Skip to main content
Erschienen in: Microsystem Technologies 10/2021

05.01.2021 | Technical Paper

Construction of microfluidic blood–brain barrier model assisted by 3D coculture on cellulose fiber

verfasst von: Duong Duy Duong, Jisung Kwak, Hyun Seok Song, Nae Yoon Lee

Erschienen in: Microsystem Technologies | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we fabricated a microfluidic device to mimic the human blood–brain barrier (BBB) in vitro, comprising a cellulose fiber membrane sandwiched between two silicone elastomer poly(dimethylsiloxane) (PDMS) layers. The PDMS layers were bonded using the oxygen plasma surface activation method. The encased cellulose fiber separated the intersection of channels in the PDMS layers and functioned as a three-dimensional scaffold for cell attachment and stretching. Human astrocytes and human brain vein pericytes were seeded into the cellulose fiber by a mixture of collagen and cells. Human umbilical vein endothelial cells were subsequently seeded into the cellulose fiber to form an in vitro BBB model. Cell viability, F-actin formation, and transendothelial electrical resistance (TEER) were used to evaluate BBB formation. Albumin-fluorescein isothiocyanate conjugate protein bovine (FITC-albumin) and nanovesicles were used to evaluate the ability of the model to work as an in vitro model of BBB. Over 7 days, the model achieved cell viability over 90% and a TEER over 300 Ω × cm2. The model also expressed selective permeability when injected with FITC-albumin and nanovesicles. Altogether, the model provided an easy to replicate and inexpensive platform for in vitro drug screening. This design could be further modified to create models for other blood–tissue barriers, such as the blood–air barrier.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53CrossRef Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53CrossRef
Zurück zum Zitat Adhikary RR, Koppaka O, Banerjee R (2020) Development of color changing polydiacetylene-based biomimetic nanovesicle platforms for quick detection of membrane permeability across the blood brain barrier. Nanoscale 12:8898–8908CrossRef Adhikary RR, Koppaka O, Banerjee R (2020) Development of color changing polydiacetylene-based biomimetic nanovesicle platforms for quick detection of membrane permeability across the blood brain barrier. Nanoscale 12:8898–8908CrossRef
Zurück zum Zitat Almutairi MMA, Gong C, Xu YG et al (2016) Factors controlling permeability of the blood–brain barrier. Cell Mol Life Sci 73:57–77CrossRef Almutairi MMA, Gong C, Xu YG et al (2016) Factors controlling permeability of the blood–brain barrier. Cell Mol Life Sci 73:57–77CrossRef
Zurück zum Zitat Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20:683–696CrossRef Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20:683–696CrossRef
Zurück zum Zitat Armulik A, Genové G, Mäe M et al (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561CrossRef Armulik A, Genové G, Mäe M et al (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561CrossRef
Zurück zum Zitat Bagchi S, Chhibber T, Lahooti B et al (2019) In-vitro blood–brain barrier models for drug screening and permeation studies: an overview. Drug Des Dev Ther 13:3591–3605CrossRef Bagchi S, Chhibber T, Lahooti B et al (2019) In-vitro blood–brain barrier models for drug screening and permeation studies: an overview. Drug Des Dev Ther 13:3591–3605CrossRef
Zurück zum Zitat Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview. Neurobiol Dis 16:1–13CrossRef Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview. Neurobiol Dis 16:1–13CrossRef
Zurück zum Zitat Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677CrossRef Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677CrossRef
Zurück zum Zitat Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62CrossRef Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62CrossRef
Zurück zum Zitat Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9:661–668CrossRef Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9:661–668CrossRef
Zurück zum Zitat Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55CrossRef Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55CrossRef
Zurück zum Zitat Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a020412CrossRef Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a020412CrossRef
Zurück zum Zitat Daneman R, Zhou L, Agalliu D et al (2010) The mouse blood–brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLOS ONE 5(10):e13741CrossRef Daneman R, Zhou L, Agalliu D et al (2010) The mouse blood–brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLOS ONE 5(10):e13741CrossRef
Zurück zum Zitat Dehouck M-P, Méresse S, Delorme P et al (1990) An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem 54:1798–1801CrossRef Dehouck M-P, Méresse S, Delorme P et al (1990) An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem 54:1798–1801CrossRef
Zurück zum Zitat Derda R, Laromaine A, Mammoto A et al (2009) Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci 106:18457–18462CrossRef Derda R, Laromaine A, Mammoto A et al (2009) Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci 106:18457–18462CrossRef
Zurück zum Zitat Drouin-Ouellet J, Sawiak SJ, Cisbani G et al (2015) Cerebrovascular and blood–brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology: vascular impairments in HD. Ann Neurol 78:160–177CrossRef Drouin-Ouellet J, Sawiak SJ, Cisbani G et al (2015) Cerebrovascular and blood–brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology: vascular impairments in HD. Ann Neurol 78:160–177CrossRef
Zurück zum Zitat Dutta R, Trapp BD (2011) Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 93:1–12CrossRef Dutta R, Trapp BD (2011) Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 93:1–12CrossRef
Zurück zum Zitat Elbakary B, Badhan RKS (2020) A dynamic perfusion based blood–brain barrier model for cytotoxicity testing and drug permeation. Sci Rep 10:3788CrossRef Elbakary B, Badhan RKS (2020) A dynamic perfusion based blood–brain barrier model for cytotoxicity testing and drug permeation. Sci Rep 10:3788CrossRef
Zurück zum Zitat Fardi M, Solali S, Farshdousti Hagh M (2018) Epigenetic mechanisms as a new approach in cancer treatment: an updated review. Genes Dis 5:304–311CrossRef Fardi M, Solali S, Farshdousti Hagh M (2018) Epigenetic mechanisms as a new approach in cancer treatment: an updated review. Genes Dis 5:304–311CrossRef
Zurück zum Zitat Förster C, Burek M, Romero IA et al (2008) Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol 586:1937–1949CrossRef Förster C, Burek M, Romero IA et al (2008) Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol 586:1937–1949CrossRef
Zurück zum Zitat Goel R, Gopal S, Gupta A (2015) Self-assembly of β-alanine homotetramer: formation of nanovesicles for drug delivery. J Mater Chem B 3:5849–5857CrossRef Goel R, Gopal S, Gupta A (2015) Self-assembly of β-alanine homotetramer: formation of nanovesicles for drug delivery. J Mater Chem B 3:5849–5857CrossRef
Zurück zum Zitat Gurski LA, Petrelli NJ, Jia X, Farach-Carson MC (2010) 3D matrices for anti-cancer drug testing and development. Oncol Issues 25:20–25CrossRef Gurski LA, Petrelli NJ, Jia X, Farach-Carson MC (2010) 3D matrices for anti-cancer drug testing and development. Oncol Issues 25:20–25CrossRef
Zurück zum Zitat Haseloff RF, Blasig IE, Bauer H-C, Bauer H (2005) In search of the astrocytic factor(s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25:25–39CrossRef Haseloff RF, Blasig IE, Bauer H-C, Bauer H (2005) In search of the astrocytic factor(s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25:25–39CrossRef
Zurück zum Zitat Hongisto V, Jernström S, Fey V et al (2013) High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells. PLoS ONE 8:e77232CrossRef Hongisto V, Jernström S, Fey V et al (2013) High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells. PLoS ONE 8:e77232CrossRef
Zurück zum Zitat Igarashi Y, Utsumi H, Chiba H et al (1999) Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun 261:108–112CrossRef Igarashi Y, Utsumi H, Chiba H et al (1999) Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun 261:108–112CrossRef
Zurück zum Zitat Janzer RC, Raff MC (1987) Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325:253–257CrossRef Janzer RC, Raff MC (1987) Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325:253–257CrossRef
Zurück zum Zitat Johansen A, Hansen HD, Svarer C et al (2018) The importance of small polar radiometabolites in molecular neuroimaging: a PET study with [11C]Cimbi-36 labeled in two positions. J Cereb Blood Flow Metab 38:659–668CrossRef Johansen A, Hansen HD, Svarer C et al (2018) The importance of small polar radiometabolites in molecular neuroimaging: a PET study with [11C]Cimbi-36 labeled in two positions. J Cereb Blood Flow Metab 38:659–668CrossRef
Zurück zum Zitat Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428CrossRef Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428CrossRef
Zurück zum Zitat Liu C, Feng Q, Sun J (2019) Lipid Nanovesicles by microfluidics: manipulation, synthesis, and drug delivery. Adv Mater 31:1804788CrossRef Liu C, Feng Q, Sun J (2019) Lipid Nanovesicles by microfluidics: manipulation, synthesis, and drug delivery. Adv Mater 31:1804788CrossRef
Zurück zum Zitat Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus–cerebrospinal fluid system. Nat Rev Neurosci 16:445–457CrossRef Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus–cerebrospinal fluid system. Nat Rev Neurosci 16:445–457CrossRef
Zurück zum Zitat Mandarino LJ, Sundarraj N, Finlayson J, Hassell JR (1993) Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res 57:609–621CrossRef Mandarino LJ, Sundarraj N, Finlayson J, Hassell JR (1993) Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res 57:609–621CrossRef
Zurück zum Zitat McAllister MS, Krizanac-Bengez L, Macchia F et al (2001) Mechanisms of glucose transport at the blood–brain barrier: an in vitro study. Brain Res 904:20–30CrossRef McAllister MS, Krizanac-Bengez L, Macchia F et al (2001) Mechanisms of glucose transport at the blood–brain barrier: an in vitro study. Brain Res 904:20–30CrossRef
Zurück zum Zitat Mi H, Haeberle H, Barres BA (2001) Induction of astrocyte differentiation by endothelial cells. J Neurosci 21:1538–1547CrossRef Mi H, Haeberle H, Barres BA (2001) Induction of astrocyte differentiation by endothelial cells. J Neurosci 21:1538–1547CrossRef
Zurück zum Zitat Montagne A, Barnes SR, Sweeney MD et al (2015) Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302CrossRef Montagne A, Barnes SR, Sweeney MD et al (2015) Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302CrossRef
Zurück zum Zitat Moya ML, Triplett M, Simon M et al (2020) A reconfigurable in vitro model for studying the blood–brain barrier. Ann Biomed Eng 48:780–793CrossRef Moya ML, Triplett M, Simon M et al (2020) A reconfigurable in vitro model for studying the blood–brain barrier. Ann Biomed Eng 48:780–793CrossRef
Zurück zum Zitat Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta BBA Mol Basis Dis 1832:866–875CrossRef Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta BBA Mol Basis Dis 1832:866–875CrossRef
Zurück zum Zitat Nag S (1995) Role of the endothelial cytoskeleton in blood–brain-barrier permeability to protein. Acta Neuropathol 90:454–460CrossRef Nag S (1995) Role of the endothelial cytoskeleton in blood–brain-barrier permeability to protein. Acta Neuropathol 90:454–460CrossRef
Zurück zum Zitat Ng K, Gao B, Yong KW et al (2017) Paper-based cell culture platform and its emerging biomedical applications. Mater Today 20:32–44CrossRef Ng K, Gao B, Yong KW et al (2017) Paper-based cell culture platform and its emerging biomedical applications. Mater Today 20:32–44CrossRef
Zurück zum Zitat Placone AL, McGuiggan PM, Bergles DE et al (2015) Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials 42:134–143CrossRef Placone AL, McGuiggan PM, Bergles DE et al (2015) Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials 42:134–143CrossRef
Zurück zum Zitat Profaci CP, Munji RN, Pulido RS, Daneman R (2020) The blood–brain barrier in health and disease: important unanswered questions. J Exp Med 217:e20190062CrossRef Profaci CP, Munji RN, Pulido RS, Daneman R (2020) The blood–brain barrier in health and disease: important unanswered questions. J Exp Med 217:e20190062CrossRef
Zurück zum Zitat Reichel A, Begley DJ, Abbott NJ (2003) An overview of in vitro techniques for blood–brain barrier studies. In: Nag S (ed) The blood–brain barrier: biology and research protocols. Humana Press, Totowa, pp 307–324CrossRef Reichel A, Begley DJ, Abbott NJ (2003) An overview of in vitro techniques for blood–brain barrier studies. In: Nag S (ed) The blood–brain barrier: biology and research protocols. Humana Press, Totowa, pp 307–324CrossRef
Zurück zum Zitat Rist RJ, Romero IA, Chan MWK et al (1997) F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res 768:10–18CrossRef Rist RJ, Romero IA, Chan MWK et al (1997) F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res 768:10–18CrossRef
Zurück zum Zitat Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140CrossRef Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140CrossRef
Zurück zum Zitat Sobue K, Yamamoto N, Yoneda K et al (1999) Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35:155–164CrossRef Sobue K, Yamamoto N, Yoneda K et al (1999) Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35:155–164CrossRef
Zurück zum Zitat Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6:179–192CrossRef Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6:179–192CrossRef
Zurück zum Zitat Szot CS, Buchanan CF, Freeman JW, Rylander MN (2011) 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 32:7905–7912CrossRef Szot CS, Buchanan CF, Freeman JW, Rylander MN (2011) 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 32:7905–7912CrossRef
Zurück zum Zitat Tao FF, Xiao X, Lei KF, Lee I-C (2015) Paper-based cell culture microfluidic system. BioChip J 9:97–104CrossRef Tao FF, Xiao X, Lei KF, Lee I-C (2015) Paper-based cell culture microfluidic system. BioChip J 9:97–104CrossRef
Zurück zum Zitat Tao-Cheng J, Nagy Z, Brightman M (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7:3293–3299CrossRef Tao-Cheng J, Nagy Z, Brightman M (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7:3293–3299CrossRef
Zurück zum Zitat Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27CrossRef Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27CrossRef
Zurück zum Zitat Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Rev 31:42–57CrossRef Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Rev 31:42–57CrossRef
Zurück zum Zitat von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting: quantifying neurons and glia in human brain. J Comp Neurol 524:3865–3895CrossRef von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting: quantifying neurons and glia in human brain. J Comp Neurol 524:3865–3895CrossRef
Zurück zum Zitat Weksler BB, Subileau EA, Perrière N et al (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874CrossRef Weksler BB, Subileau EA, Perrière N et al (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874CrossRef
Zurück zum Zitat Wenger A, Stahl A, Weber H et al (2004) Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng 10:1536–1547CrossRef Wenger A, Stahl A, Weber H et al (2004) Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng 10:1536–1547CrossRef
Zurück zum Zitat Wuest DM, Lee KH (2012) Optimization of endothelial cell growth in a murine in vitro blood–brain barrier model. Biotechnol J 7:409–417CrossRef Wuest DM, Lee KH (2012) Optimization of endothelial cell growth in a murine in vitro blood–brain barrier model. Biotechnol J 7:409–417CrossRef
Zurück zum Zitat Yang T, Fogarty B, LaForge B et al (2017) Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J 19:475–486CrossRef Yang T, Fogarty B, LaForge B et al (2017) Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J 19:475–486CrossRef
Zurück zum Zitat Yang K, Liu Y, Liu Y et al (2018) Cooperative assembly of magneto-nanovesicles with tunable wall thickness and permeability for MRI-guided drug delivery. J Am Chem Soc 140:4666–4677CrossRef Yang K, Liu Y, Liu Y et al (2018) Cooperative assembly of magneto-nanovesicles with tunable wall thickness and permeability for MRI-guided drug delivery. J Am Chem Soc 140:4666–4677CrossRef
Zurück zum Zitat Zhang B, Korolj A, Lai BFL, Radisic M (2018) Advances in organ-on-a-chip engineering. Nat Rev Mater 3:257–278CrossRef Zhang B, Korolj A, Lai BFL, Radisic M (2018) Advances in organ-on-a-chip engineering. Nat Rev Mater 3:257–278CrossRef
Metadaten
Titel
Construction of microfluidic blood–brain barrier model assisted by 3D coculture on cellulose fiber
verfasst von
Duong Duy Duong
Jisung Kwak
Hyun Seok Song
Nae Yoon Lee
Publikationsdatum
05.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2021
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-05197-7

Weitere Artikel der Ausgabe 10/2021

Microsystem Technologies 10/2021 Zur Ausgabe

Neuer Inhalt