Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2015

01.08.2015

Control of the acetone sensitive and selective properties of WO3 nanofibers by doping Co ions: effect of crystal symmetric structure on the responsivity of gas–solid boundaries for gas sensor

verfasst von: Qian-qian Jia, Hui-ming Ji, Peng Gao, Xue Bai, Zheng-guo Jin

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pure and 1–3 mol% Co-doped WO3 nanofibers were fabricated via a feasible and simple electrospinning method and calcined at 500 °C. Co-doped WO3 nanofibers displayed mat-like porous network with coarse surface and diameter of approximately 100 nm. 3 % Co-doped WO3 nanofibers were well crystalized and composed of nano-sized grains (10–20 nm). The phase structure transformed from orthorhombic to monoclinic, which was less symmetric, by doping with Co from 0 to 3 %. The acetone detection limit of 3 % Co–WO3 nanofiber sensor was 0.25 ppm, and its response to acetone was below 1.5 for healthy humans (<0.8 ppm) and above 2.0 for diabetes patient (>1.8 ppm), making it a promising candidate for human breath diagnosis of diabetes. The high response to acetone of 3 % Co–WO3 nanofibers was attributed to their porous structure and nano-sized crystal grains. The selective detection toward acetone against other disturbing gases was resulted from the lower symmetric monoclinic phase structure with more oxygen vacancies and structural defects on the surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Chen, X. Hou, T. Li, L. Yin, B. Fan, H. Wang, X. Li, H. Xu, H. Lu, R. Zhang, J. Sun, Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens. Actuators B Chem. 153, 373–381 (2011)CrossRef D. Chen, X. Hou, T. Li, L. Yin, B. Fan, H. Wang, X. Li, H. Xu, H. Lu, R. Zhang, J. Sun, Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens. Actuators B Chem. 153, 373–381 (2011)CrossRef
2.
Zurück zum Zitat J. Wang, E. Khoo, P.S. Lee, J. Ma, Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 112, 14306–14312 (2008)CrossRef J. Wang, E. Khoo, P.S. Lee, J. Ma, Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 112, 14306–14312 (2008)CrossRef
3.
Zurück zum Zitat D. Chen, J. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 18, 1922–1928 (2008)CrossRef D. Chen, J. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 18, 1922–1928 (2008)CrossRef
4.
Zurück zum Zitat X.L. Li, T.J. Lou, X.M. Sun, Y.D. Li, Highly sensitive WO3 hollow-sphere gas sensors. Inorg. Chem. 43, 5442–5449 (2004)CrossRef X.L. Li, T.J. Lou, X.M. Sun, Y.D. Li, Highly sensitive WO3 hollow-sphere gas sensors. Inorg. Chem. 43, 5442–5449 (2004)CrossRef
5.
Zurück zum Zitat T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, E. Filippo, WO3 gas sensors prepared by thermal oxidization of tungsten. Sens. Actuators B Chem. 133, 321–326 (2008)CrossRef T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, E. Filippo, WO3 gas sensors prepared by thermal oxidization of tungsten. Sens. Actuators B Chem. 133, 321–326 (2008)CrossRef
6.
Zurück zum Zitat O. Berger, T. Hoffmann, W.-J. Fischer, Tungsten-oxide thin films as novel materials with high sensitivity and selectivity to NO2, O3, and H2S. Part II: application as gas sensors. J. Mater. Sci. Mater. Electron. 15, 483–493 (2004)CrossRef O. Berger, T. Hoffmann, W.-J. Fischer, Tungsten-oxide thin films as novel materials with high sensitivity and selectivity to NO2, O3, and H2S. Part II: application as gas sensors. J. Mater. Sci. Mater. Electron. 15, 483–493 (2004)CrossRef
7.
Zurück zum Zitat I.M. Szilágyi, S. Saukko, J. Mizsei, A.L. Tóth, J. Madarász, G. Pokol, Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci. 12, 1857–1860 (2010)CrossRef I.M. Szilágyi, S. Saukko, J. Mizsei, A.L. Tóth, J. Madarász, G. Pokol, Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci. 12, 1857–1860 (2010)CrossRef
8.
Zurück zum Zitat M.D. Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, Sputter deposition of tungsten trioxide for gas sensing applications. J. Mater. Sci. Mater. Electron. 9, 317–322 (1998)CrossRef M.D. Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, Sputter deposition of tungsten trioxide for gas sensing applications. J. Mater. Sci. Mater. Electron. 9, 317–322 (1998)CrossRef
9.
Zurück zum Zitat E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54, 1–67 (2009)CrossRef E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54, 1–67 (2009)CrossRef
10.
Zurück zum Zitat A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRef A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRef
11.
Zurück zum Zitat R. Ramaseshan, S. Sundarrajan, R. Jose, S. Ramakrishna, Nanostructured ceramics by electrospinning. J. Appl. Phys. 102, 111101 (2007)CrossRef R. Ramaseshan, S. Sundarrajan, R. Jose, S. Ramakrishna, Nanostructured ceramics by electrospinning. J. Appl. Phys. 102, 111101 (2007)CrossRef
12.
Zurück zum Zitat W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology. 17, R89–R106 (2006)CrossRef W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology. 17, R89–R106 (2006)CrossRef
13.
Zurück zum Zitat D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004)CrossRef D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004)CrossRef
14.
Zurück zum Zitat Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators B Chem. 132, 67–73 (2008)CrossRef Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators B Chem. 132, 67–73 (2008)CrossRef
15.
Zurück zum Zitat S. Wei, M. Zhou, W. Du, Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens. Actuators B Chem. 160, 753–759 (2011)CrossRef S. Wei, M. Zhou, W. Du, Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens. Actuators B Chem. 160, 753–759 (2011)CrossRef
16.
Zurück zum Zitat W.S. Kim, B.S. Lee, D.H. Kim, H.C. Kim, W.R. Yu, S.H. Hong, SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 21, 245605 (2010)CrossRef W.S. Kim, B.S. Lee, D.H. Kim, H.C. Kim, W.R. Yu, S.H. Hong, SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 21, 245605 (2010)CrossRef
17.
Zurück zum Zitat H.T. Fan, X.J. Xu, X.K. Ma, T. Zhang, Preparation of LaFeO3 nanofibers by electrospinning for gas sensors with fast response and recovery. Nanotechnology 22, 115502 (2011)CrossRef H.T. Fan, X.J. Xu, X.K. Ma, T. Zhang, Preparation of LaFeO3 nanofibers by electrospinning for gas sensors with fast response and recovery. Nanotechnology 22, 115502 (2011)CrossRef
18.
Zurück zum Zitat M. Zhi, A. Koneru, F. Yang, A. Manivannan, J. Li, N. Wu, Electrospun La0.8Sr0.2MnO3 nanofibers for a high-temperature electrochemical carbon monoxide sensor. Nanotechnology. 23, 305501 (2012)CrossRef M. Zhi, A. Koneru, F. Yang, A. Manivannan, J. Li, N. Wu, Electrospun La0.8Sr0.2MnO3 nanofibers for a high-temperature electrochemical carbon monoxide sensor. Nanotechnology. 23, 305501 (2012)CrossRef
19.
Zurück zum Zitat S. Piperno, M. Passacantando, S. Santucci, L. Lozzi, S.L. Rosa, WO3 nanofibers for gas sensing applications. J. Appl. Phys. 101, 124504 (2007)CrossRef S. Piperno, M. Passacantando, S. Santucci, L. Lozzi, S.L. Rosa, WO3 nanofibers for gas sensing applications. J. Appl. Phys. 101, 124504 (2007)CrossRef
20.
Zurück zum Zitat J.S. Lee, O.S. Kwon, D.H. Shin, J. Jang, WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. A 1, 9099–9106 (2013)CrossRef J.S. Lee, O.S. Kwon, D.H. Shin, J. Jang, WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. A 1, 9099–9106 (2013)CrossRef
21.
Zurück zum Zitat H.S. Shim, J.W. Kim, Y.E. Sung, W.B. Kim, Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol. Energ. Mater. Sol. C 93, 2062–2068 (2009)CrossRef H.S. Shim, J.W. Kim, Y.E. Sung, W.B. Kim, Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Sol. Energ. Mater. Sol. C 93, 2062–2068 (2009)CrossRef
22.
Zurück zum Zitat J. Leng, X. Xu, N. Lv, H. Fan, T. Zhang, Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J. Colloid Interface Sci. 356, 54–57 (2011)CrossRef J. Leng, X. Xu, N. Lv, H. Fan, T. Zhang, Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. J. Colloid Interface Sci. 356, 54–57 (2011)CrossRef
23.
Zurück zum Zitat G. Wang, Y. Ji, X. Huang, X. Yang, P.I. Gouma, M. Dudley, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)CrossRef G. Wang, Y. Ji, X. Huang, X. Yang, P.I. Gouma, M. Dudley, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)CrossRef
24.
Zurück zum Zitat X. Lu, X. Liu, W. Zhang, C. Wang, Y. Wei, Large-scale synthesis of tungsten oxide nanofibers by electrospinning. J. Colloid Interface Sci. 298, 996–999 (2006)CrossRef X. Lu, X. Liu, W. Zhang, C. Wang, Y. Wei, Large-scale synthesis of tungsten oxide nanofibers by electrospinning. J. Colloid Interface Sci. 298, 996–999 (2006)CrossRef
25.
Zurück zum Zitat C. Sui, J. Gong, T. Cheng, G. Zhou, S. Dong, Fabrication of tungsten oxide microfibers with photocatalytic activity by electrospunning from PVA/H3PW12O40 gel. Appl. Surf. Sci. 257, 8600–8604 (2011)CrossRef C. Sui, J. Gong, T. Cheng, G. Zhou, S. Dong, Fabrication of tungsten oxide microfibers with photocatalytic activity by electrospunning from PVA/H3PW12O40 gel. Appl. Surf. Sci. 257, 8600–8604 (2011)CrossRef
26.
Zurück zum Zitat T.A. Nguyen, T.S. Jun, M. Rashid, Y.S. Kim, Synthesis of mesoporous tungsten oxide nanofibers using the electrospinning method. Mater. Lett. 65, 2823–2825 (2011)CrossRef T.A. Nguyen, T.S. Jun, M. Rashid, Y.S. Kim, Synthesis of mesoporous tungsten oxide nanofibers using the electrospinning method. Mater. Lett. 65, 2823–2825 (2011)CrossRef
27.
Zurück zum Zitat T.A. Nguyen, S. Park, J.B. Kim, T.K. Kim, G.H. Seong, J. Choo, Y.S. Kim, Polycrystalline tungsten oxide nanofibers for gas-sensing applications. Sens. Actuators B Chem. 160, 549–554 (2011)CrossRef T.A. Nguyen, S. Park, J.B. Kim, T.K. Kim, G.H. Seong, J. Choo, Y.S. Kim, Polycrystalline tungsten oxide nanofibers for gas-sensing applications. Sens. Actuators B Chem. 160, 549–554 (2011)CrossRef
28.
Zurück zum Zitat Y. Qin, F. Wang, W. Shen, M. Hu, Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. J. Alloys Compd. 540, 21–26 (2012)CrossRef Y. Qin, F. Wang, W. Shen, M. Hu, Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. J. Alloys Compd. 540, 21–26 (2012)CrossRef
29.
Zurück zum Zitat C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B 810, 269–275 (2004)CrossRef C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B 810, 269–275 (2004)CrossRef
30.
Zurück zum Zitat A.M. Diskin, P. Španěl, D. Smith, Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days. Physiol. Meas. 24, 107–119 (2003)CrossRef A.M. Diskin, P. Španěl, D. Smith, Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days. Physiol. Meas. 24, 107–119 (2003)CrossRef
31.
Zurück zum Zitat W. Cao, Y. Duan, Breath analysis: potential for clinical diagnosis and exposure assessment. Clin. Chem. 52, 800–811 (2006)CrossRef W. Cao, Y. Duan, Breath analysis: potential for clinical diagnosis and exposure assessment. Clin. Chem. 52, 800–811 (2006)CrossRef
32.
Zurück zum Zitat L. Wang, A. Teleki, S.E. Pratsinis, P.I. Gouma, Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008)CrossRef L. Wang, A. Teleki, S.E. Pratsinis, P.I. Gouma, Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008)CrossRef
33.
Zurück zum Zitat M. Righettoni, A. Tricoli, S.E. Pratsinis, Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)CrossRef M. Righettoni, A. Tricoli, S.E. Pratsinis, Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)CrossRef
34.
Zurück zum Zitat M. Righettoni, A. Tricoli, S. Gass, A. Schmid, A. Amann, S.E. Pratsinis, Breath acetone monitoring by portable Si:WO3 gas sensors. Anal. Chim. Acta 738, 69–75 (2012)CrossRef M. Righettoni, A. Tricoli, S. Gass, A. Schmid, A. Amann, S.E. Pratsinis, Breath acetone monitoring by portable Si:WO3 gas sensors. Anal. Chim. Acta 738, 69–75 (2012)CrossRef
35.
Zurück zum Zitat S.J. Choi, I. Lee, B.H. Jang, D.Y. Youn, W.H. Ryu, C.O. Park, I.D. Kim, Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chem. 85, 1792–1796 (2013)CrossRef S.J. Choi, I. Lee, B.H. Jang, D.Y. Youn, W.H. Ryu, C.O. Park, I.D. Kim, Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chem. 85, 1792–1796 (2013)CrossRef
36.
Zurück zum Zitat M. Righettoni, A. Tricoli, S.E. Pratsinis, Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 22, 3152–3157 (2010)CrossRef M. Righettoni, A. Tricoli, S.E. Pratsinis, Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 22, 3152–3157 (2010)CrossRef
37.
Zurück zum Zitat H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011)CrossRef H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011)CrossRef
38.
Zurück zum Zitat P. Gao, H. Ji, Y. Zhou, X. Li, Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method. Thin Solid Films 520, 3100–3106 (2012)CrossRef P. Gao, H. Ji, Y. Zhou, X. Li, Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method. Thin Solid Films 520, 3100–3106 (2012)CrossRef
39.
Zurück zum Zitat X. Bai, H. Ji, P. Gao, Y. Zhang, X. Sun, Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens. Actuators B Chem. 193, 100–106 (2014)CrossRef X. Bai, H. Ji, P. Gao, Y. Zhang, X. Sun, Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens. Actuators B Chem. 193, 100–106 (2014)CrossRef
40.
Zurück zum Zitat R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. J. Aerosol Sci. 30, 823–849 (1999)CrossRef R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. J. Aerosol Sci. 30, 823–849 (1999)CrossRef
41.
Zurück zum Zitat E.K.H. Salje, S. Rehmann, F. Pobell, D. Morris, K.S. Knight, T. Herrmannsdörfer, M.T. Dove, Crystal structure and paramagnetic behaviour of ε-WO3. J. Phys. Condens. Matter 9, 6563–6577 (1997)CrossRef E.K.H. Salje, S. Rehmann, F. Pobell, D. Morris, K.S. Knight, T. Herrmannsdörfer, M.T. Dove, Crystal structure and paramagnetic behaviour of ε-WO3. J. Phys. Condens. Matter 9, 6563–6577 (1997)CrossRef
42.
Zurück zum Zitat T. Vogt, P.M. Woodward, B.A. Hunter, The high-temperature phases of WO3. J. Solid State Chem. 144, 209–215 (1999)CrossRef T. Vogt, P.M. Woodward, B.A. Hunter, The high-temperature phases of WO3. J. Solid State Chem. 144, 209–215 (1999)CrossRef
43.
Zurück zum Zitat B. Weng, J. Wu, N. Zhang, Y.-J. Xu, Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene—WO3 nanorod photocatalysts. Langmuir 30, 5574–5584 (2014)CrossRef B. Weng, J. Wu, N. Zhang, Y.-J. Xu, Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene—WO3 nanorod photocatalysts. Langmuir 30, 5574–5584 (2014)CrossRef
44.
Zurück zum Zitat I.M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi et al., Stability and controlled composition of hexagonal WO3. Chem. Mater. 20, 4116–4125 (2008)CrossRef I.M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi et al., Stability and controlled composition of hexagonal WO3. Chem. Mater. 20, 4116–4125 (2008)CrossRef
45.
Zurück zum Zitat M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W. Lau et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)CrossRef M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W. Lau et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)CrossRef
46.
Zurück zum Zitat J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)CrossRef J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)CrossRef
47.
Zurück zum Zitat H. Meixner, U. Lampe, Metal oxide sensors. Sens. Actuators B Chem. 33, 198–202 (1996)CrossRef H. Meixner, U. Lampe, Metal oxide sensors. Sens. Actuators B Chem. 33, 198–202 (1996)CrossRef
48.
Zurück zum Zitat N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B Chem. 5, 7–19 (1991)CrossRef N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B Chem. 5, 7–19 (1991)CrossRef
49.
Zurück zum Zitat K. Lee, W.S. Seo, J.T. Park, Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408–3409 (2003)CrossRef K. Lee, W.S. Seo, J.T. Park, Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408–3409 (2003)CrossRef
50.
Zurück zum Zitat P.V. Tong, N.D. Hoa, V.V. Quang, N.V. Duy, N.V. Hieu, Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitivt NO2 gas sensors. Sensor Actuat. B Chem. 183, 372–380 (2013)CrossRef P.V. Tong, N.D. Hoa, V.V. Quang, N.V. Duy, N.V. Hieu, Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitivt NO2 gas sensors. Sensor Actuat. B Chem. 183, 372–380 (2013)CrossRef
51.
Zurück zum Zitat M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K.J. Choi, J.-H. Lee, S.-H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93, 263103 (2008)CrossRef M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K.J. Choi, J.-H. Lee, S.-H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93, 263103 (2008)CrossRef
Metadaten
Titel
Control of the acetone sensitive and selective properties of WO3 nanofibers by doping Co ions: effect of crystal symmetric structure on the responsivity of gas–solid boundaries for gas sensor
verfasst von
Qian-qian Jia
Hui-ming Ji
Peng Gao
Xue Bai
Zheng-guo Jin
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3138-5

Weitere Artikel der Ausgabe 8/2015

Journal of Materials Science: Materials in Electronics 8/2015 Zur Ausgabe

Neuer Inhalt