode maximum power point tracking algorithm for doubly fed induction generator based wind energy conversion system. Electric Power Compon. Syst. 42(1), 45–59 (2014)CrossRef
28.
Zurück zum Zitat Fouad, K., Boulouiha, H.M., Allali, A., Taibi, A., Denai, M.: Multivariable control of a grid-connected wind energy conversion system with power quality enhancement. Energy Syst. 9(1), 25–57 (2016)CrossRef Fouad, K., Boulouiha, H.M., Allali, A., Taibi, A., Denai, M.: Multivariable control of a grid-connected wind energy conversion system with power quality enhancement. Energy Syst. 9(1), 25–57 (2016)CrossRef
29.
Zurück zum Zitat Tan, Y., Meegahaolla, L., Muttaqi, K.M.: A suboptimal power-point-tracking-based primary frequency response strategy for DFIGs in hybrid remote area power supply systems. IEEE Trans. Energy Convers. 31(1), 93–105 (2016)CrossRef Tan, Y., Meegahaolla, L., Muttaqi, K.M.: A suboptimal power-point-tracking-based primary frequency response strategy for DFIGs in hybrid remote area power supply systems. IEEE Trans. Energy Convers. 31(1), 93–105 (2016)CrossRef
30.
Zurück zum Zitat Van de Vyver, J., De Kooning, J.D., Meersman, B., Vandevelde, L., Vandoorn, T.L.: Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines. IEEE Trans. Power Syst. 31(2), 1129–1138 (2016)CrossRef Van de Vyver, J., De Kooning, J.D., Meersman, B., Vandevelde, L., Vandoorn, T.L.: Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines. IEEE Trans. Power Syst. 31(2), 1129–1138 (2016)CrossRef
31.
Zurück zum Zitat Wang, Y., Delille, G., Bayem, H., Guillaud, X., Francois, B.: High wind power penetration in isolated power systems assessment of wind inertial and primary frequency responses. IEEE Trans. Power Syst. 28(3), 2412–2420 (2013)CrossRef Wang, Y., Delille, G., Bayem, H., Guillaud, X., Francois, B.: High wind power penetration in isolated power systems assessment of wind inertial and primary frequency responses. IEEE Trans. Power Syst. 28(3), 2412–2420 (2013)CrossRef
32.
Zurück zum Zitat Gao, Z., Geng, J., Zhang, K., Dai, Z., Bai, X., Peng, M., Wang, Y.: Wind power dispatch supporting technologies and its implementation. IEEE Trans. Smart Grid 4(3), 1684–1691 (2013)CrossRef Gao, Z., Geng, J., Zhang, K., Dai, Z., Bai, X., Peng, M., Wang, Y.: Wind power dispatch supporting technologies and its implementation. IEEE Trans. Smart Grid 4(3), 1684–1691 (2013)CrossRef
33.
Zurück zum Zitat Keung, P.-K., Li, P., Banakar, H., Ooi, B.T.: Kinetic energy of wind-turbine generators for system frequency support. IEEE Trans. Power Syst. 24(1), 279–287 (2009)CrossRef Keung, P.-K., Li, P., Banakar, H., Ooi, B.T.: Kinetic energy of wind-turbine generators for system frequency support. IEEE Trans. Power Syst. 24(1), 279–287 (2009)CrossRef
34.
Zurück zum Zitat Ali, M., Ilie, I.-S., Milanovic, J.V., Chicco, G.: Wind farm model aggregation using probabilistic clustering. IEEE Trans. Power Syst. 28(1), 309–316 (2013)CrossRef Ali, M., Ilie, I.-S., Milanovic, J.V., Chicco, G.: Wind farm model aggregation using probabilistic clustering. IEEE Trans. Power Syst. 28(1), 309–316 (2013)CrossRef
35.
Zurück zum Zitat Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38060 (2009) Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38060 (2009)
36.
Zurück zum Zitat Almeida, P.R., Soares, F., Lopes, J.P.: Electric vehicles contribution for frequency control with inertial emulation. Electr. Power Syst. Res. 127, 141–150 (2015)CrossRef Almeida, P.R., Soares, F., Lopes, J.P.: Electric vehicles contribution for frequency control with inertial emulation. Electr. Power Syst. Res. 127, 141–150 (2015)CrossRef
37.
Zurück zum Zitat Kundur, P.: Power system stability and control. Tata McGraw-Hill Education, Chennai (1994) Kundur, P.: Power system stability and control. Tata McGraw-Hill Education, Chennai (1994)
Metadaten
Titel
Constant power control of variable speed wind farm for primary frequency control support
verfasst von
Sadegh Ghani Varzaneh
Mehrdad Abedi
G. B. Gharehpetian
Publikationsdatum
23.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 1/2019
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-017-0259-3

Weitere Artikel der Ausgabe 1/2019

Energy Systems 1/2019 Zur Ausgabe