Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2021 | Ausgabe 3/2021 Open Access

Quantum Information Processing 3/2021

Convergence theorems on multi-dimensional homogeneous quantum walks

Zeitschrift:
Quantum Information Processing > Ausgabe 3/2021
Autor:
Hiroki Sako
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

We propose a general framework for quantum walks on d-dimensional spaces. We investigate asymptotic behavior of these walks. We prove that every homogeneous walks with finite degree of freedom have limit distribution. This theorem can also be applied to every crystal lattice. In this theorem, it is not necessary to assume that the support of the initial unit vector is finite. We also pay attention on 1-cocycles, which is related to Heisenberg representation of time evolution of observables. For homogeneous walks with finite degree of freedom, convergence of averages of 1-cocycles associated with the position observable is also proved.
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2021

Quantum Information Processing 3/2021 Zur Ausgabe